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Abstract 

 

Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of 

progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar 

muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The 

different mutant proteins share ubiquitous expression and abnormal proteostasis, with 

misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration. This 

highlights the relevance of the full protein context where the polyglutamine expansion occurs, 

and suggests different interactions with the cellular proteostasis machinery. Molecular 

chaperones are key elements of the proteostasis machinery and therapeutic targets for 

neurodegeneration. Here we provide a focused review on Hsp90, Hsp70, and their co-

chaperones, and how their genetic or pharmacological modulation affects the proteostasis and 

disease phenotypes in cellular and animal models of polyglutamine disorders. The emerging 

picture is that, in principle, Hsp70 modulation may be more amenable for long-term treatment 

by promoting a more selective clearance of mutant proteins than Hsp90 modulation, which may 

further decrease the necessary wild-type counterparts. It seems, nevertheless, unlikely that a 

single Hsp70 modulator will benefit all polyglutamine diseases. Indeed, available data, together 

with insights from effects on tau and alpha-synuclein in models of Alzheimer’s and Parkinson’s 

diseases, indicates that Hsp70 modulators may lead to different effects on the proteostasis of 

different mutant and wild-type client proteins. Future studies should include the further 

development of isoform selective inhibitors, namely to avoid off-target effects on Hsp in the 

mitochondria, and their characterization in distinct polyglutamine disease models to account for 

client protein-specific differences. 
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1. Introduction 

 

The successful folding and the conformational maintenance of newly synthesized proteins are 

essential for protein homeostasis (proteostasis). Additionally, cells must have mechanisms to 

regulate the localization, concentration, and the activity of different proteins in response to 

intrinsic and extrinsic stimuli [1,2]. Molecular chaperones are proteins that stabilize or assist the 

acquisition of the active conformation of other proteins, without being part of their final 

structure. Molecular chaperones are involved in multiple aspects of proteome maintenance, 

acting in protein trafficking, folding, aggregation, and degradation [3,4]. Although molecular 

chaperones were initially described as heat shock proteins (Hsp; as the first members were 

discovered to be upregulated under such stress conditions; [5]), it is currently known that most 

molecular chaperones are constitutively expressed and involved in maintaining proteostasis at 

any time [6]. 

Molecular chaperone families (Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and the small 

Hsp) were named according to the molecular weight of their members. Hsp100 has an important 

role in protein disaggregation in non-metazoans (e.g. yeast), but metazoans lack Hsp100 in the 

cytosol and nucleus [7,8]. Hsp60 chaperones are present in the cytosol and the mitochondria of 

eukaryotes, but seem to interact with a higher percentage of proteins in bacteria and archaea 

[3,9]. The small Hsp are ubiquitous chaperones that bind to non-native proteins, preventing their 

aggregation and facilitating further refolding or degradation [10-12]. Together, molecular 

chaperones are estimated to account for approximately 10% of the cellular mass, with Hsp90 

and Hsp70 alone representing half of that [13]. Indeed, Hsp90 and Hsp70 are the main effectors 

of the mammalian protein homeostasis network, acting in a multiprotein complex that includes 

co-chaperones such as Hsp40 [14-16]. Hsp90 typically interacts with client proteins in their late 

stages of folding. Hsp90 stabilizes and mediates the final folding of client proteins, preserving 

their activity and inhibiting their degradation [6,17]. In contrast, Hsp70 typically interacts with 

proteins at an early stage of folding or with proteins with an abnormal folding, but not with their 

folded counterparts. The binding of Hsp70 to unfolded or misfolded proteins allows redirecting 

client proteins for either folding or degradation [6,18]. Hsp70 is also relevant in the context of 

protein aggregation, being able to bind protein aggregates and promote their disaggregation 

[19,20]. 

Defects in proteostasis are implicated in the process of aging and in the pathogenesis of 

several degenerative conditions, including the polyglutamine (polyQ) expansion disorders 

[21,22]. PolyQ disorders comprise Huntington’s disease (HD), spinal and bulbar muscular 

atrophy (SBMA), six of the spinocerebellar ataxias (SCA 1-3, 6, 7, 17), and dentatorubral-

pallidoluysian atrophy (DRPLA), and all stem from expanded CAG repeats in the coding 

regions of the affected genes, resulting in mutant proteins with expanded glutamine tracts [23]. 
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These disorders further share an inverse correlation between the CAG repeat number and the 

age of onset, and are primarily neurodegenerative despite ubiquitous expression of the 

respective mutant protein that forms insoluble aggregates in affected neurons [24-26]. 

Additionally, nuclear localization of the expanded protein seems to be required for the induced 

toxicity in the majority of polyQ disorders [24,25]. Interestingly, although all these diseases 

share polyQ expansion in the affected protein, they affect different regions of the neural tissue 

[23]. This differential neurodegeneration highlights the relevance of the protein context where 

the polyQ is inserted, and strongly suggests that the different mutant polyQ proteins and their 

wild-type forms may interact differently with components of the molecular chaperone 

machinery, justifying a focused review. 

The modulation of molecular chaperones has been mainly studied in the context of 

cancer therapy [27,28]. Evidence suggests, however, that molecular chaperones are also 

potential therapeutic targets for neurodegenerative diseases characterized by the accumulation 

and aggregation of misfolded proteins. Indeed, molecular chaperones co-localize with polyQ-

containing insoluble aggregates and their expression is decreased in several polyQ disease 

models, suggesting that their modulation is worth investigating as a potential therapeutic 

approach [29-33]. This review focuses on the modulation of molecular chaperones in the 

context of polyQ disorders. The first section describes the roles and mechanisms of action of 

key members of the Hsp90 and Hsp70 families, together with their standard and novel small-

molecule modulators. The second section integrates the available data on the genetic and 

pharmacological modulation of Hsp90/70 and associated chaperones in models of HD and other 

polyQ disorders, addressing how treatments affect mutant protein levels, aggregation, survival 

and other key disease phenotypes. This review ends with insights from other main 

neurodegenerative diseases, and a discussion including future directions in the field. 

 

 

2. Molecular chaperones and the heat shock response 

 

The heat shock response is a highly conserved cellular reaction to proteotoxic insults such as 

heat, oxidative stress and toxins. In mammals, the master regulator of this response is the 

constitutively expressed heat shock factor 1 (HSF1), which acts by inducing the transcription of 

Hsp genes. Proteotoxic insults activate HSF1, converting its inactive monomers into trimers 

with DNA binding activity and transactivation capacity [34,35]. Interaction with Hsp90 

prevents the activation of monomeric or trimeric HSF1. Similarly, interaction with Hsp70 and 

Hsp40 inhibits HSF1 transactivation capacity (Fig. 1). These interactions seem to act as 

regulatory feedback mechanisms that coordinate HSF1 activity with the expression of its HSP 

targets, and with the state of the protein-folding environment [34-36]. 
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2.1. The Hsp90 family 

 

Hsp90 is a highly dynamic family of proteins, capable of adopting several distinct 

conformations, and being regulated by multiple interactors [37]. This chaperone family has 

multiple client proteins, including steroid receptors, kinases, and several other unrelated 

proteins, including intrinsically disordered proteins such as tau [38,39,15,40,41]. Clients are 

delivered to Hsp90 by Hsp70 and other co-factors [4]. Hsp90 typically interacts with client 

proteins in their late stages of folding by binding to hydrophobic residues scattered over a large 

surface area [6,18]. Hsp90 may stabilize these proteins, mediate their folding and bring about 

their activation, but Hsp90 is also involved in directing clients to proteasomal degradation [17].  

