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Resumo

Considere-se uma família de produtos cruzados de semi-fluxos sobre um fluxo ergódico
ϕ t : M Ñ M definida num espaço de Hilbert de dimensão infinita separável. Assumindo
que M é um espaço de Hausdorff compacto e que ϕ t preserva uma medida de probabili-
dade de Borel µ , regular e ergódica, positiva em conjuntos abertos não vazios, concluímos
que existe um subconjunto residual dos produtos cruzados de semi-fluxos (em relação a
uma topologia τ) para o qual, para µ quase todo o ponto x, a decomposição de Oseledets-
Ruelle ao longo da órbita de x é uniformemente hiperbólica (no espaço projetivo) ou o
operador limite de Ruelle ao longo da órbita de x é o operador nulo. Provámos também
uma versão Lp desta dicotomia para cociclos com uma topologia do tipo Lp definida no
conjunto dos geradores infinitesimais. De facto quebrámos a dicotomia e obtivemos um
espectro com todos os expoentes de Lyapunov-Ruelle iguais. Finalmente provámos que
os cociclos não uniformemente Anosov são C0 densos na família dos cociclos parcial-
mente hiperbólicos com subespaços instáveis não triviais.

MSC 2000: Primary: 37D30; Secondary: 47A10
keywords: Lyapunov exponents; Skew-product infinite dimensional semiflows; Multi-
plicative ergodic theorem; Dominated splitting.
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Abstract

We consider an infinite dimensional separable Hilbert space and its family of skew-
product compact semiflows over an ergodic flow ϕ t : M Ñ M. Assuming that M is a
compact Hausdorff space and ϕ t preserves a Borel regular ergodic probability µ which is
positive on non-empty open sets, we conclude that there is a τ-residual subset of skew-
product semiflows within which, for µ almost every x, either the Oseledets-Ruelle’s de-
composition along the orbit of x is uniformly hyperbolic (in the projective space) or else
the Ruelle’s limit operator over the orbit of x is the null operator. We also prove an Lp ver-
sion of this dichotomy for cocycles with a Lp topology defined in infinitesimal generators
set. In fact, we drop the dichotomy and reach a one-point spectrum under an Lp generic
assumption. Finally, we prove that non-uniformly Anosov skew-products are C0-dense in
the family of partially hyperbolic cocycles with non-trivial unstable bundles.

MSC 2000: Primary: 37D30; Secondary: 47A10
keywords: Lyapunov exponents; Skew-product infinite dimensional semiflows; Multi-
plicative ergodic theorem; Dominated splitting.
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Chapter 1

Introduction

Given any smooth dynamical system, the Lyapunov exponents measure the exponential
behavior of the tangent map. A positive (or negative) Lyapunov exponent gives us the
average exponential rate of divergence (or convergence) of two neighbouring trajectories
whereas zero exponents give us the absence of any kind of exponential behaviour. For any
smooth diffeomorphism with non-zero Lyapunov exponents we obtain a rich information
about geometric properties of the system, namely stable/unstable manifold theory. These
geometric tools are the base of most of the central results on dynamical systems nowadays.
So it is important to detect when do Lyapunov exponents vanish (see (5; 31)) and also
when zero Lyapunov exponents can be removed.

We will start to define the concept of Lyapunov exponents in dynamical system con-
text.

Consider a C8, compact, connected and boundaryless Riemannian n-manifold M, a
vector field X : M Ñ T M of class Cs, s ¥ 1 and the flow ϕ t : M Ñ M associated with X ,
namely,

dϕ t

dt
|t�spxq � Xpϕspxqq.

For each x P M, the flow ϕ tpxq has a tangent map Dϕ t
x which is solution of the non-

autonomous linear differential equation

9Uptq � Apx, tq �Uptq, (1.0.1)

where
Apx, tq � DXϕtpxq.

1
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The stability of the trajectory tϕ tpxq : t P Ru can be described by studying small per-
turbations of the linear differential equation (1.0.1).

Given x P M and v P TxM, the formula

λ
�px,vq � lim

tÑ�8
sup

1
t

log
��Dϕ

t
x � v

�� (1.0.2)

defines the Lyapunov exponent at the point x in the direction of v P TxMzt0u.

For each x PM and v P TxM the function λ�px, �q :Rn ÑRYt�8u attains only finitely
many values λ

�
1   �� �   λs�pxq where s�pxq ¤ n and λ�px,0q � �8.

In an analogous way we can define the Lyapunov exponent when t Ñ�8 by

λ
�px,vq � lim

tÑ�8
sup

1
t

log
��Dϕ

t
x � v

�� . (1.0.3)

For each x PM and v P TxM the function λ�px, �q :Rn ÑRYt�8u attains only finitely
many values λ

�
1 ¡ �� � ¡ λ

�
s�pxq where s�pxq ¤ n and λ�px,0q � �8.

If λ�
s   0 then the trivial solution Uptq � 0 is asymptotically stable, and even expo-

nentially asymptotically stable (5). Lyapunov introduced also regularity conditions which
guarantee that exponential stability remains valid for nonlinear perturbations.

In order to simplify the notation, in what follows, we will drop the superscript � from
the forward Lyapunov exponents if it does not cause any confusion.

Definition 1.0.1. The point x PM is Lyapunov regular if and only if exists a decomposition

TxM �
spxqà
i�1

Eipxq (1.0.4)

into subspaces Eipxq, and numbers λ1pxq   � � �   λspxqpxq such that:

(i) Eipxq is invariant under Dϕ t
x, i.e.,

Dϕ t
xEipxq � Eipϕ

t
xpxqq

and depends (Borel) measurably on x;

(ii) for v P Eipxqzt0u,

lim
tÑ�8

sup 1
t log}Dϕ t

x � v} � λipxq
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with uniform convergence on tv P Eipxq : }v} � 1u;

(iii) for any v,w P TxMzt0u ,

lim
tÑ�8

sup 1
t log>pDϕ t

x � v,Dϕ t
x �wq � 0.

The decomposition (1.0.4) is called the Oseledets decomposition associated with the
Lyapunov exponent λ�. The regularity condition is usually difficult to check in specific
situations but the multiplicative ergodic theorem of Oseledets (Theorem 1.0.1) asserts
that regularity is “typical” from the measure-theoretical point of view, that is, it holds on
almost every flow trajectory, relative to any probability measure invariant under the flow.

Theorem 1.0.1. Multiplicative Ergodic Theorem (Oseledets, 1968) If M is a compact

Riemannian manifold, ϕ t : M Ñ M is a flow associated with a vector field X and µ is a

finite measure ϕ t-invariant on M, then µ- almost every point x P M is regular.

A seminal result for discrete systems is the Bochi-Mañé theorem, which provides
a C1-residual set of area-preserving diffeomorphisms on surfaces where either we have
Anosov systems (i.e. uniform hyperbolicity in all points) or for Lebesgue almost every
point, we have zero Lyapunov exponents. This theorem was announced in the beginning
of the 1980’s by Mañé in (29) but there was only available a sketch of a proof, (see (30)).
A complete proof, due to Bochi, appeared only in (17).

