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Resumo

Considere-se uma familia de produtos cruzados de semi-fluxos sobre um fluxo ergédico
©': M — M definida num espago de Hilbert de dimensdo infinita separavel. Assumindo
que M é um espago de Hausdorff compacto e que ¢’ preserva uma medida de probabili-
dade de Borel u, regular e ergédica, positiva em conjuntos abertos nao vazios, concluimos
que existe um subconjunto residual dos produtos cruzados de semi-fluxos (em relagdo a
uma topologia 7T) para o qual, para i quase todo o ponto x, a decomposi¢cao de Oseledets-
Ruelle ao longo da 6rbita de x é uniformemente hiperbdlica (no espaco projetivo) ou o
operador limite de Ruelle ao longo da érbita de x € o operador nulo. Provimos também
uma versao L” desta dicotomia para cociclos com uma topologia do tipo L” definida no
conjunto dos geradores infinitesimais. De facto quebramos a dicotomia e obtivemos um
espectro com todos os expoentes de Lyapunov-Ruelle iguais. Finalmente provamos que
os cociclos nio uniformemente Anosov sio C° densos na familia dos cociclos parcial-

mente hiperbdlicos com subespacos instaveis ndo triviais.

MSC 2000: Primary: 37D30; Secondary: 47A10
keywords: Lyapunov exponents; Skew-product infinite dimensional semiflows; Multi-

plicative ergodic theorem; Dominated splitting.
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Abstract

We consider an infinite dimensional separable Hilbert space and its family of skew-
product compact semiflows over an ergodic flow ¢@': M — M. Assuming that M is a
compact Hausdorff space and ¢’ preserves a Borel regular ergodic probability pt which is
positive on non-empty open sets, we conclude that there is a 7-residual subset of skew-
product semiflows within which, for pt almost every x, either the Oseledets-Ruelle’s de-
composition along the orbit of x is uniformly hyperbolic (in the projective space) or else
the Ruelle’s limit operator over the orbit of x is the null operator. We also prove an L? ver-
sion of this dichotomy for cocycles with a L? topology defined in infinitesimal generators
set. In fact, we drop the dichotomy and reach a one-point spectrum under an L?” generic
assumption. Finally, we prove that non-uniformly Anosov skew-products are C%-dense in

the family of partially hyperbolic cocycles with non-trivial unstable bundles.

MSC 2000: Primary: 37D30; Secondary: 47A10
keywords: Lyapunov exponents; Skew-product infinite dimensional semiflows; Multi-

plicative ergodic theorem; Dominated splitting.
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Chapter 1
Introduction

Given any smooth dynamical system, the Lyapunov exponents measure the exponential
behavior of the tangent map. A positive (or negative) Lyapunov exponent gives us the
average exponential rate of divergence (or convergence) of two neighbouring trajectories
whereas zero exponents give us the absence of any kind of exponential behaviour. For any
smooth diffeomorphism with non-zero Lyapunov exponents we obtain a rich information
about geometric properties of the system, namely stable/unstable manifold theory. These
geometric tools are the base of most of the central results on dynamical systems nowadays.
So it is important to detect when do Lyapunov exponents vanish (see (5; 31)) and also

when zero Lyapunov exponents can be removed.

We will start to define the concept of Lyapunov exponents in dynamical system con-
text.

Consider a C*, compact, connected and boundaryless Riemannian n-manifold M, a
vector field X : M — TM of class C*, s > 1 and the flow ¢’ : M — M associated with X,
namely,

do'

L)) = X (0 ().

For each x € M, the flow ¢'(x) has a tangent map D@L which is solution of the non-

autonomous linear differential equation

Ut) =A(x,1)-U(t), (1.0.1)

where
A(x, l‘) = DX(pr(x).

1



2 Introduction

The stability of the trajectory {@'(x) : # € R} can be described by studying small per-

turbations of the linear differential equation (1.0.1).

Given x € M and v € T,;M, the formula

AT (x,v) = Jim sup%log | Dl -v| (1.0.2)

defines the Lyapunov exponent at the point x in the direction of v € T,M\ {0}.

For each x€ M and v € T,;M the function A * (x,-) : R" — R U {—o0} attains only finitely

many values A" < --- < Ag+ () where s*(x) <nand 1% (x,0) = —0.
In an analogous way we can define the Lyapunov exponent when t — —o0 by
_ . 1 ¢
A7 (x,v) = l lim sup ;log |Del-v|. (1.0.3)
——00

For each x e M and v € T,M the function A~ (x,-) : R" — Ru {—o0} attains only finitely
many values A;” > --- >4~ (x) Where s~ (x) <nand A~ (x,0) = —o0.

If ;7 < 0 then the trivial solution U(z) = 0 is asymptotically stable, and even expo-
nentially asymptotically stable (5). Lyapunov introduced also regularity conditions which
guarantee that exponential stability remains valid for nonlinear perturbations.

In order to simplify the notation, in what follows, we will drop the superscript + from

the forward Lyapunov exponents if it does not cause any confusion.

Definition 1.0.1. The point x € M is Lyapunov regular if and only if exists a decomposition

s(x)
TM = (P Ei(x) (1.0.4)
i=1
into subspaces E;(x), and numbers A (x) < --- < Ayy)(x) such that:
(i) Ei(x) is invariant under D@L, i.e.,
D@Ei(x) = Ei(9:(x))
and depends (Borel) measurably on x;

(ii) forve E;(x)\{0},

im sup 7 log [Def - v] = Ai(x)
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with uniform convergence on {v e E;(x) : |v|| = 1},

(iii) for any v,w € T,M\ {0},

~ 1
tl}g_rnoo sup ; log £ (D@} - v, D@} -w) = 0.

The decomposition (1.0.4) is called the Oseledets decomposition associated with the
Lyapunov exponent A 1. The regularity condition is usually difficult to check in specific
situations but the multiplicative ergodic theorem of Oseledets (Theorem 1.0.1) asserts
that regularity is “typical” from the measure-theoretical point of view, that is, it holds on

almost every flow trajectory, relative to any probability measure invariant under the flow.

Theorem 1.0.1. Multiplicative Ergodic Theorem (Oseledets, 1968) If M is a compact
Riemannian manifold, ¢' : M — M is a flow associated with a vector field X and | is a

finite measure @'-invariant on M, then - almost every point x € M is regular.

A seminal result for discrete systems is the Bochi-Maiié theorem, which provides
a C'-residual set of area-preserving diffeomorphisms on surfaces where either we have
Anosov systems (i.e. uniform hyperbolicity in all points) or for Lebesgue almost every
point, we have zero Lyapunov exponents. This theorem was announced in the beginning
of the 1980’s by Mafié in (29) but there was only available a sketch of a proof, (see (30)).
A complete proof, due to Bochi, appeared only in (17).

Next, Bochi-Viana in (20) (see also (18)) extended this result to a large class of dis-
crete systems: volume-preserving diffeomorphisms with arbitrary dimension, symplectic
maps and also linear cocycles. In this case we no longer obtain a global result. Instead,
it is obtained a C!-residual subset such that for almost every orbit we have a dominated
splitting (or partial hyperbolicity in the symplectic case) or else the Lyapunov exponents
are zero. For a survey of the theory for the discrete-case see (19).

Bessa started the approach for the continuous-time setting by proving in (6) the di-
chotomy (dominated-splitting versus zero Lyapunov exponents) for 2-dimensional con-
servative linear differential systems. Then, in (7) he proved the version for three-dimen-
sional divergence-free vector fields without singularities (see (1) for the correspondent
statement for vector fields with singularities). For higher dimensions we have available
the results by Bessa in (8) and by Bessa and Rocha in (12).

Bessa and Carvalho started the approach of the generalization of previous results on

cocycles but for the discrete infinite dimensional setting (9) (see Section 1.1).
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Table 1.1: Results already proved on the C°-generic dichotomy zero exponents versus
dominated splitting.

Discrete-time Continuous-time
Low dimension Mainé, 1983, Bochi, 2002 (17) Bessa, 2006 (6)
Bessa and Dias, 2008 (11)
High dimension Bochi and Viana, 2005 (20) Bessa, 2008 (8)
Bochi, 2010 (18)
Infinite dimension Bessa and Carvalho, 2008 (9) Theorem A

Bessa and Stadlbauer proved in (13) similar results for the semigroup of stochastic
matrices.

We can also find in (14) identical results using an LP-topology. Bessa and Vilari-
nho proved that the class of accessible and saddle-conservative cocycles L”-densely have
a simple spectrum and that for an LP-residual subset of accessible cocycles we have a
one-point spectrum. They also proved versions of previous results for linear differential
system, include infinite dimensional discrete cocycles.

Recently, Avila, Crovisier and Wilkinson in (4) obtained a dichotomy for C'-generic,
volume-preserving diffeomorphisms: either all the Lyapunov exponents of almost every
point vanish or the volume is ergodic and non-uniformly Anosov (i.e. non-uniformly
hyperbolic and the splitting into stable and unstable spaces is dominated). Their theorem
is the sharper result concerning these type of dichotomies.

Bessa and Carvalho also proved in (10) that non-uniformly Anosov cocycles (par-
tially hyperbolic cocycles without null Lyapunov exponents) are C°-dense in the family
of partially hyperbolic cocycles with non-trivial unstable bundles (see Definitions 5.2.1
and 5.2.2).

In this thesis we are interested in the continuous-time counterpart of the main theorem
in (9) (see Theorem A). The strategy of the proof for the continuous-time case is similar
to the one used in the discrete-time case. However the perturbations schemes used are
quite different. We also proved a similar result in an LP-topology, using the ideias of (14)

(see Theorem B) and also the continuous counterpart of (10) .

1.1 Infinite Dimension - The Discrete-time Case

Let .77 be an infinite dimensional separable Hilbert space and €' (7¢) the set of linear
compact operators acting in ¢ with the uniform norm. Consider a homeomorphism
f M — M of a compact Hausdorff space M and u, an f-invariant Borel regular measure

that is positive on non-empty open subsets. Given a family (Ay)rep of linear operators in
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¢ () and a continuous vector bundle 7w : M x .7 — M, we define the associated skew

product over f by

F(A): Mx — MxH
(v) = (f(x),A(R)-v).

The map F satisfies the equality ToF = fom and, for allxe M, F,(A) : 7 —  is
linear on the fiber 7 := 77! ({x}). We call A a cocyle.