The Hsp90 family belongs to the gyrase, histidine kinase, and MutL superfamily of 

ATPases [4]. Hsp90 is constituted by three domains: an N-terminal nucleotide binding domain 

(NBD) followed by a charged linker region, a middle domain – involved in client protein 

binding (although other domains may participate in client binding [39,42]), and a C-terminal 

domain [38] (Fig. 2a). Importantly, Hsp90 is active in the form of a dimer, assembled via 

interaction sites located in the C-terminal domain. This domain also mediates Hsp90 

interactions with several co-chaperones [4].  

The Hsp90 dimer undergoes an ATP-regulated cycle, similarly to other chaperones. 

Client protein binding affinity is regulated by the combined effects of ATP binding and 

hydrolysis, post-translational modifications, and interactions with co-chaperones  [6,4,37] (Fig. 

2b). Client proteins themselves also influence the conformational equilibrium in interplay with 

co-chaperones, thus acting as modulators of the Hsp90 machinery [39,40]. 

In eukaryotes, Hsp90 can be found in the cytosol, nucleus and organelles such as 

mitochondria and the endoplasmic reticulum. The nuclear localized Hsp90 represents only a 

small fraction of the cytosolic Hsp90, which translocates to the nucleus in response to stress and 

other stimuli [43,44]. In humans, Hsp90 exists as four isoforms: Hsp90! and Hsp90" represent 

the cytosolic forms, Grp (glucose-regulated protein) 94 is found in the endoplasmic reticulum 

(ER), and TRAP-1 (tumor necrosis factor receptor associated protein-1) is associated with 

mitochondria [45] (Table 1). 

 

 

2.1.1. Grp94 – the endoplasmic reticulum Hsp90 isoform  

 

Grp94 is found in the endoplasmic reticulum, and is the only Grp in the Hsp90 chaperone 

family (Table 1) [46,47]. In addition to Grp94, there are other Grp present in the endoplasmic 
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reticulum and also in the mitochondria. Collectively, Grp are chaperones induced upon ER 

stress, a state usually associated with ER calcium depletion and/or accumulation of misfolded 

proteins in the ER [46]. At least one third of the proteins in eukaryotic cells are synthesized at 

the ER membrane. After their synthesis, these proteins are translocated into the ER lumen 

where they acquire their functional structure. When proteins are properly folded, they undergo 

vesicular-mediated transport through the organelles of the secretory pathway [48-50]. When 

protein misfolding prevails, the unfolded protein response is activated, which is a mechanism 

that promotes ER protein-folding homeostasis. The unfolded protein response involves a 

transient reduction of protein synthesis, while enhancing protein folding, transport and ER-

associated protein degradation and autophagy [49-51]. 

Unlike cytosolic Hsp90, Grp94 has no known co-chaperones [47]. Grp94 contributes to 

the ER protein quality control and calcium storage, being one of the major calcium binding 

proteins [52]. Free calcium levels regulate Grp94 chaperone activity via a calcium binding site, 

whose occupation enhances Grp94 association with client proteins [53]. The Grp94 molecular 

chaperone activity includes the direct folding and/or assembly of secreted and membrane 

proteins, and assists the targeting of misfolded proteins for degradation [47,52].  

 

 

2.1.2. TRAP-1 – the mitochondrial Hsp90 isoform 

 

TRAP-1 is a Hsp90 isoform that is predominantly found in the mitochondrial matrix, with a 

smaller fraction in the intermembrane space (Table 1) [54]. Like Grp94, TRAP-1 has no known 

co-chaperones [54]. TRAP-1 functions are incompletely understood but do not seem to overlap 

with the functions of other Hsp90 chaperones, and might be crucial for mitochondrial 

physiology [55,56]. The most extensively reported TRAP-1 function is cytoprotection, via an 

interaction with cyclophilin D that prevents mitochondrial permeability transition pore opening 

[55], and via decreasing reactive oxygen species by yet unknown mechanisms [57]. 

Additionally, TRAP-1 has been associated with mitochondrial morphology, through regulation 

of fission proteins [58]; with mitophagy, through improved molecular quality control that 

reduces the number of damaged mitochondria [59]; with the maintenance of a functional 

electron transport chain, by upregulation of complex I activity [59,60]; and with the ER stress 

response [61]. 

TRAP-1 was also found on the outer side of the ER and shown to regulate the 

ubiquitination of specific proteins destined to mitochondria through interaction with TBP7 (a 

component of the 19S proteasome subunit). Data support the hypothesis that TRAP-1 and TBP7 

perform the quality control of proteins destined to mitochondria at the ER-mitochondria 
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interface: TRAP-1 avoids the mitochondrial import of damaged proteins, sequestering them to 

be refolded [62].  

 

 

2.1.3. Hsp90 modulators 

 

Hsp90 inhibitors are thought to decrease levels of client proteins by preventing their cycling 

with Hsp90, thereby diverting them to the UPS for degradation [63]. Non-selective Hsp90 

inhibitors include naturally occurring compounds, such as geldanamycin and radicicol. 

Attempts to overcome pharmacological and toxicity issues sprouted derivatives of these drugs, 

and also purine analogues (e.g. BIIB021 and PU-H71) as improved Hsp90 inhibitors. 

Geldanamycin derivates include tanespimycin (17-AAG), alvespimycin (17-DMAG), 

retaspimycin (IPI-504), and the primary active metabolite of tanespimycin (IPI-493/17-AG). 

Radicicol derivatives include ganetespib (STA-9090), AT-13387, KW-2478, NVP-AUY922, 

and the orally available NVP-HSP990. All the aforementioned drugs inhibit Hsp90 by 

competing with nucleotides for their binding site at the N-terminal, shifting the balance to client 

protein dissociation and thereby allowing its degradation [63-65]. Interestingly, it has been 

recently proposed that Hsp90 inhibitors that block the ATP binding pocket may impact on 

Hsp70 functions, given that the ATP cycles of Hsp90 and Hsp70 may be tightly coupled [15]. 

Other strategies being pursued to inhibit Hsp90 include the targeting of the Hsp90 C-terminal 

domain in an attempt to inhibit binding with co-chaperones [63-65]. In the context of 

neurodegenerative disorders, radicicol, geldanamycin, and the geldanamycin derivatives 17-

AAG and 17-DMAG are the most frequently tested molecules, as addressed in section 3.  