Next, Bochi-Viana in (20) (see also (18)) extended this result to a large class of dis-
crete systems: volume-preserving diffeomorphisms with arbitrary dimension, symplectic
maps and also linear cocycles. In this case we no longer obtain a global result. Instead,
it is obtained a C1-residual subset such that for almost every orbit we have a dominated
splitting (or partial hyperbolicity in the symplectic case) or else the Lyapunov exponents
are zero. For a survey of the theory for the discrete-case see (19).

Bessa started the approach for the continuous-time setting by proving in (6) the di-
chotomy (dominated-splitting versus zero Lyapunov exponents) for 2-dimensional con-
servative linear differential systems. Then, in (7) he proved the version for three-dimen-
sional divergence-free vector fields without singularities (see (1) for the correspondent
statement for vector fields with singularities). For higher dimensions we have available
the results by Bessa in (8) and by Bessa and Rocha in (12).

Bessa and Carvalho started the approach of the generalization of previous results on
cocycles but for the discrete infinite dimensional setting (9) (see Section 1.1).
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Table 1.1: Results already proved on the C0-generic dichotomy zero exponents versus
dominated splitting.

Discrete-time Continuous-time
Low dimension Mañé, 1983, Bochi, 2002 (17) Bessa, 2006 (6)

Bessa and Dias, 2008 (11)
High dimension Bochi and Viana, 2005 (20) Bessa, 2008 (8)

Bochi, 2010 (18)
Infinite dimension Bessa and Carvalho, 2008 (9) Theorem A

Bessa and Stadlbauer proved in (13) similar results for the semigroup of stochastic
matrices.

We can also find in (14) identical results using an Lp-topology. Bessa and Vilari-
nho proved that the class of accessible and saddle-conservative cocycles Lp-densely have
a simple spectrum and that for an Lp-residual subset of accessible cocycles we have a
one-point spectrum. They also proved versions of previous results for linear differential
system, include infinite dimensional discrete cocycles.

Recently, Avila, Crovisier and Wilkinson in (4) obtained a dichotomy for C1-generic,
volume-preserving diffeomorphisms: either all the Lyapunov exponents of almost every
point vanish or the volume is ergodic and non-uniformly Anosov (i.e. non-uniformly
hyperbolic and the splitting into stable and unstable spaces is dominated). Their theorem
is the sharper result concerning these type of dichotomies.

Bessa and Carvalho also proved in (10) that non-uniformly Anosov cocycles (par-
tially hyperbolic cocycles without null Lyapunov exponents) are C0-dense in the family
of partially hyperbolic cocycles with non-trivial unstable bundles (see Definitions 5.2.1
and 5.2.2).

In this thesis we are interested in the continuous-time counterpart of the main theorem
in (9) (see Theorem A). The strategy of the proof for the continuous-time case is similar
to the one used in the discrete-time case. However the perturbations schemes used are
quite different. We also proved a similar result in an Lp-topology, using the ideias of (14)
(see Theorem B) and also the continuous counterpart of (10) .

1.1 Infinite Dimension - The Discrete-time Case

Let H be an infinite dimensional separable Hilbert space and C pH q the set of linear
compact operators acting in H with the uniform norm. Consider a homeomorphism
f : M Ñ M of a compact Hausdorff space M and µ , an f -invariant Borel regular measure
that is positive on non-empty open subsets. Given a family pAxqxPM of linear operators in
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C pH q and a continuous vector bundle π : M�H Ñ M, we define the associated skew

product over f by

FpAq : M�H Ñ M�H

px,vq Ñ p f pxq,Apxq � vq.

The map F satisfies the equality π �F � f �π and, for all x P M, FxpAq : H ÑH is
linear on the fiber H :� π�1ptxuq. We call A a cocyle.

A random product of a cocycle A : M Ñ C pH q associated to the map f is the se-
quence, indexed by x P M, of linear maps of H defined, for each n P N0, by A0pxq � Id
and

Anpxq � Ap f n�1pxqq � � � � �Ap f pxqq �Apxq.

In (9) were studied the asymptotic properties of random products for most points x,
i.e, the limit

lim
nÑ8

ppApxqq�
n
Apxqnq

1
2n ,

where pApxqq� denotes the dual operator of Apxq.

Under the integrability hypothesis

»
M

log� }Apxq} dµpxq   8,

where log�pyq � maxt0, logpyqu, the theorem of Ruelle (33) offers, for µ-almost every
point x P M, a description of a complete set of Lyapunov exponents for the above limit of
operators and associated invariant directions.

Consider C0
I pM,C pH qq the set of integrable compact cocycles. In (9) it was proved

that:

Theorem 1.1.1. There exists a C0-residual subset R of C0
I pM,C pH qq such that, for A P

R and µ-almost every x P M, either the limit lim
nÑ8

ppApxqq�
n
Apxqnq

1
2n is the null operator

or the Oseledets-Ruelle’s splitting of A along the orbit of x is dominated (see Definition

2.3.1).
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1.2 Infinite Dimension - The Continuous-time Case

As in previous section let H be an infinite dimensional separable Hilbert space (we can
view H as the set of square integrable L2-functions on a measurable space) and C pH q

the space of linear compact operators defined in H . Let M be a compact, connected,
Hausdorff manifold endowed with a Borel probability measure µ .

Consider a continuous and ergodic flow ϕ t : M Ñ M with respect to the measure µ ,
i.e, any measurable and ϕ t-invariant subset of M has zero or full µ-measure. A linear
cocycle based on ϕ t is defined by a flow Φtppq P C pH q, continuous on space parameter
p P M and on time the parameter t.

The flow Φt satisfies the cocycle identity:

Φ
t�sppq � Φ

spϕ tppqq �Φ
tppq, (1.2.1)

for all t,s P R and p P M.

Let L pH ,H q be the set of linear applications from H to H . We can write Φtppq

as

Φ
tppq � Id�

» s

0
Apϕsppqq �Φsppqds, (1.2.2)

where A : M ÑL pH ,H q is a measurable map such that Apϕ tppqq �Φtppq P L1pM,µq.

We can also define the linear C0- skew product flow

Φ : R�M�H Ñ M�H

pt,x,vq Ñ pϕ tpxq,Φtpxq � vq.
(1.2.3)

Once again we are interested in the asymptotic properties of the limit

lim
tÑ8

ppΦtpxqq�Φ
tpxqq

1
2t ,

where pΦtpxqq� denotes the dual operator of Φtpxq.

Let F 0 be set of continuous maps Φ : R�M�H ÑH such that Φtpxq is a compact
operator acting on H , @t P R and @x P M and satisfies (1.2.1). We intend to prove the
following result:

Theorem A. There exists a τ-residual1 subset R of the set of cocyles F 0 such that for Φ P

R and µ-almost every x P M, either the limit operator lim
tÑ8

ppΦtpxqq�Φtpxqq
1
2t is the null

1See the definition of τ-topology in Section 2.1.
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operator or the Oseledets-Ruelle’s splitting of Φt along the ϕ t-orbit of x has a dominated

splitting.