A random product of a cocycle A : M — € () associated to the map f is the se-
quence, indexed by x € M, of linear maps of .7 defined, for each n € Ny, by AV (x)=1d
and

AM(x) = AN (1)) 0 -0 A(F(x)) 0 A(x).

In (9) were studied the asymptotic properties of random products for most points x,

i.e, the limit

lim ((A(x))*"A(x)"),

n—a0

where (A(x))* denotes the dual operator of A(x).

Under the integrability hypothesis

leog+ IAG)] dp(x) < o0,

where log™(y) = max {0,log(y)}, the theorem of Ruelle (33) offers, for u-almost every
point x € M, a description of a complete set of Lyapunov exponents for the above limit of

operators and associated invariant directions.

Consider C?(M,€¢'(#)) the set of integrable compact cocycles. In (9) it was proved
that:

Theorem 1.1.1. There exists a C'-residual subset # of CY(M,€ (7)) such that, for A

X and |-almost every x € M, either the limit lim ((A(x))*nA(x)”)ﬁ is the null operator
n—ao

or the Oseledets-Ruelle’s splitting of A along the orbit of x is dominated (see Definition

2.3.1).
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1.2 Infinite Dimension - The Continuous-time Case

As in previous section let .7Z” be an infinite dimensional separable Hilbert space (we can
view Z as the set of square integrable L>-functions on a measurable space) and €' (.7¢)
the space of linear compact operators defined in 7. Let M be a compact, connected,

Hausdorff manifold endowed with a Borel probability measure L.

Consider a continuous and ergodic flow ¢’ : M — M with respect to the measure U,
i.e, any measurable and @’-invariant subset of M has zero or full u-measure. A linear
cocycle based on ¢’ is defined by a flow ®'(p) € € (), continuous on space parameter

p € M and on time the parameter 7.

The flow @' satisfies the cocycle identity:

D' (p) = (¢’ (p)) o ¥ (p), (1.2.1)

forallz,se Rand pe M.
Let £ (A, ) be the set of linear applications from J# to 7. We can write ®'(p)

as

S

O (p) = 1d + fo A(@*(p))- @ (p) ds, (122)

where A : M — £ (2, ) is a measurable map such that A(¢'(p))-®'(p) e L' (M, ).

We can also define the linear CO- skew product flow

b: RxMxHt — M x

(t,x,v) — (@' (x), P (x) V). (1.2.3)

Once again we are interested in the asymptotic properties of the limit
Tim ((®'(x))"® (x))7,
—00

where (®'(x))* denotes the dual operator of &' (x).

Let .79 be set of continuous maps ® : R x M x ¢ — ¢ such that ®' (x) is a compact
operator acting on 77, Vt € R and Vx € M and satisfies (1.2.1). We intend to prove the

following result:

Theorem A. There exists a T-residual subset % of the set of cocyles F° such that for ® €
X and |1-almost every x € M, either the limit operator tlim (D (x))* D (x))% is the null
—00

ISee the definition of 7-topology in Section 2.1.
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operator or the Oseledets-Ruelle’s splitting of ®' along the @' -orbit of x has a dominated
splitting.

The idea to prove Theorem A is the following. We take a cocyle which is a continuity
point of an upper-semicontinuous function (see Section 2.4) and if, for this skew-product,
the Lyapunov exponents of @' (x) are not all equal, i.e, the limit operator tli)rglo (D (x))*D' (x)) x
is not the null operator and there is no dominated splitting along the ¢’-orbit of x, we con-
struct small 7-perturbations which allow us to breaking the continuity, obtaining a contra-
diction. Finally, as the set % of points of continuity of upper-semicontinuous functions
is a residual set the Theorem A follows. Moreover, as the set of the skew-product flows

with 7-topology is a Baire space then % is dense.

1.3 Examples of Cocycles

The study of Lyapunov exponents has an unusually vast array of interactions with other
areas of Mathematics and Physics, such as stochastic processes (random matrices and,
more generally, random walks on Lie groups (see (25))), spectral theory, smooth dynamics
(see (40)) and in control theory (see (23)).

Simple examples are the continuous quasi-periodic Schrodinger equations, the Math-
ieu’s equations and, more closely related with our study, the dynamical cocycles on infi-

nite dimension.

1.3.1 Schrodinger cocyles

Consider the Schrodinger equation

(Hou)(t) = —%(r) + A%V (1,0 + ot)u(t) = Eu(t), (1.3.1)

where V : T? — R (T = R/Z) is the potential function, E the energy and @ € R\Q is the
frequency. The operator Hy is called the Schrodinger operator, acting on the Hilbert space

L?(R) of square integrable functions.

We can study (1.3.1) from dynamical systems point of view. With u := u and up := u

we can write it as the traceless system

<u1> = ( 0 1) (”1> (1.3.2)
up A V(l‘79+(1)l‘)—E 0 u
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Denote by Fg(z,0) the fundamental solution of (1.3.2), i.e.,
0 1 1 0
Fi.(t,0) = Fe(t,0) with Fg(0,0) = )
£(1,6) (/IZV(t,Gert)—E 0) £(16) £(0,8) (0 1)

We have that Fg(t,60) € SL(2,R) for all 7.
We can also study the dynamic of the system (1.3.2) via the skew-product mapping

Geg: TxR? — TxR2
(6,v) — (0+wt, Fg(t,0)v).

The average exponential growth of the fundamental solution is measured by the Lya-

punov exponent

o1
(E) = im | log|Fi(0,6)]40 >0,

which exists by subadditivity and which is non-negative since F is in SL(2,R). For more
details see (15).

1.3.2 Mathieu’s equation

The Mathieu’s equation is a special case of a linear second order homogeneous differential

equation such as occurs in many applications in physics an engineering.

Let g1,92 : R — R be T-periodic functions and suppose that g; is continuously differ-

entiable and g3 is continuous. Consider the periodic linear oscillator

V+2q1(t)y+q2(t)y = 0. (1.3.3)

An example for (1.3.3) is

Y+ 2ky 4 (a+ €cos(2t))y = 0 with k > 0. (1.3.4)
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The substitution of the form x(r) = y(¢) exp(kz), t € R, yields Mathieu’s equation (see
(24))

i+ (8 +ecos(2))x =0, (1.3.5)

with 8 := a — k%. This is a linear oscillator with periodic restoring force.

With y; :=y and y, :=y, the second order equation (1.3.4) is equivalent to the system

<y1> - ( 0 ! ) <y1>. (1.3.6)
2 —a—¢gcos(2t) —2k) \»

Similarly, with x| := x and x, := x, we can write (1.3.5) as the system

X1 _ 0 1 X1 137
X)) \—(a—Kk)—ecos(2) 0) \xz/)" (137

The solutions satisfy for ¢ € R,

xl(t) - 1 0 Y1 (l‘)

x2(1) —k 1) \»n@))’
hence, for initial values (x;,0,x2,0) = (y1,0,y2,0), the Lyapunov exponents are related
by

;L(Xl,o,x%()) = JL(yl,O,yz,O) —k.

For physical interpretation of Mathieu’s equation and more details see (24).

1.3.3 Dynamical Cocycles on Infinite Dimension

Recently Blumenthal and Young, in their notable work (16), generalized the classic results
(27), (28) to Banach space mappings f preserving a compactly supported Borel probabi-

lity measure p with finitely many positive Lyapunov exponents.

Let (4, |-|) be a Banach space. Consider (f, ), where f : 8 — 2 is a mapping and

U is an f-invariant Borel probability measure. The following properties are assumed:
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(H1) (i) fis C? Fréchet differentiable and injective;

(ii) the derivative of f at x € 4, denoted D f;, is also injective.

(H2) (i) fleaves invariant a compact set .of — A, with f(«/) = o7

(ii) u is supported on o7

(H3) Assume
lo(x) := lim %log |Df! o < 0 for p-a.e. x,
n—o0

where |Df}|q is the Kuratowski measure of noncompactness of the set Df}(B),
where B is the unit ball in %.

(H4) (f,u) has no zero Lyapunov exponent.

(HS5) the set .o/ has finite box-counting dimension.

An SRB measure can be defined as a measure y with a positive Lyapunov expo-
nent p-a.e. and such that the conditional measures of ¢ on unstable manifolds are in the
"Lebesgue measure class" induced on these manifolds (see Definition 2.1, (16)). Blu-
menthal and Young proved, under conditions (H1)-(HS) and in rought terms, that u is an
SRB measure if and only if the entropy of f is equal to the sum of its positive Lyapunov

exponents, say Pesin’s entropy formula holds.

It is important to point out that the class of mappings to which this result applies
includes (but is not limited to) time-t maps of semiflows defined by periodically forced

nonlinear dissipative parabolic partial differential equations.

Although the approach used by Blumenthal and Young in their results is similar to that
we do in this thesis, they work with the "derivative" cocycle D f,, which we call dynamical
cocycle. So, they study the Lyapunov exponents of Df where f is a smooth dynamical
system. In this thesis we do not consider Df. Instead, we consider a continuous and
ergodic flow ¢’ : M — M and choose a cocycle @, (p) based on ¢’ acting on €' () (see
Section 1.2 ). So when we consider a perturbation B of A (or a perturbation ®} of @2),
this B do not need to be associated to a derivative cocycle of a flow near ¢’.

The ideas of Blumental and Young may be fundamental in the attempt to generalize

our results for dynamical cocycles.
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1.4 Thesis Structure

Besides introduction this work is organized in four chapters. Some preliminaries results,
as the definition of the 7-topology, the multiplicative ergodic theorem, the definition of
dominated splitting and entropy functions, are presented in Chapter 2. In Chapter 3 it
is established the perturbation lemmas which will be used in the proof of Theorem A in
Section 3.3. In Chapter 4 it is proved an identical result in a less exigent topology, the L?
infinitesimal generator topology. Finally in Chapter 5 we use a same type of perturbation
to remove zero Lypaunov exponents in a topology sharper than 7, inspired in the result of
(10).
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Chapter 2

Preliminaries Results

2.1 Topologies

In previous section we denoted the set of C® compact cocycles by .Z° = CO(R x M x
A, 7). Given any a,b € R with a < b consider the restriction map

Pup: FO — Ca,b] x M xS” S
® — &: [a,p]xMxS® — §°,

such that

2 P (x)- .
S(1,xv) = (e i P00V > 1,

Prxv) = P(x)v if |O'R)-v[ <L,

where S” is the weak closure of the unit sphere on 7.
First, we will prove that S” is compact for the weak topology @ and that @ is metri-
zable inside S (see (34)).