Strategies to identify isoform selective Hsp90 inhibitors are beginning to emerge. Most 

compounds are being targeted to regions outside the highly conserved nucleotide-binding site 

[65], but minor differences in the ATP-binding pockets are also being explored to develop 

Grp94 selective compounds [66]. Small-molecule Hsp90 inhibitors that selectively accumulate 

in mitochondria were also synthesized to preferentially target TRAP-1. In these compounds, 

designated as geldanamycin mitochondrial matrix inhibitors (gamitrinibs), the ATPase 

inhibitory component of 17-AAG is fused to a mitochondrial targeting moiety 

(triphenylphosphonium cation or 1 to 4 cyclic guanidinium repeats). Gamitrinibs were found to 

accumulate in mitochondria and inhibit the ATPase activity of TRAP-1 with in vitro and in vivo 

efficacy [67]. 

 

 

2.2. The Hsp70 family  
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The Hsp70 chaperone family is a ubiquitous class of proteins involved in several steps of the 

protein quality control, including protein folding, transport and degradation [37]. Hsp70 

recognizes short and highly hydrophobic amino acid sequences, which often are integral 

components of the hydrophobic core of the proteins. Consequently, Hsp70 acts in unfolded and 

misfolded proteins that have these amino acids exposed and not in their native counterparts [18].  

Hsp70 contain an NBD and a C-terminal substrate-binding domain (SBD) connected by 

a conserved hydrophobic linker region (Fig. 3a). Hsp70 activity depends on its dynamic 

interaction with Hsp40 co-chaperones (also called J proteins), the Hsp70-interacting protein 

(Hip), and nucleotide exchange factors (NEFs), which together regulate the nucleotide state of 

the Hsp70 ATPase domain. ATP binding or hydrolysis at the NBD alter the conformation of the 

SBD and, consequently, regulate Hsp70 interaction with client proteins. ATP binding opens the 

substrate-binding site, allowing interaction with client proteins. In contrast, ATP hydrolysis, 

which is promoted by Hsp40, closes the substrate-binding site, stabilizing the client protein 

binding [37,68]. Hip and NEFs interact with the NBD, in a mutually exclusive manner, to 

regulate client release: an Hip dimer locks ADP in the binding cleft, delaying client release [69], 

whereas a NEF releases ADP and, consequently, the client protein [37,68]. Proteins unable to 

fold properly may rebind to Hsp70 or be redirected to other chaperones or degradation pathways 

(Fig. 3b). In addition to its role in protein folding and degradation, Hsp70 is also involved in 

protein disaggregation, acting in cooperation with Hsp40 co-chaperones and the Hsp110 NEF in 

the formation of a chaperone complex with disaggregase activity [70,20] (Fig. 3c).  

There are at least 14 Hsp70 isoforms in humans encoded by different genes (Table 2). 

Although the vast majority of Hsp70 proteins are mainly cytosolic and nuclear in localization, 

there are also Hsp70 members restricted to specific compartments, such as mitochondria and the 

ER. The four most studied Hsp70 isoforms are: the stress induced Hsp70 (Hsp72); the 

constitutive Hsp70 (Hsc70); the Grp78 or BiP, which is mainly located in the ER; and the 

mitochondrial Hsp70 (mtHsp70) [71]. 

 

 

2.2.1. The constitutive Hsc70 and the inducible Hsp72 

 

The major constitutively active form of Hsp70 is Hsc70. Hsc70 is by far the most expressed 

Hsp70 in all tissues and is only mildly induced during stress conditions. Hsc70 and the 

inducible Hsp72 have high identity (87%; Table 2), and share major functions in protein 

folding, translocation, degradation and prevention of aggregation [72]. Still, differences in their 

C-terminal domain may account for some functional differences [73]. Indeed, while Hsp72 

knockout mice survive, Hsc70 knockout is lethal, thus suggesting different survival roles for 

these isoforms [74]. Moreover, while under normal conditions Hsc70 regulates several 
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components of the synapse (e.g. N-type calcium channels, neurotransmitter synthesis and 

packaging, and vesicle recycling), Hsp72 only seems to function at the synapse under stress 

conditions [71]. Furthermore, Hsc70 is the only chaperone with a crucial role in recognizing 

substrates for chaperone-mediated autophagy [75]. 

 

 

2.2.2. Grp78 – the endoplasmic reticulum Hsp70 isoform 

 

The most abundant ER chaperone is the Grp78, which shares 64% identity with Hsp72 [76] 

(Table 2). Similarly to the ER located Hsp90 isoform (Grp94), Grp78 acts as a calcium binding 

protein, functions in protein folding, and targets proteins for secretion or for the ER-associated 

degradation. The mechanisms involved in these processes are similar between Grp78 and the 

previously described Grp94 [48,49]. 

 

 

2.2.3. mtHsp70 – the mitochondrial Hsp70 isoform 

 

mtHsp70 is constitutively expressed and has 52% sequence identity with Hsp72 (Table 2). It 

resides mainly in the mitochondria where it acts as the ATP-hydrolyzing subunit of TIM23 

(translocase of the inner membrane; [77]), assisting the import and folding of nucleus-encoded 

mitochondrial precursor proteins [78,79]. Such precursor proteins contain targeting signals 

recognizable by receptors at the mitochondrial surface that target the precursors to different 

mitochondrial subcompartments [80]. Mitochondrial membrane potential per se is not enough to 

drive the complete translocation of proteins into the matrix. The additional energy required for 

this translocation via TIM23 comes from mtHsp70-dependent ATP hydrolysis [81]. mtHsp70 

binds the unfolded polypeptide chain and drives its movement into the matrix [80], acting in the 

subsequent protein folding [82]. 

 

 

2.2.4. Hsp70 modulators 

  

Different compounds have been identified and developed to target different aspects of Hsp70 

function, but thus far all lack selectivity for individual Hsp70 isoforms. The first was 15-

deoxyspergualin, which targets the Hsp70 SBD and allosterically stimulates Hsp70 ATPase 

activity [83,84]. Other compounds that interact with the Hsp70 SBD are 2-

phenylethynesulfonamide, also known as pifithrin-µ [85], and geranylgeranylacetone (GGA) 

[86]. Pifithrin-µ inhibits Hsp70 folding activity by disrupting its association with co-chaperones, 
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such as Hsp40, and with client proteins [85]. The mechanism of action of GGA is still 

incompletely understood; being suggested that GGA binding to Hsp70 promotes its dissociation 

from HSF1, allowing HSF1 activation [86]. 

The majority of the developed Hsp70 modulators target the NBD, either stimulating or 

inhibiting Hsp70 ATPase activity. Those that stimulate Hsp70 ATPase activity include the 

dihydropyrimidines SW02 and 115-7c [87,88], whereas Hsp70 ATPase inhibitors include the 

dihydropyridine CE12 [89], VER155008 [90], myricetin [87,91], and apoptozole [92]. 

Compounds such as methylene blue and azure C were also reported to inhibit Hsp70 ATPase 

activity [87], possibly by oxidizing residues at the NBD [93].  

The rhodocyanine MKT-077 targets the NBD inhibiting Hsp70 ATPase activity and 

stabilizing the ADP-bound conformation [94]. Researchers have been working to create MKT-

077 analogs with reduced toxicity and increased potency and permeability. Improved MKT-077 

analogs include YM-01 and the blood brain barrier permeable neutral analog YM-08 [95,96]. 

These compounds mimic the ADP-locking activity of the co-chaperone Hip at the NBD, 

increasing Hsp70 affinity for clients and consequently preventing their aggregation and 

facilitating transfer to downstream chaperones or degradation machineries [69,97].  