The idea to prove Theorem A is the following. We take a cocyle which is a continuity
point of an upper-semicontinuous function (see Section 2.4) and if, for this skew-product,
the Lyapunov exponents of Φtpxq are not all equal, i.e, the limit operator lim

tÑ8
ppΦtpxqq�Φtpxqq

1
2t

is not the null operator and there is no dominated splitting along the ϕ t-orbit of x, we con-
struct small τ-perturbations which allow us to breaking the continuity, obtaining a contra-
diction. Finally, as the set R of points of continuity of upper-semicontinuous functions
is a residual set the Theorem A follows. Moreover, as the set of the skew-product flows
with τ-topology is a Baire space then R is dense.

1.3 Examples of Cocycles

The study of Lyapunov exponents has an unusually vast array of interactions with other
areas of Mathematics and Physics, such as stochastic processes (random matrices and,
more generally, random walks on Lie groups (see (25))), spectral theory, smooth dynamics
(see (40)) and in control theory (see (23)).

Simple examples are the continuous quasi-periodic Schrödinger equations, the Math-
ieu’s equations and, more closely related with our study, the dynamical cocycles on infi-
nite dimension.

1.3.1 Schrödinger cocyles

Consider the Schrödinger equation

pHθ uqptq � �
d2u
dt2 ptq�λ

2V pt,θ �ωtquptq � Euptq, (1.3.1)

where V : T2 Ñ R pT � R{Zq is the potential function, E the energy and ω P RzQ is the
frequency. The operator Hθ is called the Schrödinger operator, acting on the Hilbert space
L2pRq of square integrable functions.

We can study (1.3.1) from dynamical systems point of view. With u1 :� u and u2 :� 9u

we can write it as the traceless system

�
9u1

9u2

�
�

�
0 1

λ 2V pt,θ �ωtq�E 0

��
u1

u2

�
. (1.3.2)
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Denote by FEpt,θ q the fundamental solution of (1.3.2), i.e.,

F 1
Ept,θ q �

�
0 1

λ 2V pt,θ �ωtq�E 0

�
FEpt,θ q with FEp0,θ q �

�
1 0
0 1

�
.

We have that FEpt,θ q P SLp2,Rq for all t.

We can also study the dynamic of the system (1.3.2) via the skew-product mapping

GE : T�R2 Ñ T�R2

pθ ,vq Ñ pθ �ωt,FEpt,θ qvq.

The average exponential growth of the fundamental solution is measured by the Lya-
punov exponent

γpEq � lim
tÑ8

1
t

»
T

log}FEpt,θ q}dθ ¥ 0,

which exists by subadditivity and which is non-negative since FE is in SLp2,Rq. For more
details see (15).

1.3.2 Mathieu’s equation

The Mathieu’s equation is a special case of a linear second order homogeneous differential
equation such as occurs in many applications in physics an engineering.

Let q1,q2 : RÑR be T -periodic functions and suppose that q1 is continuously differ-
entiable and q2 is continuous. Consider the periodic linear oscillator

:y�2q1ptq 9y�q2ptqy � 0. (1.3.3)

An example for (1.3.3) is

:y�2k 9y�pa� ε cosp2tqqy � 0 with k ¡ 0. (1.3.4)
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The substitution of the form xptq � yptqexppktq, t P R, yields Mathieu’s equation (see
(24))

:x�pδ � ε cosp2tqqx � 0, (1.3.5)

with δ :� a� k2. This is a linear oscillator with periodic restoring force.

With y1 :� y and y2 :� 9y, the second order equation (1.3.4) is equivalent to the system

�
9y1

9y2

�
�

�
0 1

�a� ε cosp2tq �2k

��
y1

y2

�
. (1.3.6)

Similarly, with x1 :� x and x2 :� 9x, we can write (1.3.5) as the system

�
9x1

9x2

�
�

�
0 1

�pa� k2q� ε cosp2tq 0

��
x1

x2

�
. (1.3.7)

The solutions satisfy for t P R,

�
x1ptq

x2ptq

�
� e�kt

�
1 0
�k 1

��
y1ptq

y2ptq

�
,

hence, for initial values px1,0,x2,0q � py1,0,y2,0q, the Lyapunov exponents are related
by

λ px1,0,x2,0q � λ py1,0,y2,0q� k.

For physical interpretation of Mathieu’s equation and more details see (24).

1.3.3 Dynamical Cocycles on Infinite Dimension

Recently Blumenthal and Young, in their notable work (16), generalized the classic results
(27), (28) to Banach space mappings f preserving a compactly supported Borel probabi-
lity measure µ with finitely many positive Lyapunov exponents.

Let pB, | � |q be a Banach space. Consider p f ,µq, where f : B ÑB is a mapping and
µ is an f -invariant Borel probability measure. The following properties are assumed:



10 Introduction

(H1) (i) f is C2 Fréchet differentiable and injective;

(ii) the derivative of f at x PB, denoted D fx, is also injective.

(H2) (i) f leaves invariant a compact set A �B, with f pA q �A ;

(ii) µ is supported on A .

(H3) Assume

lαpxq :� lim
nÑ8

1
n log |D f n

x |α   0 for µ-a.e. x,

where |D f n
x |α is the Kuratowski measure of noncompactness of the set D f n

x pBq,
where B is the unit ball in B.

(H4) p f ,µq has no zero Lyapunov exponent.

(H5) the set A has finite box-counting dimension.

An SRB measure can be defined as a measure µ with a positive Lyapunov expo-
nent µ-a.e. and such that the conditional measures of µ on unstable manifolds are in the
"Lebesgue measure class" induced on these manifolds (see Definition 2.1, (16)). Blu-
menthal and Young proved, under conditions (H1)-(H5) and in rought terms, that µ is an
SRB measure if and only if the entropy of f is equal to the sum of its positive Lyapunov
exponents, say Pesin’s entropy formula holds.

It is important to point out that the class of mappings to which this result applies
includes (but is not limited to) time-t maps of semiflows defined by periodically forced
nonlinear dissipative parabolic partial differential equations.

Although the approach used by Blumenthal and Young in their results is similar to that
we do in this thesis, they work with the "derivative" cocycle D fx, which we call dynamical

cocycle. So, they study the Lyapunov exponents of D f where f is a smooth dynamical
system. In this thesis we do not consider D f . Instead, we consider a continuous and
ergodic flow ϕ t : M Ñ M and choose a cocycle Φt

Appq based on ϕ t acting on C pH q (see
Section 1.2 ). So when we consider a perturbation B of A (or a perturbation Φt

B of Φt
A),

this B do not need to be associated to a derivative cocycle of a flow near ϕ t .