Lemma 2.1.1. Let S = {§ € 2 : |&|| = 1} be the unit sphere of S, where |-|| is the norm
induced by an inner product in 7. The weak closure s” of S is the closed unit ball
D(0,1) = {8 e |G| < 1}.

Proof. As the closed unit ball D(0,1) is a norm closed convex subset of JZ, it is also
weakly closed and thus it contains the weak closure S” of S. Suppose that S” is not equal
to D(0, 1). Then there exists an element & € D(0, 1) such that & is not in S In this case

13
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we can find a weakly open neighbourhood V of & such that V SY = 5. By definition
of weak topology @ on 77, we can find finitely many fi,--- , fy € 2, and a (sufficiently
small) € > 0 such that

50 eD(éO?fla"'fkag) = 50 +D(O,f1,"' ,fk,S) - V.l

In this case, we must have &+ D(0, f1,--+ , fx, €) ~S° = @.

Now since 7 is infinite dimensional, D(0, fi,-- -, fx, €) must contain an infinite di-
mensional subspace of 7. So we can find a non-zero element 1o € D(0, f1,--- , fx, €)
such that

tnoeD(Oafla'” vfk58)7

for all € R. Notice that N : 1 € R — |&y+ 1o/ € [0,00) defines a continuous function
with N(0) = ||&o| < 1 (since &y ¢ S), and N(r) — oo when t — oo. By Intermediate Value
Theorem, we can choose some 7y > 0 such that | &y +#9no| = 1. This implies that &y +
tono € E+D(0, f1,-++, fr,€) NS, which is a contradiction. So we must have sY = D(0,1).

O

Proposition 2.1.2. The weak closure s” of S is compact for the weak topology.

Proof. By Banach-Alaoglu theorem the closed unit ball in 57 defined by

DO, )" ={Ae”: A <1, [El <1}

is compact with respect to the weak star topology (denoted by @*) in .7Z*. Since we are
dealing with a separable Hilbert space .7, which is reflexive, then we know that D(0, 1)
is also compact for @ in 7. As, by Lemma 2.1.1, S° = D(0,1) then S” is compact for
. ]

We need now to prove that @ is metrizable inside S from a metric d. We recall that
a family . of functionals A : 7# — R separates points in a set K 7 if for any distinct
&,veK, thereexists A € .Z such that A(§) # A(v). Clearly, when we have .Z = 777" we
get that the family . separate points in K = J7.

Lemma 2.1.3. The weak topology ® is metrizable inside S” c A, ie., o derives froma

metric d.

lRecachatD(g())fh”'fkas) = {é EN : | < é _goaﬁ > | <E,i€ {17 7k}}
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Proof. As 7 is separable there exists a dense sequence &, — 7. Making the usual
isomorphism between #” and .7* established by the Riesz representation theorem (i.e.
Ag(v) = (v, &) identifying A with &) we can conclude that A¢ € 7 is a dense family of
functionals which separates points in .7#” and, in particular, separates points in any subset
of 7. Indeed, if by contradiction there exist distinct &,V € 7, such that for all )“én we
have ¢ (§) = Ag,(v), that is, (§,E,) = (v, &) for all n, hence Ag(&,) = Ay(&,) for all
n. Then 2,5 = Ay (i.e. & = V) because they coincide in a dense subset of Z and are
continuous linear functionals.

The proof of the lemma is finished once we prove the following claim.

Claim 2.1.1. If exists a family of continuous functions f, S” — R which separate points

. SO . . S0 GO .
inS", then there exists a metricd: S~ xS~ — [0,00) which generates ®.

Suppose, without loss of generality, that || f,,||oc < 1 for all n, and let @, be the topology

induced on S by the metric

d(é,V) :Z%Vn(g)_ﬁz(vﬂa (2.1.1)

neN

with &, ve S°.

This is indeed a metric since {f,,} separates points in S”. Since each fn 1S -continuous
and the series (2.1.1) converges uniformly on S” x§®, d is a o-continuous function on
S” xS. The balls

B(E,r) = {veg‘”:d(g,v) <r}

are therefore w-open. Thus w; c .

To prove that w; = w let C e S” be w-closed. Since S is w-compact, so is C. Since
W, < o, it follows that C is w,z-compact (every @, open cover of C is a @-open cover).
As compact sets in metric spaces are closed then C is w;-closed. So the claim is proved.

Since S” is a compact metric space then it is complete. [

Note that the domain [a,b] x M x S” and the image S” are topological spaces en-
dowed with the product topology, given by the absolute-value norm in [a,b], the distance

function in M and the @ topology in S”. So we consider the compact-open topology on
CO([a,b] x M xS, xS®).
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Now we topologize .#° with the initial topology (the one which has less open sets and
makes p, ; continuous), which we will denote by 7. As in (32) it is independent of a and
b.

As each component of [a,b] x M x S is compact with a countable base and S? is
a complete metric space, we can apply Theorem 4.1 of (26) to conclude that C%([a,b] x

M x gw,gw) has a complete metric, which is essential to prove the next lemma.

Lemma 2.1.4. The image of F° by p, is a closed set of C°([a,b] x M x gw,gw)for the

compact-open topology.

Proof. Consider a Cauchy sequence ®, of p,,(F°). As C([a,b] x M x S”§%) is a
complete metric space we have that ®, converges for some ® € C%([a,b] x M x gw,gw).
If & e p,,(7°) we can conclude that p, ,(7°) is a complete subspace of C([a,b] x M x
gw,M X gw) and consequently it is closed.

For t € [a, b] consider the notation & (x,v) = ®(t,x,v). First we need to verify that ®
satisfies the cocycle identity &5 (x,v) = & o ®*(x,v), for 1 € [a, b].

In fact,

P od(xy) = @ (%)

As @' is linear on variable v then

(0 () a3 | = ey |9(0* () - () 0]

So

P (¢°(x)) - P*(x) v
1D (s (x)) - D3 (x) - v|
_ D' (x) v )

|5 (x) - v

o (x,v) =

5 (x,v).
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As this property is valid for every x € M, we can consider for the same interval |a,b]
other points in the orbit of x with the guarantee that the property remains valid and prove
that it is valid along all the orbit of x.

]

As [a,b] x M x S”is compact the compact-open and the strong topology on C%([a, b] x
M xS S®) are the same. As, by Lemma 2.1.4, Pas(F) is a closed subset of C%([a, b] x
M xS S) we can apply Theorem 4.4 of (26) and obtain that p, ,(.%°) is a Baire space
for the compact-open topology.

We want to prove that .7 is also a Baire space for the 7-topology.

Lemma 2.1.5. Given two topological spaces X andY and a map p : X — Y, such that Y
is endowed with the compact-open topology and X with the initial topology, the open and
dense subsets of X are pre-images, by p, of open and dense sets of p(X).

Proof. Consider the sets U, < Y such that U, n p(X) # & and V,, = p~ (U, n p(X)) are
open and dense sets. We will prove that U, n p(X) are open and dense.

To prove that each U, n p(X) is open it is necessary to prove that

Vye U, np(X), 30 > Osuch that B(y,8) < U, n p(X).

Consider y e U, n p(X) (see Figure 2.1). We have that p~!(y) e p~ (U, n p(X)) = V..

As V,, is open then there exists € > 0 such that B(p~!(y),€) € V,,.

As p is continuous and we are using the initial topology on X, B(p~!(y), &) = p~!(A)
for some open set A € Y such that ye A. As p(B(p~'(y),€)) € p(Vy) = U, np(X) then
Ac U,np(X). As A is open there exists 6 > 0 such that B(y,6) A < U, np(X).

Now as y is arbitrary we can conclude that U, n p(X) is an open set.

To prove that each U, n p(X) is dense in p(X) it is necessary to prove that

Vye p(X) Ve > 0 we have that B(y,&) n [U, np(X)] # &.

Let we p(X) and consider B(w, €), for some € > 0 (see Figure 2.2). As p is continuous
and we are using the initial topology on X, we have that there exists 6 > 0 such that
B(p~'(w),8) < p~'(B(w,€)). As V,, is dense in X, B(p~'(w),8) nV,, # . Consider a
point z€ B(p~!(w),8) nV,. We have that p(z) € p(B(p~'(w),5)) S B(w,€) and p(z) €
U, np(X) because z€ V,. So B(w, &) n[U,np(X)] # .

Now as w and € are arbitrary we can conclude that U, n p(X) is a dense set.
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X

Vi = p~(Un 1 p(X))

Figure 2.1: Illustration to Lemma 2.1.5 - Openness.

Figure 2.2: Illustration to Lemma 2.1.5 - Denseness.

Proposition 2.1.6. The space .#° with t-topology is a Baire space.

Proof. As Py (33 0) is a Baire space, using the continuity of p and Lemma 2.1.5, we

conclude the .#° is a Baire space for the T-topology.

]
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2.2 The Multiplicative Ergodic Theorem

The following result of Ruelle (Corollary 2.2 of (33)) gives a Lyapunov-spectral decom-
position for the limit

i [(@ ()@ ()]

under the general integrability condition:

J log™ [®! (x) | du(x) < 0. (2.2.1)
M

Theorem 2.2.1. Let ¢': M — M be a continuous flow, W a ¢'-invariant Borel probability
and ® : R x M x A — . If the cocycle @' is a compact operator (for each x), then, for

u-almost every x € M, we have the following properties:

1

(a) The limit llirg) [(D'(x))* D (x)]> exists and is a compact operator L (x).

(b) Let ™) > M) > | be the nonzero eigenvalues of £ (x) and Uy(x), Us(x), ...
the associated eigenspaces whose dimensions are denoted by n;(x). The sequence
of real functions Ai(x), called Lyapunov exponents of ®', where 1 <i < j(x) and
j(x) e NuU {oo}, satisfies:

(b.1) The functions A;(x), j(x) and n;(x) are @'-invariant and depend in a measur-

able way on x.

(b.2) If Vi(x) is the orthogonal complement of Uj(x) DU (x) ® ... ®U;—(x), for
i< j(x)+1, and Vi 41(x) = Ker(ZL(x)), then:

(i) Jim Hog | ()] = Au(x) if & Vi(x)\Via 1 () and i < () + 1
(ii) lim 7log | (x) -ul = —o0 if u€ Vjg 11 (x).
As we are assuming that u is ergodic, the maps j(x), n;(x) and A;(x) are cons-tant
p-almost everywhere. We will denote by &'(®) the full measure set of points given by

this theorem. Since U is positive on non-empty open subsets, &'(®) is dense in M. Fur-

thermore, by Lemma 3.3 of (9), if A; # —oo, then U;(x) has finite dimension.
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2.3 Dominated Splittings

Definition 2.3.1. Given ¢' and ®' as above and an @'-invariant set ¥, we say that a
splitting E| (x) ® Ey(x) = S is (-dominated in %, denoting by E| > E, if

(Cl) ®'(Ei(x)) < E{(@'(x)) for every x€ X .
(C2) The dimension of E;(x) is constant in ¥ fori=1,2.