 

 

2.3. The chaperone machinery and protein quality control  

 

The Hsp70 and Hsp90 chaperone families play a major role in the proteostasis network, acting 

together with their co-chaperones as a multiprotein complex in protein quality control [3,14,16].  

Hsp90 stabilizes the clients, inhibiting their ubiquitination and degradation, whereas Hsp70 

promotes the ubiquitination and degradation of proteins that cannot be properly folded. Indeed, 

when Hsp90 cannot cycle with the client protein, ensuring the native folding state of the client 

protein, Hsp70 can redirect the misfolded protein to degradation pathways, such as chaperone-

assisted proteasomal degradation or autophagy-associated pathways [98,99]. The latter 

pathways include chaperone-assisted selective autophagy and chaperone-mediated autophagy; 

both are associated with Hsc70 and may compensate for defects in the ubiquitin proteasome 

system (UPS), which is otherwise the main system responsible for the degradation of misfolded 

proteins [100,101]. 

The UPS relies on the coupling of ubiquitin chains to target proteins, signaling them for 

proteasomal degradation [102]. After protein recognition by chaperones, chaperone-dependent 

E3 ubiquitin ligases target E2 ubiquitin-conjugating enzymes to the protein, promoting its 

ubiquitination [14]. The co-chaperone CHIP is an E3 ligase that binds to both Hsp70 and 

Hsp90, and interacts with E2 ubiquitin-conjugating enzymes through a C-terminal U-box 

domain, thereby connecting chaperone complexes to the ubiquitination machinery [103]. The 
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co-chaperone BAG1 (bcl-2-associated athanogene 1) associates with Hsp70 and CHIP, 

promoting protein ubiquitination [4] and linking the chaperone system to the proteasome 

[98,104] (Fig. 4). Interestingly, although Hsp90 is considered to be primarily involved in client 

protein stabilization and inhibition of degradation, evidence suggests that Hsp90 may also 

promote the degradation of specific client proteins such as tau, a protein known to misfold and 

accumulate in Alzheimer’s disease [105,106]. 

In the context of neurodegenerative disorders, the chaperone-assisted proteasomal 

degradation model presents two possible approaches to promote the degradation of aggregation-

prone client proteins. The first is the inhibition of client protein stabilization by Hsp90, 

inhibiting the cycling of the not-yet-unfolded proteins with Hsp90 to promote its degradation. 

However, Hsp90 interacts with hundreds of proteins, therefore long-term treatment with Hsp90 

inhibitors may lead to the unspecific degradation of multiple Hsp90 client proteins. Thus, the 

second possible pathway seems to be a better approach, which is the promotion of Hsp70-

dependent degradation of already-unfolded or misfolded client proteins [14]. 

 

 

3. Modulation of molecular chaperones in Huntington’s disease and other polyglutamine 

disorders 

 

The expanded polyQ tract renders the affected protein highly prone to aggregation. Still, among 

polyQ disorders, aggregates may present different subcellular localizations, and different 

neuronal populations show the highest vulnerability  [23,107,108]. Also, while the aggregates 

clearly indicate that proteostasis is altered, it remains uncertain if aggregates are the main 

mediators of neuronal dysfunction [109]. Indeed, aggregate formation may actually reduce the 

diffuse levels of the mutant protein and the associated risk of neuronal death [110]. 

Nevertheless, protein aggregates do sequester several proteins, including components of the 

transcriptional and protein quality control machineries, thus suggesting a role in transcriptional 

dysregulation and abnormal proteostasis that are common features to all polyQ disorders 

[107,111]. Either genetic or pharmacological modulation of molecular chaperones alters protein 

levels and aggregation, thus being potential therapeutic approaches for polyQ disorders 

[33,89,97].  

 

 

3.1. Huntington’s disease  

 

In HD, the polyQ expansion occurs in the huntingtin (Htt) protein (Table 3). Htt interacts with 

multiple proteins involved in diverse cellular processes (e.g. gene transcription, energy 
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metabolism, cell signaling, and proteostasis), which are disrupted upon expression of mutant 

Htt; mHtt) [111,112]. Key components of HD pathology are mitochondrial dysfunction, 

transcriptional dysregulation and abnormal proteostasis [113]. 

Mitochondrial bioenergetics and dynamics are disturbed by expression of mHtt [114-

116]. mHtt was shown to interact with mitochondria in both cellular and animal models, 

however, its exact sub-mitochondrial localization is still unclear [117,118]. mHtt was reported 

to disrupt mitochondrial protein import via direct interaction with the TIM23 complex [118], 

whose ATP-hydrolysing subunit is the chaperone mtHsp70 [77,81]. 

Transcriptional dysregulation in HD results from mHtt interaction with major 

components of the transcriptional machinery. In the context of chaperones, mHtt was found to 

interact with and sequester the transcription factor NF-Y in brains of HD mice. As this 

sequestration reduces the NF-Y dependent Hsp70 transcription, it may explain the reduced 

expression of Hsp70 in HD, and contribute for abnormal proteostasis [32]. 

Abnormal proteostasis in HD relates to the aggregation-prone features of mHtt, which 

seed nuclear and cytoplasmic aggregates that sequester transcription factors and quality control 

proteins, thereby disrupting normal transcription and protein clearance [111]. Indeed, the two 

major protein clearance pathways, UPS and autophagy, seem compromised in HD. Ubiquitin 

chains do accumulate in HD brains [119], however, this is not necessarily due to direct 

proteasome inhibition by mHtt. Instead, mHtt may overwhelm the proteostasis network, leading 

to increased levels of other misfolded proteins that are diverted to the UPS where they compete 

for the limited degradation capacity of the 26S proteasome [120]. Concerning autophagy, data 

suggest transcriptional dysregulation of autophagy-related genes in HD brains [121]. Also, mHtt 

may impair autophagosome trafficking [122] and cargo recognition [114,121-123]. Still, the 

hypothesis that wild-type Htt may function as a scaffold for selective autophagy cautions about 

the risk of decreasing both wild-type and mHtt with non-selective therapeutic strategies [124]. 

 

 

3.1.1. Genetic modulation of molecular chaperones in HD  

 

Proteomic analysis of the mHtt interactome revealed that several members of chaperone 

families associate with mHtt. Moreover, levels of Hsp70 and Hsp40 are progressively reduced 

in brain tissues of HD animal models through a combination of sequestration and transcriptional 

dysregulation, suggesting that modulation of chaperones could be a therapeutic strategy in HD 

[111]. The genetic modulation of chaperone-mediated regulatory pathways in HD has been 

mainly studied by manipulating Hsp40 and Hsp70 levels and less frequently Hsp90, CHIP and 

HSF1 levels (Table 4). Overall, the overexpression or enhancement of chaperones reduced mHtt 

toxicity in HD cellular and animal models: Hsp40 and CHIP reduced mHtt aggregation and 
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improved HD phenotypes; Hsp90 modulation did not significantly alter HD phenotypes; and 

contradictory results have been obtained with modulation of HSF1 and Hsp70 (Table 4). 