The ideas of Blumental and Young may be fundamental in the attempt to generalize
our results for dynamical cocycles.
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1.4 Thesis Structure

Besides introduction this work is organized in four chapters. Some preliminaries results,
as the definition of the τ-topology, the multiplicative ergodic theorem, the definition of
dominated splitting and entropy functions, are presented in Chapter 2. In Chapter 3 it
is established the perturbation lemmas which will be used in the proof of Theorem A in
Section 3.3. In Chapter 4 it is proved an identical result in a less exigent topology, the Lp

infinitesimal generator topology. Finally in Chapter 5 we use a same type of perturbation
to remove zero Lypaunov exponents in a topology sharper than τ , inspired in the result of
(10).
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Chapter 2

Preliminaries Results

2.1 Topologies

In previous section we denoted the set of C0 compact cocycles by F 0 � C0pR�M�

H ,H q. Given any a,b P R with a   b consider the restriction map

ρa,b : F 0 Ñ C0pra,bs�M�Sω
,Sω

q

Φ Ñ Φ̂ : ra,bs�M�Sω
Ñ Sω

,

such that

Φ̂pt,x,vq � Φtpxq�v
}Φtpxq�v} if }Φtpxq � v} ¡ 1,

Φ̂pt,x,vq � Φtpxq � v if }Φtpxq � v} ¤ 1,

where Sω is the weak closure of the unit sphere on H .
First, we will prove that Sω is compact for the weak topology ω and that ω is metri-

zable inside Sω (see (34)).

Lemma 2.1.1. Let S� tξ PH : }ξ } � 1u be the unit sphere of H , where }�} is the norm

induced by an inner product in H . The weak closure Sω
of S is the closed unit ball

Dp0,1q � tξ PH : }ξ } ¤ 1u.

Proof. As the closed unit ball Dp0,1q is a norm closed convex subset of H , it is also
weakly closed and thus it contains the weak closure Sω of S. Suppose that Sω is not equal
to Dp0,1q. Then there exists an element ξ0 PDp0,1q such that ξ0 is not in Sω . In this case

13
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we can find a weakly open neighbourhood V of ξ0 such that V XSω
�H. By definition

of weak topology ω on H , we can find finitely many f1, � � � , fk PH �, and a (sufficiently
small) ε ¡ 0 such that

ξo P Dpξ0, f1, � � � fk,εq � ξ0�Dp0, f1, � � � , fk,εq �V.1

In this case, we must have ξ0�Dp0, f1, � � � , fk,εqXSω
�H.

Now since H is infinite dimensional, Dp0, f1, � � � , fk,εq must contain an infinite di-
mensional subspace of H . So we can find a non-zero element η0 P Dp0, f1, � � � , fk,εq

such that

tη0 P Dp0, f1, � � � , fk,εq,

for all t P R. Notice that N : t P RÑ }ξ0� tη0} P r0,8q defines a continuous function
with Np0q � }ξ0}   1 (since ξ0 R S), and Nptq Ñ8 when t Ñ8. By Intermediate Value
Theorem, we can choose some t0 ¡ 0 such that }ξ0� t0η0} � 1. This implies that ξ0 �

t0η0 P ξ0�Dp0, f1, � � � , fk,εqXS, which is a contradiction. So we must have Sω
�Dp0,1q.

Proposition 2.1.2. The weak closure Sω
of S is compact for the weak topology.

Proof. By Banach-Alaoglu theorem the closed unit ball in H � defined by

Dp0,1q� � tλ PH � : |λ pξ q| ¤ 1 , }ξ } ¤ 1u

is compact with respect to the weak star topology (denoted by ω�) in H �. Since we are
dealing with a separable Hilbert space H , which is reflexive, then we know that Dp0,1q
is also compact for ω in H . As, by Lemma 2.1.1, Sω

� Dp0,1q then Sω is compact for
ω .

We need now to prove that ω is metrizable inside Sω from a metric d. We recall that
a family L of functionals λ : H ÑR separates points in a set K �H if for any distinct
ξ ,ν P K, there exists λ PL such that λ pξ q � λ pνq. Clearly, when we have L �H � we
get that the family L separate points in K �H .

Lemma 2.1.3. The weak topology ω is metrizable inside Sω
�H , i.e., ω derives from a

metric d.

1Recall that Dpξ0, f1, � � � fk,εq � tξ P H : |   ξ �ξ0, fi ¡ |   ε, i P t1, � � � ,kuu.
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Proof. As H is separable there exists a dense sequence ξn � H . Making the usual
isomorphism between H and H � established by the Riesz representation theorem (i.e.
λξ pνq � xν ,ξ y identifying λ with ξ ) we can conclude that λξn PH � is a dense family of
functionals which separates points in H and, in particular, separates points in any subset
of H . Indeed, if by contradiction there exist distinct ξ ,ν P H , such that for all λξn we
have λξnpξ q � λξnpνq, that is, xξ ,ξny � xν ,ξny for all n, hence λξ pξnq � λνpξnq for all
n. Then λξ � λν (i.e. ξ � ν) because they coincide in a dense subset of H and are
continuous linear functionals.

The proof of the lemma is finished once we prove the following claim.

Claim 2.1.1. If exists a family of continuous functions fn : Sω
ÑR which separate points

in Sω
, then there exists a metric d : Sω

�Sω
Ñ r0,8q which generates ω .

Suppose, without loss of generality, that } fn}8¤ 1 for all n, and let ωd be the topology
induced on Sω by the metric

dpξ ,νq �
¸
nPN

1
2n | fnpξ q� fnpνq|, (2.1.1)

with ξ , ν P Sω .

This is indeed a metric since t fnu separates points in Sω . Since each fn is ω-continuous
and the series (2.1.1) converges uniformly on Sω

�Sω , d is a ω-continuous function on
Sω

�Sω . The balls

Bpξ ,rq �
!

ν P Sω : dpξ ,νq   r
)

are therefore ω-open. Thus ωd � ω .

To prove that ωd � ω let C P Sω be ω-closed. Since Sω is ω-compact, so is C. Since
ωd � ω , it follows that C is ωd-compact (every ωd open cover of C is a ω-open cover).
As compact sets in metric spaces are closed then C is ωd-closed. So the claim is proved.

Since Sω is a compact metric space then it is complete.

Note that the domain ra,bs �M� Sω and the image Sω are topological spaces en-
dowed with the product topology, given by the absolute-value norm in ra,bs, the distance
function in M and the ω topology in Sω . So we consider the compact-open topology on
C0pra,bs�M�Sω

,�Sω
q.
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Now we topologize F 0 with the initial topology (the one which has less open sets and
makes ρa,b continuous), which we will denote by τ . As in (32) it is independent of a and
b.

As each component of ra,bs �M� Sω is compact with a countable base and Sω is
a complete metric space, we can apply Theorem 4.1 of (26) to conclude that C0pra,bs�

M�Sω
,Sω

q has a complete metric, which is essential to prove the next lemma.

Lemma 2.1.4. The image of F 0 by ρa,b is a closed set of C0pra,bs�M�Sω
,Sω

q for the

compact-open topology.

Proof. Consider a Cauchy sequence Φ̂n of ρa,bpF
0q. As C0pra,bs �M � Sω

,Sω
q is a

complete metric space we have that Φ̂n converges for some Φ̂ PC0pra,bs�M�Sω
,Sω

q.
If Φ̂ P ρa,bpF

0q we can conclude that ρa,bpF
0q is a complete subspace of C0pra,bs�M�

Sω
,M�Sω

q and consequently it is closed.

For t P ra,bs consider the notation Φ̂tpx,vq � Φ̂pt,x,vq. First we need to verify that Φ̂

satisfies the cocycle identity Φ̂t�spx,vq � Φ̂t � Φ̂spx,vq, for t P ra,bs.