(C3) There are 8 > 0 and ¢ € N such that, for any x € & and every pair of unit vectors
u€ Ex(x) and v € E|(x), one has
(C3.1) |[@'(x)-v| =6,

[ -] 1
[@@-] = 2

(C3.2)

This definition corresponds to hyperbolicity in an infinite dimensional projective space
(see (22) ). Condition (C3.2) is a standard hypothesis of the classical concept of domi-
nation (21), whereas (C3.1) is an essential to guarantee that the norm of ®! in 7 is
bounded away form zero. In fact, for finite dimensional automorphisms, domination im-
plies that the angle between any two subbundles of a dominated splitting is uniformly
bounded away from zero. Due too the lack of compactness of &'(A) and the fact that we
are dealing with operators acting on an infinite dimensional space we have that &, (x)
is not invertible and its norm may not be uniformly bounded away from zero, unless we

relate, as we have done through the condition (C3.1), domination with nonzero norms.

Given a @'-invariant set . contained on &/(®), we say that the Oseledets-Ruelle’s
decomposition is /-dominated in " if we may detach in it a direct sum of two subspaces,
E|(x) ®Ex(x) = A (x), such that E(x) is associated to a finite number of the first Lya-
punov exponents, say Ay, Az, -, A, the subspace E>(x) is associated to the remaining
ones and Ej >4 E». As in (9) we will consider the decompositions where Ej(x) is the
Lyapunov subspace associated to the first k finite Lyapunov exponents A; > A, > --- >
Ay > —oo.

We can use the arguments described in (9) (see Lemma 3.4 and Proposition 3.5) to
prove that the operator @' (x) : E| (x) — E»(¢'(x)) is invertible and [®' (¢’ (x))] ™" is com-
pact, and also that if the Oseledets-Ruelle’s splitting E (x) ® E>(x) = S is ¢-dominated
over an invariant set .# < 0(®), it may be extended continuously to an ¢-dominated

splitting over the closure of 7.
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2.4 Entropy Functions

Given a cocycle ® : .# — 2 and a positive integer k, let AK(.%) be the k™ exterior
power of 77, i.e., the infinite dimensional space generated by k vectors of the form e; A

ey A -+ A e with e; € . Consider the operator A¥(®'), defined by

Ak(@!): N — N
etneyn-ne — De)) AD(ex) Ao A D (eg).
By Lemma 3.10 of (9) as &' is a compact and integrable operator, then A*(®') also
is.

We can apply to it Ruelle’s theorem and conclude that, for g-almost every x,

lim %log H/\k(q)t(x))H =20 (x).

t——+00

This is the largest Lyapunov exponent given by the dynamics of the operator AX (D)

at x. Moreover, for p-almost every x, we have

In fact, as u is ergodic, for y-almost every x, we have
k k 1
A U T - k&t
Al = '_21/1, t_l}inoot log H/\ (D (x))H

Given k € N define the k"-entropy function by

LE,: Y — Ru{-x}
D T (@),

In the next proposition we will prove that LE} is an upper semicontinuous function,

which is fundamental for the construction of the proof of Theorem A.
Proposition 2.4.1. LE}, is upper semicontinuous.

Proof. Since Oseledet-Ruelle’s theorem is an asymptotic result and ®"(x), for a fixed r,

is a bounded operator, we can replace @ (x) = ®"(¢"(x))D"(x) by the last integer time-n
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map, P"(x) and consider

A0 = lim %log‘/\k(fb”(x))‘.

li
n—-+00

Consider, for a cocyle ® and for each n € N, the sequence a, = log H Ak (™) H Using

the same arguments used in (9) we can prove that

. k )
i) A = lim %
n—+oo

(i) (an)nen is sub-additive.

(i) lim % = inf%.
n—+aoo 1 neN "

Note that we can write ®" as
(@) =@ (¢" ' (x)) 0--- @' (¢ (x)) 0 D' (x).

By the construction of the 7-topology if ®,¥ € .7 are t-close and 7 € [a,b] then o

and W are close for the compact-open topology, that is, Hg 8::” and Hzi g;::” are m-close.
So for 7 € [0, 1] the continuity of the map ® — a,(P) is ensured by the continuity of the
operator, of the logarithmic, of the operator A and of the norm |-|. Now we can prove
that LE} is upper semicontinuous using the fact that it is the infimum of a sequence of

continuous functions with values on the extended real line.
O



Chapter 3

Perturbation Lemmas

Let A, (P, m) be the set of points x such that, the orbit ¢’ (x) has an Oseledets-Ruelle’s de-
composition of index p for ® which is m-dominated. Denote by I',(®,m) = M\A, (P, m)
and by I'),(®,m) the set of points in &(P) NI",(P,m) which are non-periodic and satisfies
Ap > Aptt.

Notice that if x belongs to I';(P,m) for some m, then the m-domination on %" =

{orbit of x} of the Oseledets-Ruelle’s splitting may fail by two (possible coexisting) events:

(NB) The norm of operator &' restricted to E; takes values arbitrarily small along the
orbit of M.

That is, for all 6 > 0 there are N = Ng, € N and a unit vector vy € E1(¢" (x)) such
that

Hd)l((pN(x)) -VNH < 0.
We call I'; | the set of points x € I'; (P, m) where this happens.

(ND) The dynamics on the subspace E| does not m-dominate the one on Ej.

This means that there are n € N and unit vectors v, € E1(¢"(x)) and u, € E>(¢"(x))
such that

23
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| 2" (@"(x)) - un]| _ 1
[@" (9" (x)) - val ~ 2

The points x € F;(d), m) where property (ND) is valid but not (NB) will be denoted
by I') ».

The next lemma is the basic perturbation tool which will be used in Proposition 3.0.2

to interchange Oseledets-Ruelle’s directions.

Let Rg: R? — R? denote the rotation of angle 8 in R? which in canonic coordinates
cos(6) —sin(G))

can be written as Rg = )
sin(@)  cos(H)

Lemma 3.0.1. Given an integrable compact cocycle ®' € € () and € > 0, there exists
an angle & > 0, such that for all p € M (non-periodic or with period larger than 1) and all
two-dimensional subspace E, < 7 with rank (®'(p)|g,) = 2, there exists a measurable

integrable cocycle lPtg such that:

(a) ‘Pé is €-close (with respect to T) to P;

(b) ‘P% is supported in ¢'(p) fort € [0,1];

(c) ‘P% (p)-u=® (p)-u, forallue E+;

(d) ‘Pé (p)-u=a'(p) ‘R -u, for all u € Ep, where Ry is the rotation of angle & in E,,.
Proof. Consider the direct sum %, = E, @E[}. Let n € (0,1) and G : R — R be the

bump-function defined by G(t) =0 fort <0, G(t) = 1 fort € [n,1 —n] and G(¢) = 1 for
t = 1. Consider the function g : R — R defined by g(¢) = SE) G(s)ds.

Define, in a matricial notation,

o (50 0 oy () b0
q’(p)‘< 0 V’(p)) " 5(,9)_(6@ d(r))’

where &'(p) : E, — Er(,) and ¥ (p) : EPL - E(#(P)'

Foreachue %’j, consider the decomposition u =v+w, where ve E, and w e E pL. For
t € R define
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where T: M — R is such that 7(y) = s if and only if ¢*(p) = y and R}, is the rotation
of angle £g() in R? defined on E,,.

Take ‘P’é (p) =@ (p)-Q'(p). First we need to verify that ‘P’é is an integrable cocyle,

that is, satisfies the following properties:
) lpg (v) = Id;
(i) P (0) =e(9° () - L ().

Concerning with (i), ‘Pg (y) = ®O(y)-Q0(y) =1d, since Q°(y) = ®*V)(y) -R(y) D) (y)
and R) = Id.

Concerning with (i1) we have that
V(') Pi(y) = P(9'(»)-Q(9'(y)) - P'(y) - Q(y)
= D (¢*(y)) .q)T((P‘Y(Y))(p) -R; .q;—f(tpf(y))((ps(y)).

D (y) Pt (p)-RS, P (y).
As D@0 (@%(y) - (y) - BTV (p) = Id and TP ) (p) = BS(y), we can write
WL (0'0)BL0) = P(9'0))-P'0) R, Ry @)
= DIy -R;-RZ-CI)_T@) (y).

Claim 3.0.1. The rotation R, satisfies R\ = R!, - R),.

As g(t) = [ G(s)ds we have that g(t +s) = g(¢) + g(s) and so R = Reg(rhg) =
Re (g(1)+4(s))- Computing the product Re ;) - Reg(s) 1s easy to prove that Re (o(1)14(s)) =
Re (1) - Reg(s) and the claim is proved.

So,

P (@) W) = PT() RGP -27T(y)
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Fort=1and u€ Ep, as 7(p) = 0 and R}, = R, we obtain lI’é(p) u=®(p) Rz -u.
Ifue EI} clearly ‘Pté (p)-u= @, (p)-u, so (c) and (d) are proved.

As g'(t) = 0 for 1 ¢]0,1], ‘P% is supported in ¢'(p) for r € [0,1] and (b) is proved.
Since 7 € [0,1] given any size of perturbation allowed by € > 0 we take & sufficiently
small to guarantee that

| (p)— @' (p)) -u| <&

The corresponding unitary vectors, ||$ig ;:ZH and ”gg ;:ZH will also satisfy the same
property. On the other hand, we are using the norm derived from the inner product on .77,
but it is stronger then the weak topology.

Now, using the continuity of the application p,;, defined on section 2.1, we take &

sufficiently small to guarantee that ¥ and & are €-close with respect to the T topology.

E, Egip)

Vo = 20 = Reyi0y - Vo

Figure 3.1: Illustration to Lemma 3.0.1.

The following proposition is analogous to Proposition 4.2 of (9) and tell us how to
interchange directions. The main idea, coming from Proposition 7.1 of (20) is to use the

absence of domination to concatenate several rotations given by Lemma 3.0.1.