The chaperone-dependent E3 ubiquitin ligase CHIP was found to interact with mHtt and 

to induce its ubiquitination and degradation, in cells expressing N-terminal mHtt [125]. 

Consistently, CHIP overexpression reduced mHtt aggregation and toxicity in HD cellular and 

animal models [125-127]. 

HSF1 overexpression increased survival and reduced mHtt aggregation in skeletal 

muscle but not in brains of R6/2 HD mice, where HSF1 expression was not detected [128]. In 

contrast, overexpression of HSF1 in a bone-derived cell line increased mHtt aggregation and 

toxicity. The proposed explanation was that strategies that promote the heat shock response may 

increase proteotoxic stress, preferentially killing cells with high mHtt expression and this could 

lead in some cases to an underestimation of mHtt aggregation [129].  

Overexpression of Hsp90 in cell lines showed no effect on mHtt aggregates [130]. 

Hsp90 silencing, however, reduced the levels of mutant Htt in both full-length and N-terminal 

forms, in cellular models, supporting the hypothesis that Htt is an Hsp90 client protein, and that 

preventing its cycling with Hsp90 promotes its degradation [131,132]. Further supporting this 

hypothesis is the fact that both wild-type and mutant N-terminal Htt, and full-length mutant Htt 

were found to interact with Hsp90 [131]. 

Hsp40 and Hsp70 overexpression have been studied alone or in combination in different 

HD models. While Hsp40 overexpression inhibited mHtt aggregation and/or toxicity in cells 

[130,133,134], primary neurons [135], Xenopus laevis [136], and mice [137], Hsp70 

overexpression was less efficient in reducing mHtt aggregation than Hsp40. Indeed, HEK293 

cells overexpressing Hsp40 exhibited fewer mHtt aggregates than those overexpressing Hsp70 

[135]. Data suggest that Hsp70 overexpression reduces or does not alter mHtt aggregation, 

which may be related with the Hsp70 isoform that is modulated. For example, overexpression of 

Hsc70 decreased mHtt aggregation, while overexpression of inducible Hsp70 did not alter the 

amount of aggregates in Neuro2a cells expressing mHtt [133]. Most studies, however, do not 

specify which Hsp70 isoforms are being modulated. Co-expression of Hsp70 and Hsp40 

synergistically reduced mHtt aggregation [130,134], highlighting the coordination between both 

Hsp70 and Hsp40 chaperones in mediating Htt protein degradation.  

 

 

3.1.2. Pharmacological modulation of molecular chaperones in HD 

 

Drugs that attempt to rectify the harmful consequences of mHtt (e.g. histone deacetylase 

inhibitors [138-140]) have shown promising results. Nevertheless, pharmacological strategies 

that focus on the causative agent itself, mHtt, via enhanced refolding, and/or increased 
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degradation are expected to provide upstream protection, and are being actively pursued, 

namely with drugs that modulate molecular chaperones.    

Increased expression of molecular chaperones may be achieved pharmacologically by 

direct activators of HSF1 or by Hsp90 inhibitors. The latter dissociate HSF1 from its cytosolic 

complexes with Hsp90, allowing HSF1 nuclear translocation and increasing the expression of 

heat shock proteins [29,141]. By destabilizing the Hsp90 chaperone-client protein complexes, 

Hsp90 inhibitors also promote the degradation of client proteins [131]. Studies with Hsp90 

inhibitors have found an inhibition of mHtt aggregation and/or a decrease of its toxicity (Table 

5). 

HSF1 activators include HSF1A, a benzyl pyrazole-based molecule [142] and F1, an 

unsaturated barbituric acid derivative [143]. Both HSF1A and F1 promoted Hsp70 expression 

and reduced mHtt aggregates in cells expressing mHtt [142,143]. In contrast, bone-derived cells 

treated with F1 showed increased mHtt aggregation, however, in this case F1 treatment was 

performed at least 48h after cellular transfection with Htt exon 1 [129], a sufficient time for 

mHtt aggregates to have already formed [120]. Together, these findings suggest that the 

chaperones induced by HSF1 treatment may act on mHtt oligomers but not on the larger 

aggregates. 

Hsp70 has a crucial role in protein folding, transport and degradation [37] and its 

overexpression may reduce mHtt aggregation [130]. SW02, an Hsp70 ATPase stimulator, 

decreased mHtt aggregation in PC12 and yeast HD models, increasing soluble mHtt and toxicity 

in yeast, but unaffecting survival in PC12 cells [89]. Conversely, CE12, an Hsp70 ATPase 

inhibitor, increased mHtt soluble levels in yeast and increased mHtt aggregation and survival in 

yeast and PC12 cells, supporting the hypothesis that mHtt aggregates are less toxic than soluble 

mHtt [89]. 

 

 

3.2. Spinal and bulbar muscular atrophy 

 

SBMA, also known as Kennedy’s disease, is caused by polyQ expansion in the androgen 

receptor (AR) [26] (Table 3). The AR mediates the effects of androgens, being expressed in 

sexual and non-reproductive organs, such as the skeletal muscle, and the central nervous system 

[26]. AR-androgen complexes formed in the cytoplasm translocate to the nucleus where they 

activate gene transcription [144]. Mutant AR forms insoluble aggregates in the nucleus and 

cytoplasm [107], however, nuclear localization seems critical for toxicity since mutations in the 

nuclear localization signal or addition of nuclear export signals abolish mutant AR toxicity 

[145,146]. Still, ligand-dependent nuclear localization per se is insufficient for mutant AR-

induced neurodegeneration, as DNA binding is also required [147].  
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As in HD, the pathogenesis of SBMA includes transcriptional dysregulation and 

mitochondrial dysfunction. Mutant AR decreases the expression of genes required for neuronal 

survival [148,149], and its N-terminal fragments were found to activate BAX-dependent 

apoptosis in neurons, stimulating cytochrome c release from mitochondria [150]. Further, 

mutant AR expression in mammalian cells was found to increase reactive oxygen species, 

depolarize mitochondria and to decrease transcription of genes associated with mitochondrial 

function, such as PGC-1!, TFAM, PPAR", ND1, SOD2 [151].  

 

 

3.2.1. Genetic modulation of molecular chaperones in SBMA 

 

The AR is a classic Hsp90 client protein and the genetic modulation of chaperones in the 

context of SBMA has been performed by overexpression of CHIP, Hip, Hsp40 and Hsp70 in 

cell lines and less frequently in animal models. Available studies suggest that overexpression of 

chaperones decreases mutant AR levels, aggregates and toxicity (Table 6). 

CHIP overexpression enhanced mutant AR ubiquitination and degradation, decreasing 

mutant AR levels in cells [152,153] and in SBMA transgenic mice, where it also decreased 

mutant AR aggregation and ameliorated motor symptoms [152]. Similarly, Hip overexpression 

decreased mutant AR aggregation by increasing its degradation in cells [97,154].  

Hsp40 or Hsp70 overexpression decreased mutant AR aggregate formation and 

increased the survival of SBMA cell models (Table 5). Hsp70 overexpression in SBMA 

transgenic mice ameliorated motor function and decreased aggregation and levels of mutant AR. 