In fact,

Φ̂
t � Φ̂

spx,vq � Φ
t
�

Φspxq � v
}Φspxq � v}




�
Φtpϕspxqq � Φspxq�v

}Φspxq�v}���Φtpϕspxqq � Φspxq�v
}Φspxq�v}

��� .

As Φt is linear on variable v then

���Φtpϕspxqq � Φspxq�v
}Φspxq�v}

���� 1
}Φspxq�v} }Φ

tpϕspxqq �Φspxq � v} .

So

Φ̂
t � Φ̂

spx,vq �
Φtpϕspxqq �Φspxq � v
}Φtpϕspxqq �Φspxq � v}

�
Φt�spxq � v
}Φt�spxq � v}

q

� Φ̂
t�spx,vq.
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As this property is valid for every x P M, we can consider for the same interval ra,bs
other points in the orbit of x with the guarantee that the property remains valid and prove
that it is valid along all the orbit of x.

As ra,bs�M�Sω is compact the compact-open and the strong topology on C0pra,bs�

M�Sω
,Sω

q are the same. As, by Lemma 2.1.4, ρa,bpF
0q is a closed subset of C0pra,bs�

M�Sω
,Sω

q we can apply Theorem 4.4 of (26) and obtain that ρa,bpF
0q is a Baire space

for the compact-open topology.
We want to prove that F 0 is also a Baire space for the τ-topology.

Lemma 2.1.5. Given two topological spaces X and Y and a map ρ : X Ñ Y , such that Y

is endowed with the compact-open topology and X with the initial topology, the open and

dense subsets of X are pre-images, by ρ , of open and dense sets of ρpXq.

Proof. Consider the sets Un � Y such that UnXρpXq �H and Vn � ρ�1pUnXρpXqq are
open and dense sets. We will prove that UnXρpXq are open and dense.

To prove that each UnXρpXq is open it is necessary to prove that

@y PUnXρpXq, Dδ ¡ 0 such that Bpy,δ q �UnXρpXq.

Consider y PUnXρpXq (see Figure 2.1). We have that ρ�1pyq P ρ�1pUnXρpXqq �Vn.
As Vn is open then there exists ε ¡ 0 such that Bpρ�1pyq,εq �Vn.
As ρ is continuous and we are using the initial topology on X , Bpρ�1pyq,εq � ρ�1pAq

for some open set A � Y such that y P A. As ρpBpρ�1pyq,εqq � ρpVnq �UnXρpXq then
A �UnXρpXq. As A is open there exists δ ¡ 0 such that Bpy,δ q � A �UnXρpXq.

Now as y is arbitrary we can conclude that UnXρpXq is an open set.

To prove that each UnXρpXq is dense in ρpXq it is necessary to prove that

@y P ρpXq @ε ¡ 0 we have that Bpy,εqX rUnXρpXqs �H.

Let w P ρpXq and consider Bpw,εq, for some ε ¡ 0 (see Figure 2.2). As ρ is continuous
and we are using the initial topology on X , we have that there exists δ ¡ 0 such that
Bpρ�1pwq,δ q � ρ�1pBpw,εqq. As Vn is dense in X , Bpρ�1pwq,δ qXVn �H. Consider a
point z P Bpρ�1pwq,δ qXVn. We have that ρpzq P ρpBpρ�1pwq,δ qq � Bpw,εq and ρpzq P

UnXρpXq because z PVn. So Bpw,εqX rUnXρpXqs �H.
Now as w and ε are arbitrary we can conclude that UnXρpXq is a dense set.
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Figure 2.1: Illustration to Lemma 2.1.5 - Openness.

Figure 2.2: Illustration to Lemma 2.1.5 - Denseness.

Proposition 2.1.6. The space F 0 with τ-topology is a Baire space.

Proof. As ρa,b
�
F 0

�
is a Baire space, using the continuity of ρ and Lemma 2.1.5, we

conclude the F 0 is a Baire space for the τ-topology.
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2.2 The Multiplicative Ergodic Theorem

The following result of Ruelle (Corollary 2.2 of (33)) gives a Lyapunov-spectral decom-
position for the limit

lim
tÑ8

�
pΦtpxqq�Φ

tpxq
� 1

2t ,

under the general integrability condition:

»
M

log� }Φ1pxq}dµpxq   8. (2.2.1)

Theorem 2.2.1. Let ϕ t : M ÑM be a continuous flow, µ a ϕ t-invariant Borel probability

and Φ : R�M�H ÑH . If the cocycle Φt is a compact operator (for each x), then, for

µ-almost every x P M, we have the following properties:

(a) The limit lim
tÑ8

rpΦtpxqq�Φtpxqs
1
2t exists and is a compact operator L pxq.

(b) Let eλ1pxq ¡ eλ2pxq ¡ ... be the nonzero eigenvalues of L pxq and U1pxq, U2pxq, ...

the associated eigenspaces whose dimensions are denoted by nipxq. The sequence

of real functions λipxq, called Lyapunov exponents of Φt , where 1 ¤ i ¤ jpxq and

jpxq P NYt8u, satisfies:

(b.1) The functions λipxq, jpxq and nipxq are ϕ t-invariant and depend in a measur-

able way on x.

(b.2) If Vipxq is the orthogonal complement of U1pxq `U2pxq ` ...`Ui�1pxq, for

i   jpxq�1, and Vjpxq�1pxq � KerpL pxqq, then:

(i) lim
tÑ8

1
t log}Φtpxq �u} � λipxq if u PVipxqzVi�1pxq and i   jpxq�1;

(ii) lim
tÑ8

1
t log}Φtpxq �u} � �8 if u PVjpxq�1pxq.

As we are assuming that µ is ergodic, the maps jpxq, nipxq and λipxq are cons-tant
µ-almost everywhere. We will denote by OpΦq the full measure set of points given by
this theorem. Since µ is positive on non-empty open subsets, OpΦq is dense in M. Fur-
thermore, by Lemma 3.3 of (9), if λi ��8, then Uipxq has finite dimension.
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2.3 Dominated Splittings

Definition 2.3.1. Given ϕ t and Φt as above and an ϕ t-invariant set K , we say that a

splitting E1pxq`E2pxq �H is `-dominated in K , denoting by E1 ¡` E2, if

(C1) ΦtpEipxqq � Eipϕ
tpxqq for every x PK .

(C2) The dimension of Eipxq is constant in K for i � 1,2.

(C3) There are θK ¡ 0 and ` PN such that, for any x PK and every pair of unit vectors

u P E2pxq and v P E1pxq, one has

(C3.1)
��Φ1pxq � v

��¥ θK ;

(C3.2) }Φ`pxq�u}
}Φ`pxq�v}

¤ 1
2 .

This definition corresponds to hyperbolicity in an infinite dimensional projective space
(see (22) ). Condition (C3.2) is a standard hypothesis of the classical concept of domi-
nation (21), whereas (C3.1) is an essential to guarantee that the norm of Φ1 in K is
bounded away form zero. In fact, for finite dimensional automorphisms, domination im-
plies that the angle between any two subbundles of a dominated splitting is uniformly
bounded away from zero. Due too the lack of compactness of OpAq and the fact that we
are dealing with operators acting on an infinite dimensional space we have that Φt

Apxq

is not invertible and its norm may not be uniformly bounded away from zero, unless we
relate, as we have done through the condition (C3.1), domination with nonzero norms.