Proposition 3.0.2. Consider a cocycle @', € >0 and x € M a non-periodic point endowed
with a splitting 7 = E, ®F, such that the restriction of ® (x) to E, is invertible and for

some m(&,®") = m e N large enough, we have
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[ ol 1
[(@=p)" ()7 2

Then, for each j =0,--- ,m— 1 there exists an integrable compact operator

Ly Hpi) = Hpivi(x)

with

L’].—<I>t((pj(x))H < € for t € [0,1] and such that L, _, o---oLy(v) = w for some

non-zero vectors v € E and w € ®"(x)(F).

Our goal is to apply this type of perturbation to the set of point where domination

fails.

3.1 Perturbation (p, NB)

Consider a point x € 1"1";71. The next lemma gives us a perturbation strategy that produce
a cocycle W' which is the null operator (in time one) along the direction inside Ej(x),
restricted to which the norm of @ is very close to zero, remaining equal to @' at all
other directions. In the discrete case the perturbation is quite simple, consisting in the
replacement of the original cocycle by the null operator at the nth-iterate of x along the

referred direction inside Ej(x).

Lemma 3.1.1. Given € > 0, for p-almost every x € 1“;‘;’1 there exists N = Ng x and a
integrable cocycle Y such that,

(a) ¥ is e-close (with respect to T) to P;
(b) | AP (¥ (@N (x))] = 0.

Proof. We may assume that ,u(l“; 1) > 0, otherwise there is nothing to prove. Therefore
u(0(@) Ty, ) = (T, ,).
Consider @' in the integral form
N

O(p) = 1d+ jo A(9*(p)) - ©*(p) ds. G.1D)
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We will use the notation &/, to associate &' with the corresponding A.

As @/, is a compact operator defined on a compact manifold M we can use the loga-

rithmic norm (see (36; 37)) to obtain a majorant of the maximum growth of A:
[v+hA-v|—1

—1 h>0 h ’

Take L := |A]. Consider 8 = 0(A, €), such that 0 < eexp(—3L).

Ifxe O(®)NI7

51> we can take N as in (NB) and choose a unit vector vy € E| (" (x))
such that

| 40" (x)) -vw| < 6. (3.1.2)

Take p = @"(x). We want to define a perturbation P(¢’(p)), for ¢ € [0, 1], such that
@', p(p) v ="=>,(p)vforve vyt and @} ,(p) v =0 for v collinear with vy.

Consider the direct sum () = @) (p)Rvy @ (), (p)Rvy)L, where Rvy is the

space generated by the vector vy.

For each v, € 7,y consider the decomposition v; = u; +w;, where u; € @, (p)Rvy
and wy € (@, (p)Rvy)t.

Define in matricial notation

con (VP O
(bA(P)—( 0 5t(p)>’

where ¥’ (p) : Rvy — @, (p)Rvy and 6'(p) : @ Ui(p) — @ Ui(¢'(p)), where U; are the
i#N i=N

spaces given by Ruelle’s theorem (see Section 2.2).

Since the space @, (p)Rvy has dimension one and we want to perturb A(¢'(p)) res-
tricted to @/, (p)Rvy, we will reduce our problem to one-dimensional case and replace the

A(¢'(p)) in equation (3.1.1) by the corresponding real function (¢’ (p)).

Consider

t

l,(p) = Id + L o(¢°(p)) - ®}(p) ds. (3.13)
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We can use Lusin’s theorem to obtain a function &(¢’(p)) which is continuous for

t € [0, 1] arbitrarily close to @, then applying Gronwall’s lemma and get

@) oo [ @l (p)as). (3.1.4)

0

As @ satisfies (3.1.2) then {, &(¢*(p))ds < log6.

By mean value theorem of integral there exists ¢ € (0, 1) such that S(l) o(@’(p))-ds=
a(9(p)) =: K <log(6).

Consider (&, €,c) > 0 such that n < 2E=M _ 2 with M = &(¢(p)). Fort e
[0, 1] define the perturbation B (¢ (p)) such that

a(¢'(p)) if ref0,c—nlule1],

3.1.5
a(eM(p)) if re(c—n,c). (3.1.5)

B(¢'(p)) = {

Consider P(¢'(p)) = B(¢'(p)) — &(¢'(p)) and @, p, solution of the linear varia-

tional equation

i(t) = (a(¢'(p)) + P(¢'(p))) - u(t)

and an unitary vector v.
We have that

[Php(p) v = Jexp (fo(@+P)(g*(p)ds) -v].
= Jesp (16B(@*(p))as) .

As {3 B(9°(p))ds = —oo then | @), »(p) -v| = 0.

We want now to evaluate (@, »(¢'(p)) —PL(¢'(p))) -v

,forte[c—nm—1,c] and

an unitary vector v.

We will consider three sub-intervals, [c —n — 1,c— 1], [c—1,c—n] and [c — 1, ¢c].



30 Perturbation Lemmas

a(¢'(p)

Figure 3.2: Illustration to Lemma 3.1.1.

Take w = @~ 1+/(p) with 1 € [0,1 — ], that is, consider a point w in the orbit of p
between ¢~ !(p) and @~ (p). As S(I)P((ps(w))ds = —oo then

@k p(0) = @f) v = |(exp (et P (")) ds ) —exp (e () ds) ) v

= lexp (gga(w(w)) -vds)‘ — | L (w)-v].

Consider now w = @“~1~1+/(p) with ¢ € [0,n], that is, w is a point in the orbit of p
between @°~1~!(p) and ¢~ (p).
. . 1 1— 1
We can write the integral §, B(¢°(w))ds as §, ' B(¢°(w))ds+§,_, B(¢*(w))ds. Note
that 7 € [0, 1] is fixed and @'~/ (w) = @'~/ (¢~ 1~1*/(p)) = @~ (p). Doing this we have
that
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exp (1o P9*(w)ds) = exp (5™ P(@*(w))ds+ 1, P(¢*(w)) ds )
— exp (0+§1,(B—@)(¢*(w))ds)
— exp(§1,8 s 1, a@(g*(w))ds)
—exn(f_, Ble*(w)) ds)
—exp(fl aler(w)ds)”
If {1 B(g*(w))ds < {I_, @(¢*(w))ds then (i b ends) all £ € [0, 7],

eXP(S}_,&(W(w))ds)

if not we consider another kind of asymptote in (3.1.5) such that S}_t B(g*(w))ds <
1 ~ \)

§,_, @(@*(w))ds. So,

[(@hpw) = @hw)) v = |(exp (S3(@+ P)(@*(w))ds ) —exp (g a(@*(w)ds) ) -]
_ ‘exp (go ))ds) (exp (gép(w(w))ds) _ 1) .v‘
< |(@LW)) -v|.

Finally if we consider w = @~ (p) with 7 € [0, 1], that is, w between °~"(p) and

So ))ds = —c0, once again, |(Pg, p(w) — Py (w)) -v| = (P& (W) V.

We need now to evaluate |®} (w)-v| forw = ¢'(p) and € [c—n —1,c].

As we consider 6 < gexp(—3L) then exp(K +3L) < &, that is |K| » 3L. So, when we
consider a point w between ¢~ ! (p) and ¢°(p), the norm | (w) - v| < € (see Figure 3.2).

Consider now a point w between @°~1~!(p) and ¢°~!(p). As we choose 1 such
that n < w —2 we have that exp(M + L(2+ 7)) < €. So we can also conclude that
| D5 (w) v <e.

Consider now the perturbation
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take B(¢'(p)) = A(¢'(p)) + H(¢'(p)) and consider W' = &,

By the arguments used above, we can conclude that

[(%(p) — @' (p)) -u| <e.

The corresponding unitary vectors, ||$ZE§ ;:ZH and ||$§Eﬁ ;:ZH will also satisfy the same
property. On the other hand, we are using the norm derived from the inner product on .77,
but it is stronger then the weak topology.

Now, using the continuity of the application p,;, defined on section 2.1, we take 6

sufficiently small to guarantee that ¥ and ® are €-close with respect to the T topology.

To prove that || A? (P! (@Y (x))| = O consider p vectors of the form e; Aex A+ Aep
with e; € E;(¢™ (x)) and e; collinear with vy. As ¥! (¢ (x)-vy = O0then | A? (P! (@ (x))| =
0. ]

3.2 Perturbation (p, ND)

Consider a point x € F;z. If among the p + 1 first Lyapunov exponents of @' the value
—o0 1S not present, we can use the argument in (20) to alter the norm of A”. In the case
Ap+1 = —o0, we may take advantage of the fact that, in subbundle E associated to the
Lyapunov exponents A; for j > p + 1 the norm |®'(x)|g| is close to zero for n large

enough.

Lemma 3.2.1. Consider € > 0. If m € N is large enough, then there exists a measurable

&
P2

may find integrable compact operators Ly, --- ,L,_1 satisfying

function A 17 5 — N such that, for p—almost every x € I'y 5, and every n = N (x) we

Ap+2
/11+~~~+/1,,,1+Pf”“+s>

n
(a) |AP(Ly—10---oLp)| <e < if Ap1 # —0;

-1 .
(b) ||AP(Ly—10---0Lo)| <e™"® ifdpy1 = —0.

p;2’
manded in Proposition 3.0.2. We may assume that u (1“1”;72) > (, otherwise there is nothing

Proof. To prove (a) consider I' ,, subset of F]”;(CID,m) where m is large enough as de-

to prove. By definition of ', (®,m) we have A, # —co. Thus by Lemma 3.12 of (17) we
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conclude that for p1-almost every x € I'y ,, there exists .41 (x) such that, for all n > .41 (x)

and s ~ 5 then the iterate y = ¢*(x) satisfies

9" Ol 1

(@ ()|e) " )" 2

We can apply Proposition 3.0.2 to such a generic x € F}’;’z because, by hypothesis, x
is not periodic and S = E| @ E, ,, where E|  has dimension p and corresponds to the
infinite dimensional space spanned by the Lyapunov exponents Ay, , A, (which may be
not all distinct but whose multiplicities add up to p) and E , is associated to the infinite
dimensional vector space spanned by the remaining ones. Therefore, we consider, for
i=1,---,s,s+m,--- ,nandforte[0,1], the operators L} = ®'(¢'(x)) and for the iterates
@'(y) withi=0,--- ,m— 1, we take L! as given by Proposition 3.0.2.