[155]. Overexpression of Hsp40 and Hsp70 likely decreases the aggregation of mutant AR by 

promoting its degradation via the UPS. Alternatively, both Hsp40 and Hsp70 also induce mutant 

AR solubilization, since their overexpression decreased mutant AR aggregation and increased 

its soluble form in presence of lactacystin, a proteasome inhibitor [156]. Co-expression of 

Hsp70 and Hsp40 presents synergic effects on reduction of mutant AR aggregate formation and 

on cell survival, reflecting that Hsp70 and Hsp40 act together in chaperoning misfolded AR 

[156,157].  

 

 

3.2.2. Pharmacological modulation of molecular chaperones in SBMA 

 

Several drugs targeting Hsp90 and Hsp70 chaperones have been tested in cellular and animal 

models of SBMA (Table 5). As with mHtt in HD models, Hsp90 inhibitors reduced aggregation 

and/or soluble levels of mutant AR, decreasing its toxicity in SBMA models [158-160]. The 

geldanamycin derivative 17-DMAG was 3-fold more potent than 17-AAG in reducing levels of 
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mutant AR in SH-SY5Y cells [159]. Proteasomal inhibition with MG-132 blocked the reduction 

of mutant AR levels induced by 17-AAG and 17-DMAG. In contrast, these Hsp90 inhibitors 

decreased mutant AR even when Hsp70 induction was blocked by protein synthesis inhibition 

with cycloheximide or by small interfering RNA. These results indicate that the effects of these 

Hsp90 inhibitors are highly dependent on the UPS, rather than on Hsp70 induction [159,160]. 

Autophagy also seems involved in the reduction of mutant AR after 17-AAG treatment. Indeed, 

17-AAG may promote activation of the autophagy pathway, as indicated by the associated 

increases in LC3 mRNA and LC3-II protein levels in immortalized motor neurons. In addition, 

when autophagy was blocked with 3-methyladenine or with small-hairpin RNA against LC3, 

17-AAG could not increase degradation of mutant AR [161].  

GGA has been shown to induce the expression of molecular chaperones in various 

tissues, including the central nervous system, via disruption of the Hsp70-HSF1 complex, thus 

allowing HSF1 activation [86,162,163]. GGA did not alter the expression of the constitutive 

Hsc70, but up-regulated expression of Hsp70 and Hsp90 in cells expressing mutant AR [158]. 

GGA also decreased mutant AR levels and increased the survival of SBMA cellular and mouse 

models [158]. 

Methylene blue, which was identified in a high-throughput screen as an Hsp70 inhibitor 

[87], promoted the accumulation of mutant AR in HeLa cells. Since methylene blue may 

influence several cellular processes, the experiments were repeated in the presence of Hsp70 

overexpression, and the associated loss of methylene blue effects on mutant AR indicates that 

they were mediated by Hsp70 inhibition [164]. 

YM-1 stabilizes Hsp70 in its ADP-bound state, mimicking the co-chaperone Hip and 

enhancing binding of Hsp70 to substrates. In a PC12 cell model of SBMA, YM-1 decreased the 

levels of mutant AR through increased degradation by the UPS. Importantly, the knockdown of 

Hsp70 reduced the effects of YM-1, implicating Hsp70 as its critical cellular target [97]. 

 

 

3.3. Spinocerebellar ataxias and dentatorubral-pallidoluysian atrophy  

 

The SCA family comprises more than 35 genetically different types of progressive 

neurodegenerative disorders, six of which are polyQ expansion disorders [165]. SCA1, 2, 3 and 

7 are caused by polyQ expansion in ataxin-1, 2, 3 and 7, respectively, whereas SCA6 and 

SCA17 result from polyQ expansions in the !1A subunit of the voltage-dependent calcium 

channel Cav2.1 (CACNA1A) and in the TATA-box binding protein (TBP), respectively [25] 

(Table 3). SCAs and DRPLA share many clinical and pathological features (Table 3), in fact, 

DRPLA patients with mildly expanded polyQ in the affected protein (atrophin-1; [166]) tend to 

exhibit pure cerebellar symptoms, such as ataxia [167]. Many of the ataxia-causing proteins are 
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reported to share interacting partners, suggesting that the disease phenotypes shared among 

these disorders may result from common molecular pathways [168]. Indeed, as will be 

described below, transcriptional dysregulation is a common feature to all of these disorders.  

Ataxin-1 was reported to interact with RNA and several regulators of transcription, 

indicating its role in the regulation of gene expression [169-171]. Studies in transgenic animal 

models showed that expanded polyQ in ataxin-1 induced a dysregulation of the expression of 

genes critical for cerebellar development [172-174]. Importantly, nuclear localization of the 

mutant protein seems to be required for toxicity [175] and nuclear aggregates are common in 

SCA1 [108]. 

Ataxin-2 is thought to play a role in post-transcriptional and translation regulation 

[176]. Mice expressing ataxin-2 with a polyQ expansion showed deficits in the expression of 

Purkinje cells-specific genes [177,178], which were associated with translation dysregulation 

[177]. In contrast with SCA1, nuclear localization or aggregates formation of the expanded 

ataxin-2 are thought unnecessary for the pathogenesis of SCA2 [179].   

Ataxin-3 has been associated with protein homeostasis and transcriptional regulation 

[180]. Ataxin-3 has ubiquitin-protease activity and up to three ubiquitin-binding motifs, being 

thought to directly regulate ubiquitination-dependent degradation pathways [181]. Additionally, 

ataxin-3 was shown to interact with the co-chaperone and E3 ligase CHIP and suggested to 

promote the turnover of CHIP substrates [182]. The expansion of the polyQ tract in ataxin-3 

may alter the dynamics of ataxin-3 and CHIP interaction, targeting CHIP for degradation. In 

fact, expanded ataxin-3 presents an increased affinity for CHIP, and decreased levels of CHIP 

were found in a SCA3 mouse model [182]. Consistently with its function in transcription, 

expression of mutant ataxin-3 in SCA3 transgenic mice altered the expression of several genes 

including those involved in the heat shock response [31]. Although both cytoplasmic and 

nuclear aggregates have been described in SCA3 brains [180], the nucleus is thought to be the 

principal site of SCA3 pathogenesis [183]. 

CACNA1A, the protein mutated in SCA6, integrates the Cav2.1 calcium channel that is 

responsible for transmission initiation at fast synapses [25]. While there is lack of support for 

changes in Cav2.1 channel function in SCA6 [108,184], this disease has been associated with 

transcriptional dysregulation in Purkinje cells [185], being noteworthy that mutant CACNA1A 

aggregation preferentially occurs in the cytoplasm and rarely in the nucleus of Purkinje cells 

[186]. 

Ataxin-7 constitutes a subunit of the TFTC (TATA-binding protein-free TAF-

containing complex) and the STAGA (SPT3/TAF GCN5 complex) complexes, both of which 

are crucial for gene transcription [108]. Not surprisingly, mutant ataxin-7 induced 

transcriptional dysregulation in SCA7 transgenic models [187-189], and the disease associates 

with nuclear aggregates of the polyQ-expanded protein [190]. 
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TBP, the protein involved in SCA17, is an essential component of the transcriptional 

initiation complex [191], directing it to DNA via binding to the TATA-box [192]. Studies with 

SCA17 transgenic mice indicate that polyQ expansion in TBP alters its ability to bind DNA and 

transcriptional regulators, suggesting that transcriptional dysregulation contributes to SCA17 

pathogenesis [193-196]. In SCA17, mutant TBP accumulates in intranuclear aggregates [190]. 