Given a ϕ t-invariant set K contained on OpΦq, we say that the Oseledets-Ruelle’s
decomposition is `-dominated in K if we may detach in it a direct sum of two subspaces,
E1pxq`E2pxq � H pxq, such that E1pxq is associated to a finite number of the first Lya-
punov exponents, say λ1,λ2, � � � ,λk, the subspace E2pxq is associated to the remaining
ones and E1 ¡` E2. As in (9) we will consider the decompositions where E1pxq is the
Lyapunov subspace associated to the first k finite Lyapunov exponents λ1 ¡ λ2 ¡ �� � ¡

λk ¡�8.
We can use the arguments described in (9) (see Lemma 3.4 and Proposition 3.5) to

prove that the operator Φtpxq : E1pxq Ñ E2pϕ
tpxqq is invertible and rΦtpϕ tpxqqs�1 is com-

pact, and also that if the Oseledets-Ruelle’s splitting E1pxq`E2pxq � H is `-dominated
over an invariant set K � OpΦq, it may be extended continuously to an `-dominated
splitting over the closure of K .
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2.4 Entropy Functions

Given a cocycle Φt : H Ñ H and a positive integer k, let ^kpH q be the kth exterior
power of H , i.e., the infinite dimensional space generated by k vectors of the form e1^

e2^�� �^ ek with ei PH . Consider the operator ^kpΦtq, defined by

^kpΦtq : ^kpH q Ñ ^kpH q

e1^ e2^�� �^ ek ÞÑ Φtpe1q^Φtpe2q^ � � �^Φtpekq.

By Lemma 3.10 of (9) as Φt is a compact and integrable operator, then ^kpΦtq also
is.

We can apply to it Ruelle’s theorem and conclude that, for µ-almost every x,

lim
tÑ�8

1
t

log
���^kpΦtpxqq

���� λ
^k

1 pxq.

This is the largest Lyapunov exponent given by the dynamics of the operator ^kpΦtq

at x. Moreover, for µ-almost every x, we have

λ
^k

1 pxq �
ķ

i�1

λipxq.

In fact, as µ is ergodic, for µ-almost every x, we have

λ
^k

1 �
ķ

i�1

λi � lim
tÑ�8

1
t

log
���^kpΦtpxqq

��� .
Given k P N define the kth-entropy function by

LEk : F 0 Ñ RYt�8u
Φ ÞÑ

°k
i�1 λipΦ

tq.

In the next proposition we will prove that LEk is an upper semicontinuous function,
which is fundamental for the construction of the proof of Theorem A.

Proposition 2.4.1. LEk is upper semicontinuous.

Proof. Since Oseledet-Ruelle’s theorem is an asymptotic result and Φrpxq, for a fixed r,
is a bounded operator, we can replace Φtpxq � ΦrpϕnpxqqΦnpxq by the last integer time-n
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map, Φnpxq and consider

λ
^p

1 � lim
nÑ�8

1
n

log
���^kpΦnpxqq

��� .
Consider, for a cocyle Φ and for each n P N, the sequence an � log

��^kpΦnq
��. Using

the same arguments used in (9) we can prove that

(i) λ^k

1 � lim
nÑ�8

an
n .

(ii) panqnPN is sub-additive.

(iii) lim
nÑ�8

an
n � inf

nPN
an
n .

Note that we can write Φn as

pΦ1qn � Φ
1pϕn�1pxqq � � � �Φ1pϕ1pxqq �Φ

1pxq.

By the construction of the τ-topology if Φ,Ψ P F 0 are τ-close and t P ra,bs then Φ̂

and Ψ̂ are close for the compact-open topology, that is, Φtpxq�v
}Φtpxq�v} and Ψtpxq�v

}Ψtpxq�v} are ω-close.
So for t P r0,1s the continuity of the map Φ Ñ anpΦq is ensured by the continuity of the
operator, of the logarithmic, of the operator ^k and of the norm }�}. Now we can prove
that LEk is upper semicontinuous using the fact that it is the infimum of a sequence of
continuous functions with values on the extended real line.



Chapter 3

Perturbation Lemmas

Let ΛppΦ,mq be the set of points x such that, the orbit ϕ tpxq has an Oseledets-Ruelle’s de-
composition of index p for Φt which is m-dominated. Denote by ΓppΦ,mq �MzΛppΦ,mq

and by Γ�ppΦ,mq the set of points in OpΦqXΓppΦ,mqwhich are non-periodic and satisfies
λp ¡ λp�1.

Notice that if x belongs to Γ�ppΦ,mq for some m, then the m-domination on K �

torbit of xu of the Oseledets-Ruelle’s splitting may fail by two (possible coexisting) events:

(NB) The norm of operator Φ1 restricted to E1 takes values arbitrarily small along the
orbit of M.

That is, for all θ ¡ 0 there are N � Nθ ,x P N and a unit vector vN P E1pϕ
Npxqq such

that

��Φ1pϕNpxqq � vN
��  θ .

We call Γ�p,1 the set of points x P Γ�ppΦ,mq where this happens.

(ND) The dynamics on the subspace E1 does not m-dominate the one on E2.

This means that there are n P N and unit vectors vn P E1pϕ
npxqq and un P E2pϕ

npxqq

such that

23
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}Φmpϕnpxqq �un}

}Φmpϕnpxqq � vn}
¥

1
2
.

The points x P Γ�ppΦ,mq where property (ND) is valid but not (NB) will be denoted
by Γ�p,2.

The next lemma is the basic perturbation tool which will be used in Proposition 3.0.2
to interchange Oseledets-Ruelle’s directions.

Let Rθ : R2 Ñ R2 denote the rotation of angle θ in R2 which in canonic coordinates

can be written as Rθ �

�
cospθ q �sinpθ q
sinpθ q cospθ q

�
.

Lemma 3.0.1. Given an integrable compact cocycle Φt P C pH q and ε ¡ 0, there exists

an angle ξ ¡ 0, such that for all p PM (non-periodic or with period larger than 1) and all

two-dimensional subspace Ep �H with rank
�
Φ1ppq|Ep

�
� 2, there exists a measurable

integrable cocycle Ψt
ξ

such that:

(a) Ψξ is ε-close (with respect to τ) to Φ;

(b) Ψt
ξ

is supported in ϕ tppq for t P r0,1s;

(c) Ψt
ξ
ppq �u � Φtppq �u, for all u P EK

p ;

(d) Ψ1
ξ
ppq �u � Φ1ppq �Rξ �u, for all u P Ep, where Rξ is the rotation of angle ξ in Ep.

Proof. Consider the direct sum Hp � Ep `EK
p . Let η P p0,1q and G : R Ñ R be the

bump-function defined by Gptq � 0 for t   0, Gptq � 1 for t P rη ,1�ηs and Gptq � 1 for
t ¥ 1. Consider the function g : RÑ R defined by gptq �

³t
0 Gpsqds.