We need now to evaluate the norm of AP(L,_jo---0Ly). Take U, the subspace asso-
ciated to the largest Lyapunov exponent of the p'"-exterior product, say AIA” = ?:1 Ai.
The subspace U, is one-dimensional because A, > 4,;1. Denote by S, the vector space
related to the remaining Lyapunov exponents, which sum up to 12’\1). To the splitting

AP(H#) = U @S we may apply Lemma 4.4 of (20) and Proposition 3.0.2 to deduce that

AP Ly 0+ 0Lo)(y) : AP () — AP (Hgn(y))

satisfies

/\p(Lm_l OOLO)(y)(Uy) C S(Pm(y). (321)
If A| denotes the action of A”(®') between x and y = @*(x) and A, denotes the action

of AP(®') between @*T"(x) and ¢"(x), we can consider a suitable (Oseledets-Ruelle’s)

basis with respect to which Ay, Ay and B := L,,,_j o---0Lg(y) are written as simple 4-block

Alilu 0 Bu  gus gu 0
Al - ss |7 B= Su S and A2 - ss
0 A B B 0 A3

where, for i = 1,2, A¥ € R and A} is an infinite dimensional operator. It follows from
(3.2.1) that B** = (0 and so

"matrices"
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UL QUS A SS
/\p(Lm_l o OLO) - ( sS (s)u uu AzssBssAsls> '

Now, following the arguments in Lemmas 4.5, 4.6 and 4.7 of (14) we conclude that

LY
log | AP (Lip—10---0oLp)| <n<¥+g .

2

Recalling that

A‘IAP = A4 +ﬂ‘2+"'+)~p_1 +/1p and

At = MAAat e+ A1+ Apid,

then
n<71.1+"'+/1p71+%+8)
|AP(Lp-10---0Lo)| <e

To prove (b) we proceed as in (a). Since lp+1 = —o0, we have QLZAP = —c0 and so the

operator A (i = 1,2) is arbitrarily close to the null one for large choices of n. Moreover,
all entries A", A5, A5" and A3’ are bounded. Then it suffices to consider a large n, larger
than .41 (x) and m, to reach inequality (b).

]

Doing this perturbation at pt-almost every point of F;z and following the argument in
Proposition 7.3. of (20), we deduce that

Corollary 3.2.2. Let & be a cocycle in € (), € >0 and § > 0. Then there exist m€ N,
p € N and a continuous cocycle W' € € () with ¥ 8-close (with respect to T) to ',
equal to @ outside the open set l“;’z and satisfying

- Ap (D) 4441 (P .
AP (W) < { [%Ap NP+ A )+2p+1( )] +& if App1(P) # —oo,
1 .
—e7! if Apy1(®') = —c0.
It is important to refer that the proof of Corollary 4.2.2 uses Lusin’s theorem. In fact

the perturbation may produce a cocycle ¥ that is measurable and not continuous. The

Lusin theorem ensures the existence of a continuous integrable cocycle ¥’ which is equal
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to ¥ outside the open set I',(A,m) and the set E = {x€ M : ¥ (x) = P(x) } has measure

as small as we want.

3.3 Proof of Theorem A

Consider the p'"-entropy function defined by

LE,: 7% — Ru{-w}
® - Y (P

where (A;(®'))i=1 ... o are the Lyapunov exponents of the operator @' (x), for every x
in 0(®). This map is upper semicontinuous, so it has a residual subset of points of
continuity in the Baire set .#°. Take ® in this generic subset, consider a point x in the
Oseledets-Ruelle’s domain ¢(®) and denote by %" the orbit of x.

If the Lyapunov exponents of @' (x) are all equal, then the proof is complete. Other-

wise, if p € Nis such that A, > 4,11, we pursue as follows:

If x is periodic we follow the arguments in (9) to prove that the Oseledets-Ruelle’s
splitting along the orbit of x is m-dominated for some m.
If x is non-periodic and the Oseledets-Ruelle’s splitting along the orbit of x is m-

dominated for some m, the proofs ends.

If x is non-periodic and belongs to I';(®P,m) for all m and one of these subsets, say
F}“,(d),mo), has positive 1 measure, then the mp-domination on %  of the Oseledets-
Ruelle’s splitting may fail because x is in one of the corresponding sets F;“,}l or 1"]";72.
If xe F;l, given &, by Lemma 3.1.1 there is a cocyle ¥ which is 7-close to ® but
LE,(¥) = —oo while LE)(®) is finite. If x €T, ,, by Corollary 4.2.2, given & there is

a cocyle W which is 7-close to ® but
o |LE,(®)—LE,(¥)| > €, in the case A, (P') # —0

o LE,(¥) = —oo while LE,(®P) is finite, when A, (P') = —o0.

In both cases the continuity at ® of map LE), is contradicted.
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Chapter 4

The LP-case

As in previous chapter let 7Z be an infinite dimensional separable Hilbert space and

¢ () the space of linear compact operators defined in .7#°. Let M be a compact, con-

nected, Hausdorftf manifold endowed with a Borel probability measure u.

Consider a continuous and ergodic flow ¢’ : M — M with respect to the measure u,

and a compact cocycle @' (p) : # — J based on ¢, differentiable on time parameter

t € R and continuous on space parameter p € M, acting on € (7).

Let £ (s ,5¢) be the set of linear applications from J# to 7. If we define a map

A:M— ZL(H, ) in a point p € M by

d

A(p) = $¢S(P)|s=o,

and along the orbit ¢’ (p) by

d

= @ (p)ls= o @7 (¢ (),

A(9'(p))

then @ (p) will be the solution of the linear variational equation

)] smr = A9 (p))ul).

(4.0.1)

(4.0.2)

We will call A the infinitesimal generator of (4.0.2). Given a cocycle @' we can induce

the associated A by using (4.0.1) and given A we can recover the cocycle by solving the

linear variational equation (4.0.2), from which we get ®'. We will use the notation &, to

associate @' with its infinitesimal generator A.

37
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In this chapter we will define an L? topology in the set of infinitesimal generators,
which is coarser then the C? topology and, as a consequence, interchanging directions
will be easier. In Corollary 4.2.2 it was considered the subset F;",(CID, m) of points without
a m-dominated splitting of index p. Considering an L? topology the dominated splitting is
no more an obstruction to cause a decay on the Lyapunov exponents, so we will perform
the perturbations in a full measure set M. On the other hand, using an L? topology we
can change Oseledets’ directions with one single perturbation instead of several perturba-
tions as was done in Lemma 3.2.1. As we will not consider the set I',(®,m), we don’t
need to separate the two cases (NB) and (ND), and use always the strategy used in (ND)
case. Note that in Chapter 3 when a point x € F;l we performed a perturbation of the
infinitesimal generator that is not close to the original one if we consider an infinitesimal
generator topology and for that reason we used the 7-topology. Now we will only use
the (ND)-strategy so we must use a topology defined in the set of infinitesimal generators

which is stronger than an L? topology defined in the set of cocycles.

Consider the set ¢ of the measurable maps A : M — £ (7, .7) and the set ¥jc of
maps A € ¢ such that &/, satisfies the integrability condition

JmWQ@mew, (4.0.3)
M

where log™ (y) = max {0,log(y)}. For A,B € ¥ set

A—B;:{GMA@—M@Pwﬁ,

oo in case that the above integral does not converge,

if 1 < p < o0, and for p = oo put

|A =Bl := ess supyep [A(x) =B,

where ||-[| is the norm operator. We will call || , the LP-norm.
Set

lA—8l,

ap(A,B) =4 T,
1 if A —B|, = .

if [A—B|, <o,
P (4.0.4)

The following lemma is analogous to Lemma 2.1 of (3).
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Lemma 4.0.1. Let 1 < p < o0 and consider d), as defined above, then

(i) dp is a metric on Y, hence on 9jc;

(ii) If A€ 9c and B € G with d,(A,B) < 1, then B € 9jc. In particularly, 9ic is both
dp-closed and d,-open in 9 ;

(iii) (¢,d)), hence (9ic,d)), is complete.

Proof. The proof of (i) is elementary.
To prove (ii) suppose first that p = 1, let A € 4j¢ and B € 4 with d;(A,B) < 1. Then
|A —B|; < . As log™ (x+y) < log™ (x) +y for any positive x, y, then for any w e M

log™ [@p(w) | <log* |@4(w)| + |@5(w) — 4 (w)].

Therefore §,,log* |®p(w)| du(w) < oo, and hence B € ¥c.
Suppose 1 < p <00, A€ Yjc and B€ ¢ with d;,(A,B) < 1. Then |A —B|, < oo. This
implies ||A — B|; < o0, hence d;(A,B) < 1. Thus B € 9.

To prove (iii) let 1 < p < 0o and {A,},cy be a Cauchy sequence in (¢,d,). By the
completeness of the classical L”-spaces there exists A(-) from ¢ such that

| it =ae) aneo =, o.

n—00

Therefore d,(A,,A) = 0. By (ii), A € 9j¢c. Thus (Yc,d,) is complete.
n—
Similarly, (¢c,dy) is complete. O

We will call the topology induced by 4.0.4 as the L? infinitesimal generator topology.
As by Lemma 4.0.1 (¥¢,d,) is complete for 1 < p < oo we can conclude that (¥c,d))

is a Baire space.

Theorem B. There exists an LP-residual subset Z of the set of integrable compact cocy-
cles Gyc such that, for A € Z and [L-almost every xe M

lim (@' (x))*®' (x))> = [0],

t—00

where |0] stands for the null operator.
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4.1 Entropy Functions

Let us consider the following function LE}, analogous to the entropy function defined in
Section 2.4,

LE,: 9%c — Ru{—w}
A N A(P).

Recall that, as u is ergodic and by Proposition 2.4.1, for pu-almost every x € M and
A € 9c we have

1 1
LE.(A) = A" = Lim -1 k(! — inf-1 k(@ (x))]. 4.1.1
KA) =2 = lim —log| A" (P (x))] = inf ~log | A" (P}(x))] (4.1.1)

We can prove that, for each k the function LE} is upper semicontinuous when we en-
dow ¥ with the L? infinitesimal generator topology, 1 < p < oo, using the same strategy
of the proof of Proposition 3.11 of (14). The continuity of the LP-norm is ensured by
Lemma 3.2 of (14).

4.2 Perturbation

The next result is the basic perturbation tool which allows us to interchange Oseledets’
directions, using the ideas of Lemma 3.0.1. The only novelty is the perturbation flowbox

following the proof of Lemma 3.4 of (14).