Atrophin-1, the protein involved in DRPLA, functions as a transcription regulator [166]. 

In Drosophila models [197] and brains of transgenic mice [198], polyQ expansion in atrophin-1 

was shown to induce transcriptional dysregulation. Both patients and DRPLA animal models 

show nuclear accumulation of an N-terminal fragment of mutant atrophin-1, which forms 

aggregates and is associated with toxicity [190,199]. 

 

 

3.3.1. Genetic modulation of molecular chaperones in SCAs and DRPLA 

 

Chaperone-associated genetic modulations in SCAs and DRPLA models include the 

overexpression of CHIP, Hsp40 and Hsp70, which were found protective by decreasing mutant 

proteins levels, aggregation, or toxicity (Table 7). Overexpression of the chaperone-dependent 

E3 ubiquitin ligase CHIP decreased mutant protein levels in cellular and Drosophila models of 

SCA1 and SCA3 [125,126,153,200,201], likely due to increased degradation via the UPS since 

the ubiquitination levels of mutant protein were increased [125,126]. As observed for mHtt 

aggregation [125,127], CHIP overexpression decreased mutant ataxin-3 aggregation in cells 

[125]. In contrast with these results, CHIP overexpression increased mutant ataxin-1 

aggregation in cellular models, suggesting that CHIP may exert different effects depending on 

its client protein [200]. Additionally, CHIP modulation was found to alter the levels of 

unexpanded ataxin-1 and -3 proteins in cells (Table 7), indicating that CHIP can also regulate 

the degradation of wild-type forms of these proteins [33,200]. In agreement with the protective 

effects of CHIP overexpression, CHIP reduction increased mutant ataxin-3 aggregation and the 

severity of the phenotype in SCA3 transgenic mice [201].  

Hsp40 overexpression decreased mutant protein aggregation in SCA1, SCA3 and 

DRPLA cellular models [33,128,136,202,203]. Hsp40 overexpression decreased mutant ataxin-

3 aggregation while increasing its levels in cells, prompting the hypothesis that Hsp40 may bind 

mutant ataxin-3 and delay its degradation [33]. Hsp70 overexpression decreased mutant protein 

aggregation in SCA3, SCA7 and DRPLA cellular models [128,204,205]. In a SCA3 Drosophila 

model, overexpression of Hsp40 or Hsp70 reduced mutant ataxin-3 induced toxicity. Co-

overexpression of Hsp40 and Hsp70 synergistically reduced toxicity while decreasing 

aggregates and increasing soluble ataxin-3 levels, thus associating reduced toxicity with altered 

solubility properties of mutant ataxin-3 [206]. As observed for CHIP, Hsp40 and Hsp70 were 
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shown to also regulate the levels of wild-type ataxin-3 in cells [33] (Table 7). While Hsp70 

overexpression improved Purkinje neuron morphology and motor function in SCA1 mice [207], 

its overexpression had no effect on mutant ataxin-7 toxicity in SCA7 mice [204]. Concerning 

SCA17, overexpression of the constitutive Hsc70 ameliorated neuropathology in transgenic 

mice [208]. 

 

 

3.3.2. Pharmacological modulation of molecular chaperones in SCAs and DRPLA 

 

Concerning SCAs and DRPLA, and as far as we could find in the literature, pharmacological 

modulation of chaperones has only been tested in SCA3 and SCA17 models, where Hsp90 

inhibitors or inducers of chaperone expression (GGA, indole or NC001-8) were found 

protective by decreasing mutant protein aggregation and associated toxicity, in contrast with 

Hsp70 ATPase inhibition (azure C) (Table 5).   

Hsp90 inhibition with geldanamycin, radicicol or 17-AAG in Drosophila SCA3 models 

decreased mutant ataxin-3 associated toxicity [141,142], and 17-AAG treatment also decreased 

mutant ataxin-3 aggregation and increased survival [141]. In SCA3 mice, Hsp90 inhibition with 

17-DMAG improved motor function, while decreasing mutant ataxin-3 aggregation and levels, 

possibly via autophagy activation since 17-DMAG treatment increased both beclin-1 and LC3-

II levels [209]. 

Treatment with GGA decreased mutant protein aggregation in SCA3 and SCA17 cells 

[205,210], but had no effect on mutant ataxin-3 toxicity in SCA3 Drosophila [141]. Indole and 

its derivate NC001-8 were recently tested in SCA models. Although the mechanisms by which 

these compounds induce chaperone expression remain uncertain, both decreased mutant protein 

aggregation in SCA3 and SCA17 cells [205,210], being reported to enhance autophagy in SCA3 

cells [205]. 

The inhibition of Hsp70 ATPase activity with azure C increased levels of both normal 

and mutant ataxin-3 in cells, consistent with the hypothesis that Hsp70 can regulate the 

degradation of wild-type ataxin-3 [33].  

 

 

3.4. Insights from other neurodegenerative disorders 

 

In addition to polyQ diseases, Hsp70 modulators have been studied in the context of other 

neurodegenerative disorders. For instance, the Hsp70 ATPase activity stimulators SW02 and 

115-7c were assessed for their effect on the proteostasis of tau and !-synuclein, which are 

proteins know to misfold and accumulate in Alzheimer’s and Parkinson’s diseases, respectively. 



22 
!

In HeLa cells, both compounds were found to increase tau levels [87]. While SW02 had no 

effect on !-synuclein levels in HeLa cells [87], 115-7c decreased !-synuclein aggregation in 

neuroglioma cells [211]. Inhibitors of the Hsp70 ATPase activity were also studied for their 

potential in the regulation of tau [87]. Contrasting with the observed effects in polyQ models, in 

which methylene blue and azure C increased protein levels of mutant AR and mutant ataxin-3, 

respectively, treatment with either of these compounds decreased both wild-type and mutant tau 

levels in HeLa cells and mice brain [87]. Additionally, neither methylene blue nor azure C 

altered !-synuclein levels in HeLa cells [87]. YM-1 and its blood brain barrier permeable 

neutral analog YM-8 were also found to reduce tau levels in HeLa cells and brain slices from 

tau transgenic mice [96,212]. As observed for SBMA models [97], the effect of YM-1 was 

blocked by proteasomal inhibition with epoximicin, suggesting that treatment with YM-1 

promotes tau degradation via the UPS [212]. Taken together with data from polyQ disease 

models, the emerging picture is that chaperone modulators, and those of Hsp70 in particular, 

may lead to different effects on the proteostasis of different mutant and wild-type client 

proteins. 

 

 

3.5. Pharmacological targeting of Hsp70: inhibition versus activation 

 

Collectively, data from both genetic and pharmacological interventions generally support 

chaperone modulation as a potential therapeutic approach in polyQ disorders, while also 

evidencing that the chaperone system may exert different effects depending on the nature of the 

client protein. Importantly, although genetic interventions support Hsp70 activation as a 

promising approach for polyQ disorders, the pharmacological modulation of Hsp70 has proven 

to be more complex. 