Define, in a matricial notation,

Φtppq �

�
δ tppq 0

0 γ tppq

�
and δ tppq �

�
aptq bptq

cptq dptq

�
,

where δ tppq : Ep Ñ Eϕtppq and γ tppq : EK
p Ñ EK

ϕtppq.

For each u PHp consider the decomposition u� v�w, where v P Ep and w P EK
p . For

t P R define
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Ω
t
ξ
pyq �u � Φ

τpyqppq �Rt
p �Φ

�τpyqpyq � v�w,

where τ : M Ñ R is such that τpyq � s if and only if ϕsppq � y and Rt
p is the rotation

of angle ξ gptq in R2 defined on Ep.

Take Ψt
ξ
ppq � Φtppq �Ωtppq. First we need to verify that Ψt

ξ
is an integrable cocyle,

that is, satisfies the following properties:

(i) Ψ0
ξ
pyq � Id;

(ii) Ψ
t�s
ξ
pyq � Ψt

ξ
pϕspyqq �Ψs

ξ
pyq.

Concerning with (i), Ψ0
ξ
pyq�Φ0pyq�Ω0pyq� Id, since Ω0pyq�Φτpyqpyq�R0

y �Φ
�τpyqpyq

and R0
y � Id.

Concerning with (ii) we have that

Ψt
ξ
pϕspyqq �Ψs

ξ
pyq � Φtpϕspyqq �Ωtpϕspyqq �Φspyq �Ωspyq

� Φtpϕspyqq �Φτpϕspyqqppq �Rt
p �Φ

�τpϕspyqqpϕspyqq�

�Φspyq �Φτpyqppq �Rs
p �Φ

�τpyqpyq.

As Φ�τpϕspyqqpϕspyq �Φspyq �Φτpyqppq � Id and Φτpϕspyqqppq � Φspyq, we can write

Ψt
ξ
pϕspyqq �Ψs

ξ
pyq � Φtpϕspyqq �Φspyq �Rt

p �R
s
p �Φ

�τpyqpyq

� Φt�spyq �Rt
p �R

s
p �Φ

�τpyqpyq.

Claim 3.0.1. The rotation Rt
p satisfies Rt�s

p � Rt
p �R

s
p.

As gptq �
³t

0 Gpsqds we have that gpt � sq � gptq � gpsq and so Rt�s
p � Rξ gpt�sq �

Rξ pgptq�gpsqq. Computing the product Rξ gptq �Rξ gpsq is easy to prove that Rξ pgptq�gpsqq �

Rξ gptq �Rξ gpsq and the claim is proved.

So,

Ψt
ξ
pϕspyqq �Ψs

ξ
pyq � Φt�spyq �Rt�s

p �Φ�τpyqpyq

� Ψ
t�s
ξ
pyq.
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For t � 1 and u P Ep, as τppq � 0 and R1
p � Rξ , we obtain Ψ1

ξ
ppq �u � Φ1ppq �Rξ �u.

If u P EK
p clearly Ψt

ξ
ppq �u � Φt

Appq �u, so (c) and (d) are proved.

As g1ptq � 0 for t Rs0,1r, Ψt
ξ

is supported in ϕ tppq for t P r0,1s and pbq is proved.
Since t P r0,1s given any size of perturbation allowed by ε ¡ 0 we take ξ sufficiently
small to guarantee that

��pΨtppq�Φ
tppqq �u

��¤ ε.

The corresponding unitary vectors, Ψtppq�u
}Ψtppq�u} and Φtppq�u

}Φtppq�u} will also satisfy the same
property. On the other hand, we are using the norm derived from the inner product on H ,
but it is stronger then the weak topology.

Now, using the continuity of the application ρa,b defined on section 2.1, we take ξ

sufficiently small to guarantee that Ψ and Φ are ε-close with respect to the τ topology.

Figure 3.1: Illustration to Lemma 3.0.1.

The following proposition is analogous to Proposition 4.2 of (9) and tell us how to
interchange directions. The main idea, coming from Proposition 7.1 of (20) is to use the
absence of domination to concatenate several rotations given by Lemma 3.0.1.

Proposition 3.0.2. Consider a cocycle Φt , ε ¡ 0 and x PM a non-periodic point endowed

with a splitting H � Ex`Fx such that the restriction of Φtpxq to Ex is invertible and for

some mpε,Φtq � m P N large enough, we have
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}Φmpxq|F}��pΦ�1|Eq
m pxq

���1 ¥
1
2
.

Then, for each j � 0, � � � ,m�1 there exists an integrable compact operator

Lt
j : Hϕ jpxqÑHϕ j�1pxq

with
���Lt

j�Φtpϕ jpxqq
���   ε for t P r0,1s and such that Lt

m�1 � � � � � Lt
0pvq � w for some

non-zero vectors v P E and w P ΦmpxqpFq.

Our goal is to apply this type of perturbation to the set of point where domination
fails.

3.1 Perturbation (p, NB)

Consider a point x P Γ�p,1. The next lemma gives us a perturbation strategy that produce
a cocycle Ψt which is the null operator (in time one) along the direction inside E1pxq,
restricted to which the norm of Φt is very close to zero, remaining equal to Φt at all
other directions. In the discrete case the perturbation is quite simple, consisting in the
replacement of the original cocycle by the null operator at the nth-iterate of x along the
referred direction inside E1pxq.

Lemma 3.1.1. Given ε ¡ 0, for µ-almost every x P Γ�p,1 there exists N � Nε,x and a

integrable cocycle Ψ such that,

(a) Ψ is ε-close (with respect to τ) to Φ;

(b) }^p pΨ1pϕNpxqq} � 0.

Proof. We may assume that µpΓ�p,1q ¡ 0, otherwise there is nothing to prove. Therefore
µpOpΦqXΓ�p,1q � µpΓ�p,1q.

Consider Φt in the integral form

Φ
tppq � Id�

» s

0
Apϕsppqq �Φsppqds. (3.1.1)
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We will use the notation Φt
A to associate Φt with the corresponding A.

As Φt
A is a compact operator defined on a compact manifold M we can use the loga-

rithmic norm (see (36; 37)) to obtain a majorant of the maximum growth of A:

tAu� sup
}v}�1

inf
h¡0

}v�hA � v}�1
h

,

Take L :� tAu. Consider θ � θ pA,εq, such that θ   ε expp�3Lq.

If x POpΦqXΓ�p,1, we can take N as in (NB) and choose a unit vector vN P E1pϕ
Npxqq

such that

��Φ1
Apϕ

Npxqq � vN
��  θ . (3.1.2)

Take p � ϕNpxq. We want to define a perturbation Ppϕ tppqq, for t P r0,1s, such that
Φt

A�Pppq � v � Φt
Appq � v for v P xvNy

K and Φ1
A�Pppq � v � 0 for v collinear with vN .

Consider the direct sum Hϕtppq � Φt
AppqRvN ` xΦt

AppqRvNy
K, where RvN is the

space generated by the vector vN .

For each vt P Hϕtppq consider the decomposition vt � ut �wt , where ut P Φt
AppqRvN

and wt P xΦ
t
AppqRvNy

K.