Lemma 4.2.1. Given 1 < p < o0, a continuous differential system A € ¢, € > 0 and
x€M, forall 6 € |0, ], there exists r > 0 (depending on €) such that for all o € (0,1),
all y € B(x,or) (the ball transversal to @' at x) and a two-dimensional subspace E, — I,

such that rank (®} (x)|g,) = 2, there exists a continuous integrable cocycle Bg such that:

(a) d,(A,Bg) <&

(b) Bo(y) =A(y)+H(y) for allye B(x,or), where H is a perturbation supported in the
flowbox F :={¢'(y) : 1€ [0,1],y € B(x,r)}, such that |H||, < € and Bg(z) = A(z)
ifz¢ 7,

(c) Py, (v) -u=P4 () u Vue EL and for all y e M;
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(d) @}39 (y)-u=®.(y)-Rgu for all ue E, and y € B(x, or), where Rg is the rotation
of angle 0 in E,.

Proof. For a given small r > 0 we take the closed ball centered in x and radius r transversal
to the flow direction and denoted it by B(x,r). We fix 6 € (0,1). Let also { : R — [0, 1]
be a C* function such that {(t) =0 for7r < o and {(¢) =1 forz > 1.

Consider Rg = (COS(G) —sin(6)>.
sin(@)  cos(0)

For each u € 7, consider the decomposition u = v+w, where ve E, and w e E pL. For
t € R define

! — .
X' u=Reoq)-v+w.
Note that, since %' is constant on Ej, ie. Z'-w=w, we have that

e (sin(Es() —cosEz(e)
) 5g(”<cos<ég<r>> —sin<5g<r>>> ’

and (#')~' v, = R_go() vt

We know that u(r) = @/, (p) is a solution of the linear variational equation

Take @/, (p) - %' and compute the time derivative using the derivative of the product
of operators:

(Py(p)-#') = (P4(p) % +P(p)(%')
4.2.1)
= A(¢'(p)®,(p)Z' + P (p)(£")".

Let X' : 54 (,) — ), be amap such that for each u, € 75 (), with the decomposition
Up = Ve + Wi, v € Egi(p) and wy € Eét(p)’ Y (@' (p)) - ur = (P (@' (p)) ™" v + wr.

Since (#") -u = R%g([) -V we can write
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D (p)(#") = P (p)(#') (")~ (¢ (p)) Pl (p)Z',
and, using (4.2.1),

(®4(p)-Z") = A(¢'(p))P,(p)Z'+
+@, (p)(Z") (2"~ Y (¢ (p)) @, (p) %'

= [A(9'(p)) + P () (@) (#) 'Y (¢ (p))] - (B (p)2").
Define By (¢'(p)) = A(¢'(p)) + H(¢'(p)). where

H(&.1) = @)(p)(#") (%)~ T'(¢' ().

Let L > 0 be sufficiently large in order to get |(%') (%#')™!| < L and take K :=
max {| @ (2))[,[Y' (¢ (2))[} for s € [0,1].

Consider the flowbox % := {¢'(y) :t € [0,1],y € B(x,r)} and define the continuous
linear differential system

To prove (a) we need to evaluate |H/| . As in (14) we consider Rokhlin’s theorem on
disintegration of the measure ( into a measure fl in the transversal section and the length
in the flow section, say u = {1 x dt. Take r < 0 such that

a(B0n) < ( £ )p.

Then, we have
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H|, = (,IHE du()?

=

50 Sacer [H (9 GNP dfr(y)ae)

=

(5 Spen |4 0D ()1 (01 ()| dir ()

1

< (K2L)(A(B(x,r)))? <e.

Sody(A,B) < e.

As in Lemma 3.0.1 we have that the perturbed system B generates the linear flow @, =
@/, which is the same as @/, - %' by unicity of solutions with same initial conditions.
Sofort=1,ye B(x,or) and u € E, we obtain CID}% (y)-u=®,(y) Re-u

If u e Ei- clearly Dy, (v) -u =@ (y) - uforall ye M, so (c) and (d) are proved. O

Doing this perturbation we can deduce that

Proposition 4.2.2. Let @, be a cocycle in € (), € >0 and 6 > 0. Then there exist
meN, pe N and a continuous cocycle @y € € () with d,(A,B) < € satisfying

(277" (@) + SRt C | i Ay (@) 7 o0
—e™! if Aps1 (D) = —c0.

AP (@) < {

4.3 Proof of Theorem B

As LE} is upper semicontinuous it has a residual subset of points of continuity in the Baire

set Yjc. Let A € ¢ be a continuity point of the functions LE for all k.

If the Lyapunov exponents of &/, (x) are all equal, then the proof is complete. Other-
wise, if p € N is such that A; > A1, we use the perturbation given by Lemma 4.2.1 to
mix Oseledet’s directions and obtain a cocyle B € ¥;¢ such that d,(A,B) < € but

e |LE,(A)—LE,(B)| > €, in the case 4,1 (P/,) # —0

e LE,(B) = —oo while LE,(A) is finite, when 4,41 (P}, ) = —c0.

In both cases the continuity at A of map LE} is contradicted.
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Chapter 5

Removing Zero Lyapunov Exponents

In Chapter 3.3 we proved that there exists a T-residual subset Z of the set of cocycles .7

such that for ® € # and u- almost every x € M, either the limit operator
1
. t * 3t 3
Jim [(@/ ()"0 (2]
is the null operator or the Oseledets-Ruelle’s splitting of @' along the ¢’-orbit of x has

a dominated splitting. However, a domination splitting does not prevent the existence of

zero Lyapunov exponents.

In (10) the authors established a perturbation scheme, in context of discrete-time in-
finite dimensional cocycles, to increase the sum of central Lypaunov exponents, while
keeping the sum of all the center-unstable Lyapunov exponents invariant. After that they
perform another C%-perturbation such that each Lyapunov exponent of the central direc-

tion became different from zero.

In this chapter we intend to prove the continuous counterpart of Theorem 1 of (10).

Theorem C. Non-uniformly Anosov cocycles (see Definitions 5.2.1 and 5.2.2 ) are C°-

dense in the set of partially hyperbolic cocycles with nontrivial unstable bundles.

5.1 Definitions

In this section we will use the same definition of dominated splitting used in Section 2.3,

replacing the condition (C3.2) by

SACRY
SAGRY

45

(C3.2%) <a,
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where a €]0, 1[. We will use the notation
E1 >0 Eo

to refer that the direct sum Ej (x) D E>(x) is (¢, &t)-dominated.

Definition 5.1.1. An (¢, t)-dominated direct sum E\ ®E, on X is said to be the finest
if, after a nontrivial decomposition of any of these two subspaces, the sum is no longer

dominated.

Given a dominated sum E| @ E, on M, we may find a finest one and it is unique.
But the continuation of a finest dominated sum is not necessarily finest for the perturbed
cocycle. Still, the set of cocycles to whom this happens is a closed meagre set, that is, its

complement, which we denote by SFg, g,, is open and dense.

Definition 5.1.2. Given a positive integer { and a number o €0, 1], a splitting E\(x) ®
@ Ep(x) = A, defined on a ¢'-invariant set K, is (¢, a)-dominated if, for any x € K
and every 1 <i < j <k, we have E; > o E(x).

As in Chapter 2 the splitting we are interested in is the Oseledets-Ruelle’s decomposi-
tion associated to the Lyapunov exponents. Hence, conditions (C1) and (C2) are fulfilled

a priori. In what follows we will always address to this specific decomposition.

Definition 5.1.3. The Oseledets-Ruelle’s decomposition in O(A) is said to be ({,)-
dominated if there are a positive integer { and a number a €|0, 1| such that, for each
x € O(A), we may rewrite this decomposition as a direct sum of k subspaces, say E1(x)®
@ Ey(x), so that:

(DI1.) Forallie {1,2,--- k}, the dimension of E;(x) is independent of x € O(A).
(D2.) Forallxe O(A) and every i < j, we have E; >y o E(x).

By definition, a dominated Oseledets-Ruelle’s decomposition regards the order of
the Lyapunov exponents: for instance, Ej is associated with a finite number of the first

(biggest) Lyapunov exponents.

5.2 Partial Hyperbolicity

Definition 5.2.1. A cocycle @', with an extended Oseledets-Ruelle’s decomposition is said
to be partially hyperbolic if, for any x € M, this splitting may be rewritten as a direct sum
of three subspaces, say EX@ES@®E] = 7, and there are L e N, o €]0, 1| and B €]0,1]
such that:
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PHI. E contains only Oseledets’ subspaces associated to positive Lyapunov exponents.
PH?2. E{ contains all the Oseledets’ subspaces associated to zero Lyapunov exponents.

PH2. E; contains only Oseledets’ subspaces associated to negative Lyapunov exponents
and includes all the Oseledets’ subspaces determined by Lyapunov exponents equal

to —0.
PH4. E! >4 ES and ES > ES.

The dynamics along E} (respectively E7Y) is strongly expanding (respectively contract-
ing). The weaker forms of expansion or contraction are gathered inside E{. From Lemma
3.3 of (9), we know that, if (Di‘ is a partial hyperbolic cocycle, then EY and E{" := EY@ES
are finite dimensional. We say that a C” partial hyperbolic cocycle has nontrivial unstable
bundle if, for any x € M, the unstable space E¥ does not reduce to {0}.

Definition 5.2.2. If, besides being partially hyperbolic, no Lyapunov exponent is zero, the

cocycle is said to be non-uniformly Anosov.

5.3 Center-unstable metric entropy

For p-almost every x € O'(A), we have

d
: ‘ _ Y
lim log|det(&) (x)) x| = Z;nz,A/'LA
=

and

D
Jnylogdex (@4 (1) | = it
=
where n; 4 is the dimension of U’(x), A} represents Lyapunov exponents of @, in E* or
E, and d and D are the dimensions of EY and E{“, respectively (see (10)). To simplify
the notation, &'(A) will also stand for this full 4 measure set.
We will call

D

i
2 iaky
i=1

center-unstable metric entropy of the partially hyperbolic cocycle @, with respect to @’

and the probability measure L.
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5.4 Perturbations Lemmas

Proposition 5.4.1. Let @', be an integrable, compact and partially hyperbolic cocycle
with a nontrivial unstable bundle and such that Y \n. sA{ = 0, where A denotes Lyapunov
exponents of ®', in E€. Then for any € > 0, there exists an integrable compact cocycle @,
such that:

o &L is partially hyperbolic;
e Bise—CV close to A;

e The center-unstable metric entropy of ® is equal to that of ¥',;
o Zl’lcyglé > 0.