Two molecules known to inhibit Hsp70 ATPase activity presented different effects on 

mutant AR levels in SBMA cells (methylene blue increased whereas YM-1 decreased AR 

levels) [97,164]. One explanation for these distinct results may lay in the detailed mechanisms 

by which the compounds affect the biochemistry of Hsp70. In fact, YM-1 not only inhibits 

Hsp70 ATPase activity, but it also stabilizes the ADP-bound conformation of Hsp70. This is 

relevant because the binding affinity of the SBD is highly dependent on the state of the NBD: 

Hsp70 in an ATP-bound form has poor affinity for client proteins, whereas Hsp70 in an ADP-

bound form has high affinity for client proteins [37]. Different Hsp70 modulators may thus 

evoke different effects on proteostasis depending on their Hsp70 binding site and the 

conformation state that they promote. As such, modulators that stabilize the ADP-bound 

conformation, such as YM-1, are expected to enhance Hsp70 affinity to client proteins, 

inhibiting protein aggregation and allowing Hsp70-dependent degradation. In contrast, 
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modulators that favor the ATP-bound conformation are expected to promote client release, and 

thus facilitate mutant protein aggregation. 

The mechanisms that regulate the probability of the Hsp70 complex to allow 

degradation or refolding of a protein are incompletely understood. Several factors, such as the 

nature of a specific client, its conformational state, and the availability of downstream 

chaperones and degradation machineries are likely to contribute for that probability. 

 

 

4. Concluding remarks 

 

The modulation of molecular chaperones is emerging as a potential therapeutic approach in 

polyQ disorders. Although genetic approaches have been valuable tools to identify the pathways 

that modulate the toxicity of polyQ-expanded proteins, the translation of these findings to the 

clinical practice would benefit from pharmacological agents with the ability to modify disease 

progression. Hsp90 inhibitors include a variety of molecules that have been extensively studied 

in the context of polyQ disorders with promising results. However, when considering the long-

term use of such inhibitors it is important to have in mind that Hsp90 interacts with not-yet-

unfolded client proteins, preserving their stability and activity. Long-term treatment with Hsp90 

inhibitors may thus lead to functional disruption and unspecific degradation of multiple Hsp90 

client proteins. Taking this into account, the ideal approach might be to promote the degradation 

of not properly folded proteins that are no longer cycling with Hsp90. In principle, this may be 

achieved with drugs that modulate Hsp70, promoting Hsp70-dependent degradation. Current 

limitations are that all the available Hsp70 modulators lack selectivity for individual Hsp70 

family members, increasing the chances of disrupting essential functions of multiple Hsp70 

isoforms, including the Hsp70 present in the mitochondria. As such, in addition to the 

development of selective Hsp70 inhibitors, future studies in polyQ models should include the 

effects of Hsp70 modulators on mitochondrial Hsp70 functions, including mitochondrial protein 

import and folding. Moreover, given that the consequences of modulating Hsp70 activity seem 

to depend on the nature of the specific client protein, it currently seems unlikely that the same 

Hsp70 modulator will provide therapeutic benefits for all polyQ disorders. Furthermore, since 

Hsp70 may not only influence the levels of soluble mutant protein but also act upon aggregates, 

it will be important to clarify the relative pathological role of such protein species and how 

these are affected by different Hsp70 modulators. 
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Figure legends 

 

Fig. 1. Regulation of Hsp transcription by heat shock factor 1 (HSF1). a Domain structure 

of human HSF1 (NCBI accession number: NP_005517.1). b Proteotoxic insults convert inactive 

monomers of HSF1 into trimers with DNA binding activity. HSF1 trimers bind heat shock 

elements (HSE) and induce transcription of HSP genes. The availability of heat shock proteins 

exerts a feedback regulation on HSF1 activity: Hsp90 can interact with either (i) monomeric or 

(ii) trimeric HSF1, preventing their activation; (iii) Hsp70 and Hsp40 can inhibit the 

transactivation capacity of HSF1 [34-36]. 

 

Fig. 2. The Hsp90 reaction cycle. a Domain structure of human Hsp90 family members (NCBI 

accession numbers: Hsp90!, AAI21063.1; Hsp90", AAH68474.1; GRP94, AAH66656.1; 

TRAP-1, AAH23585.1). b The ATP-bound open state of the Hsp90 dimer interacts with 

inactive client proteins transferred from the Hsp70 system by the co-chaperone Hop (Hsp70-

Hsp90 organizing protein). Hop and co-chaperones such as Cdc37 (cell division cycle 37 

homolog) stabilize the open conformation of Hsp90, facilitating client binding and inhibiting 

ATP hydrolysis, whereas the activator of Hsp90 ATPase, Aha1, induces the transition to the 

closed conformation. The co-chaperone p23 stabilizes the Hsp90 closed conformation, trapping 

the client protein. After ATP hydrolysis, the client protein is released in an active state 

[4,225,42]. 

 

Fig. 3. Hsp70 reaction cycle. a Domain structure of human Hsp70 family members (NCBI 

accession numbers: Hsp72, AAH18740.1; Hsc70, AAH19816.1; GRP78, AAI12964.1; 

mtHsp70, AAH24034.1). b ATP binding promotes the opening of the substrate-binding site, 

allowing interaction of Hsp70 with unfolded proteins recruited by the co-chaperone Hsp40. 

Hsp40 stimulates ATP hydrolysis, inducing the shutting of the substrate-binding site and, 

consequently, the transition to the ADP-bound closed conformation. Hsp70-interacting protein 

(Hip) locks ADP in the nucleotide binding domain, delaying substrate release. In contrast, 

nucleotide exchange factors (NEFs), which have a high affinity for Hsp70 when bound to ADP, 

trigger ADP dissociation and induce protein release upon rebinding of ATP. After dissociation 

from Hsp70, proteins incapable of proper folding may rebind, or be transferred to downstream 

chaperones or to the degradation machinery [4,37,68]. c Simplified model of Hsp70-dependent 

protein disaggregation. Hsp40 co-chaperones (J proteins) target protein aggregates and recruit 

Hsp70. Hsp110 is also recruited to form a chaperone complex with Hsp70 and Hsp40, whose 

cooperative pulling forces (dashed red arrows) promote protein disaggregation. The NEF 

activity of Hsp110 triggers peptide release from the aggregate [70,20].  
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Fig. 4. Simplified model of Hsp90/Hsp70 chaperone machinery in client protein 

degradation. Dissociation from the Hsp90 machinery allows the unfolding of the client protein. 

Hsp70 binds the unfolded protein and recruits the chaperone-dependent E3 ubiquitin ligase 

CHIP. CHIP then targets E2 ubiquitin-conjugating enzymes to the unfolded protein promoting 

its ubiquitination and subsequent proteasomal degradation. This simplified model (adapted from 

[97]) does not include all possible pathways, being noteworthy that Hsp90 and CHIP may form 

a complex that is proposed to recognize and target for degradation clients such as 

phosphorylated tau [105]. 
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