The perturbation need for this result will diminish the strength of the expansion along
E" while keeping the center-unstable metric entropy invariant, so the sum of all the cen-
tral Lyapunov exponents will have to increase. If D —d > 1, this sum may still have
terms equal to zero. To remove them, we need another perturbation that makes all these

summands essentially equal without destroying the positiveness of the sum.

Proposition 5.4.2. Let @Y be an integrable, compact and partially hyperbolic cocycle
with a nontrivial unstable bundle and such that ) n. pAg # 0. Then for any € > 0, there
exists am integrable, compact and non-uniformly Anosov cocyle @, such that C is e-CY-

close to B.

The next lemma is analogous to Lemma 5.1 of (10) and is the basic tool to perturb a
partial hyperbolic cocycle in order to increase the sum of Lyapunov exponents along the
central directions without changing the center-unstable metric entropy.

Let B(x,or) denote the ball transversal to ¢ at x. Recall that, as y is ergodic and
positive on nonempty open sets, there is a residual subset of M whose elements have
dense orbits by ¢.

Lemma 5.4.3. Consider A € € () which is partially hyperbolic with D = dim(E*) and
Y. nealf = 0. Fix a point p € O(A) with dense orbit, an r > 0 and an € > 0 small enough.
There exists an angle & > 0 and Bg € €' () such that for all 6 € (0,1):

(a) Bg(x) = A(x) + H(x) for all x € B(p,or), where H is a perturbation supported in
the flowbox F = {¢'(y) : 1€ [0,1],y€ B(p,r)} and Bg(z) = A(2) if 2 ¢ .F;

(b) CID%‘: (x)-vi = @, (x)-v}, VWi €ES , and Vxe M;
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(c) @};5 (x) - ve = DL (x) - R, V", YV € E") and Vx € B(p,or), where Ry belongs to
the space SO(D,R) of rotations in SL(D,R);

(d) |A-Be| <e
(e) YnephAg+ Y myphf = Y nyaly;
(f) ZHQBAE > 0.

Proof. Given x € M, we may write each vector v, € S = J in a unique way as vy =

S Cu S S CU cu
vy + vy, where vi € EY 4 and vi* € ELY).

We will now proceed as in Lemmas 3.0.1 and 4.2.1 to perform a perturbation in E)ﬁ‘;‘
Consider a two dimensional subspace F; < EY') with rank (CI)}‘ ()] Fe, ) =2.

Let 1 €(0,1) and g : R — R be the bump-function defined by g(¢) = 0 for t < 0,
g(t)=tforte[n,1—n]and g(r) =1fort > 1.

For each v{" € E{" consider the decomposition v{" = ug" + wi, with uf" € F4 and
¥ ¥

wit e (FXC;“) L. For t € R consider
o (cos(ég(t)) —sin(ég(t))>
07\ sin(Eg()  cos(Eg() )

and define for v, € J%

t .5 t .cu
KE' vy =Vvi+R, -V,

where
R; . v§” = Rgg(,)ufcu + W;M.

For a given small r > 0 we take the closed ball B(p,r), centred in p and radius r
transversal to the flow direction. Let also  : R — [0,1] be a C* function such that
f(t)=0fort<ocand {(r)=1fort>1.

Now we proceed as in Lemma 3.0.1 to obtain H(¢'(x)), that is

H(¢'(x) = H(E,1) = @y (x)(#2')' (2') 7Y (¢' (x),

where Y : H () — H; is a map such that Y'(¢ (x)) - v = v} + (P, (x)) ™" - uf + ws¥, for
every vy € Hyi ()
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Consider the flowbox .# := {¢'(x) : € [0,1],x€ B(p,r)} and define the continuous

linear differential system

By construction, B is a compact operator and E} 4 and EY) era Bg-invariant for all
x€ M. And as, for all x € M, the map .. is a rotation acting in ngq, we have E;,A = E;:JE,\5
and E;'j{ = E;'f’Bé. However, for any point x whose orbit visits .%, the dynamics dynamics

along E , and E} , changes after the perturbation.

As in Lemma 3.0.1 we have that the perturbed system B generates the linear flow
@%é = @/, ;; which is the same as @/, - %' by unicity of solutions with same initial con-
ditions. So for t = 1 and v, € E}'; we obtain CID}E,,g (x) vy =@ (x)-RL v, = Reu +wi.

If v, € E} , clearly thBé (x) - vy = @ (x) - vy, so the first three properties are proved.

Concerning with the fourth property we have that

anl = s [(1-¢(t)) Ao

=0 (x)eF
< [H].
Since ¢ € [0, 1] and all the terms in the definition of H(&,7) are uniformly bounded for
all x e M, given any size of perturbation allowed by € > 0 we take & sufficiently small o
guarantee that |[A — B| < &.

We also have, by Corollary 5.2 of (10) that the splitting 77 = Ez D Eg" = E; E{" is
(¢,v)-dominated for @ with v = 4%

Since Oseledets theorem is an asymptotic result and ®j (x), for a fixed r, is a bounded
operator, we can replace @ (x) = @ (@"(x))P"(x) by the last integer time-n map, P} (x)
and consider

: 1 5 : 1 n
Jim —log|det @y (z)|gey | = lim —log|det P (z) ey |

Concerning the fifth property: as the map %' belongs to SO(D,R) and El = E;’f;‘,
for any z€ O(A) n O(B) we have



5.4 Perturbations Lemmas 51

Dneshs+ Tnephi = lim log|dety (9" () e

o 1(z)B
x| det @p(2) ey |

. . l 1 n—1 cu
= nli)ngonlog|detq)A((P (Z))|E(Pn—l(z),A

X x | det®} () |

— nli_)rglo%log|detcl>fl(z)|EchA| = > nyualy.

To prove (f) we can use the same arguments used in (10). The idea is to show that for
some 0 < A < 1 we have that > n, pAg ~ > n, a4} 4+ dlog(A) and then use the invariance

of the center-unstable metric entropy.
Let us resume the proof.

Consider d = 1. As u is ergodic to evaluate the unstable Lyapunov exponent of ®%(x)
we only need to determine the average growth of ®%(x) - v* for any x € O(A) n O'(B) and

a unit vector V¥ € E)’C‘ A

As p is not periodic, we may consider r small enough such that .# is a flowbox.
Take x € .Z N O(A) N O(B) n &, where & is the full 4 measure subset of .# given by

Poincaré’s recurrence theorem. For a unit vector v € EY , we have that

dLx) v = @l(x) Mg, ‘Rl v+ @l () TEe, RL.vt,

where g« is the projection on E , parallel to the bundle EY , (and analogous definition

for ”E,?A)' As in (10) we have that in general, while the orbit keeps out of .7, we have

Dp(x) (") = D(x)- M RE VD (x) - T, Ry

and, by the domination of E“ over E¢ under the action of A, there are constants C > 0 and

B €]0, 1| such that, for any m € N and any unit vectors w; € E* and w, € E€, we have

| @ (w2)| < CB™ || @ (w1)]- (5.4.1)

Thus, the first component of CI% (x) - v* dominates the second and contributes to A}

with an approximate rate

1 ,
—log ché(x) !
J

~ Al +log(A) < AL, (5.4.2)
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where A €]0, 1] is an upper bound of the set {cos(&) : z€ M} and &, stands for the small
angle of the rotation displaced by the action of %#'. We take r small in order to guarantee,
by Kac’s theorem (see a version of Kac’s theorem for flows in (39)), that the expected
first return to .% of the orbit of x amounts to the rather big fraction @, and so the
contribution of the piece of orbit out .# for the estimation 5.4.2 is the prevalent one.

We can also obtain an average as in (5.4.2) if we consider the iterate N + 1, where N is
an iterate correponding to a return to .% of the orbit of x, which happens with probability
u (see 5.1.1 of (10) for details).

The case d > 1 can be treated with an identical approach. (see 5.1.2 of (10))

[

If 1 — A is small enough, we ensure that there is still a uniform gap between the Lya-
punov exponents that correspond to different bundles of the Oseledets-Ruelle’s decompo-

sition of CID%. As the decomposition Eg* = Eg @ Ej is finest, we can deduce that

Corollary 5.4.4. @}, is partially hyperbolic with Ef = EY, Eg; = E§ and E}, = E}.

5.5 Proof of Theorem C

The proof of Theorem C follows exactly the same steps of the proof of Theorem 1 of
(10). Let @/, be a integrable compact and partially hyperbolic cocyle with an extended
Oseledets-Ruelle’s decomposition E* @ E @ E* = J such that, for any x € O(A), the
space E;‘ 4 18 nontrivial and has dimension d > 0. Denote by D the dimension of E;Lg

For any k € {1,2,---,D}, consider the map:

LE,:Ce C)(X,€(H)) — AL+ + A,
where ?LJ.C is the j”* Lyapunov exponent of the cocycle ... As LE} is upper semicontinu-
ous, for any k (Sec. 3.5 of (9)), and is defined on a Baire space (Sec. 3.1 of (9)), it has a
residual set % of continuity points which is dense in C?(X,%(5)). Therefore, there is
a partially hyperbolic cocycle Ag inside the residual subset

%1 M- '%D M SFEM7EC

close enough to A and whose norm is positive. Thus, given € > 0, there is a neighbourhood
 of Agy such that:

e YCe %, ®L is partially hyperbolic, dim(E¢) = d and dim(EZ") = D;

o VCI,CZ € UVke {1,--- ,D} |LEk(C1) —LEk(C2)| < E.
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If (LEp —LE;)(Ag) = 0 we can apply Lemma 5.4.3 to Ap to get a cocycle B € %
whose sum of central Lyapunov exponents is positive. If (LEp — LE;)(Ag) # 0 we take
B =Ay.

If either D = d or the Lyapunov exponents corresponding to Ej are all equal, there
is nothing to be proved. If both conditions fail, take two distinct Lyapunov exponents,
say Ay > Ag41, in Ef. As the sum Ef* = Ef @ E}; is dominated and finest, and both A;
and A4 belong to Ef, there is no dominated sum Eg* = V; @V, with dim(V;) = k. As
Aky1 # —o0, by Corollary 4.2.2 of Section 3.3 there is a cocycle C € % close to B such
that

A(B) — Ag+1(B)

LEk(C) <LEk(B)— 5 + €.

Thus

Ak(B) _A'k—i-l (B) < 2|LEk(C) —LEk(B)| +2¢e <4e

which means that the central Lyapunov exponents are all close to each other. Hence each

one is approximately equal to LEgstd , and so doesn’t vanish.
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