Define in matricial notation

Φt
Appq �

�
ψ tppq 0

0 δ tppq

�
,

where ψ tppq : RvN Ñ Φt
AppqRvN and δ tppq : `

i�N
Uippq Ñ `

i�N
Uipϕ

tppqq, where Ui are the

spaces given by Ruelle’s theorem (see Section 2.2).

Since the space Φt
AppqRvN has dimension one and we want to perturb Apϕ tppqq res-

tricted to Φt
AppqRvN , we will reduce our problem to one-dimensional case and replace the

Apϕ tppqq in equation (3.1.1) by the corresponding real function αpϕ tppqq.

Consider

Φ
t
αppq � Id�

» t

0
αpϕsppqq �Φs

αppqds. (3.1.3)



3.1 Perturbation (p, NB) 29

We can use Lusin’s theorem to obtain a function α̃pϕ tppqq which is continuous for
t P r0,1s arbitrarily close to α , then applying Gronwall’s lemma and get

Φ
t
α̃ppq � exp

�» t

0
α̃pϕsppqqds



. (3.1.4)

As Φt
α̃

satisfies (3.1.2) then
³1

0 α̃pϕsppqqds   logθ .

By mean value theorem of integral there exists c P p0,1q such that
³1

0 α̃pϕsppqq � ds �
α̃pϕcppqq �: K   logpθ q.

Consider ηpα̃,ε,cq ¡ 0 such that η   lnpεq�M
L � 2, with M � α̃pϕc�ηppqq. For t P

r0,1s define the perturbation β pϕ tppqq such that

β pϕ tppqq �

#
α̃pϕ tppqq if t P r0,c�ηsY rc,1s ,

η

c�t α̃pϕc�ηppqq if t P pc�η ,cq.
(3.1.5)

Consider Ppϕ tppqq � β pϕ tppqq � α̃pϕ tppqq and Φt
α̃�P, solution of the linear varia-

tional equation

9uptq � pα̃pϕ tppqq�Ppϕ tppqqq �uptq

and an unitary vector v.

We have that

��Φ1
α̃�Pppq � v

�� �
���exp

�³1
0pα̃ �Pqpϕsppqqds

	
� v
��� .

�
���exp

�³1
0 β pϕsppqqds

	
� v
��� .

As
³1

0 β pϕsppqqds ��8 then
��Φ1

α̃�Pppq � v
��� 0.

We want now to evaluate
���Φ1

α̃�Ppϕ
tppqq�Φ1

α̃
pϕ tppqq

�
� v
��, for t P rc�η �1,cs and

an unitary vector v.

We will consider three sub-intervals, rc�η �1,c�1s, rc�1,c�ηs and rc�η ,cs.
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Figure 3.2: Illustration to Lemma 3.1.1.

Take w � ϕc�1�tppq with t P r0,1�ηs, that is, consider a point w in the orbit of p

between ϕc�1ppq and ϕc�ηppq. As
³1

0 Ppϕspwqqds ��8 then

���Φ1
α̃�Ppwq�Φ1

α̃
pwq

�
� v
�� �

����exp
�³1

0pα̃ �Pqpϕspwqqds
	
� exp

�³1
0 α̃pϕspwqqds

		
� v
���

�
���exp

�³1
0 α̃pϕspwqqds

	�
exp

�³1
0 Ppϕspwqqds

	
�1

	
� v
���

�
���exp

�³1
0 α̃pϕspwqq � vds

	���� ��Φ1
α̃
pwq � v

�� .
Consider now w � ϕc�η�1�tppq with t P r0,ηs, that is, w is a point in the orbit of p

between ϕc�η�1ppq and ϕc�1ppq.

We can write the integral
³1

0 β pϕspwqqds as
³1�t

0 β pϕspwqqds�
³1

1�t β pϕspwqqds. Note
that t P r0,ηs is fixed and ϕ1�tpwq � ϕ1�tpϕc�η�1�tppqq � ϕc�ηppq. Doing this we have
that
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exp
�³1

0 Ppϕspwqqds
	

� exp
�³1�t

0 Ppϕspwqqds�
³1

1�t Ppϕspwqqds
	

� exp
�

0�
³1

1�tpβ � α̃qpϕspwqqds
	

� exp
�³1

1�t β pϕspwqqds�
³1

1�t α̃pϕspwqqds
	

�
exp

�³1
1�t β pϕspwqqds

	

exp
�³1

1�t α̃pϕspwqqds
	 .

If
³1

1�t β pϕspwqqds ¤
³1

1�t α̃pϕspwqqds then
exp

�³1
1�t β pϕspwqqds

	

exp
�³1

1�t α̃pϕspwqqds
	 ¤ 1 for all t P r0,ηs,

if not we consider another kind of asymptote in (3.1.5) such that
³1

1�t β pϕspwqqds ¤³1
1�t α̃pϕspwqqds. So,

���Φ1
α̃�Ppwq�Φ1

α̃
pwq

�
� v
�� �

����exp
�³1

0pα̃ �Pqpϕspwqqds
	
� exp

�³1
0 α̃pϕspwqqds

		
� v
���

�
���exp

�³1
0 α̃pϕspwqqds

	�
exp

�³1
0 Ppϕspwqqds

	
�1

	
� v
���

¤
���Φ1

α̃
pwq

�
� v
�� .

Finally if we consider w � ϕc�η�tppq with t P r0,ηs, that is, w between ϕc�ηppq and
ϕcppq,

³1
0 Ppϕspwqqds ��8, once again,

���Φ1
α̃�Ppwq�Φ1

α̃
pwq

�
� v
��� ���Φ1

α̃
pwq

�
� v
��.

We need now to evaluate
��Φ1

α̃
pwq � v

�� for w � ϕ tppq and t P rc�η �1,cs.

As we consider θ   ε expp�3Lq then exppK�3Lq   ε , that is |K| " 3L. So, when we
consider a point w between ϕc�1ppq and ϕcppq, the norm

��Φ1
α̃
pwq � v

��  ε (see Figure 3.2).

Consider now a point w between ϕc�η�1ppq and ϕc�1ppq. As we choose η such
that η   lnpεq�M

L �2 we have that exppM�Lp2�ηqq   ε . So we can also conclude that��Φ1
α̃
pwq � v

��  ε .

Consider now the perturbation

Hpϕ tppqq �

�
Ppϕ tppqq 0

0 r0s

�
,
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take Bpϕ tppqq � Apϕ tppqq�Hpϕ tppqq and consider Ψt � Φt
B.

By the arguments used above, we can conclude that

��pΨtppq�Φ
tppqq �u

��¤ ε.

The corresponding unitary vectors, Ψtppq�u
}Ψtppq�u} and Φtppq�u

}Φtppq�u} will also satisfy the same
property. On the other hand, we are using the norm derived from the inner product on H ,
but it is stronger then the weak topology.

Now, using the continuity of the application ρa,b defined on section 2.1, we take θ

sufficiently small to guarantee that Ψ and Φ are ε-close with respect to the τ topology.

To prove that }^p pΨ1pϕNpxqq} � 0 consider p vectors of the form e1^ e2^�� �^ ep

with ei PEipϕ
Npxqq and e1 collinear with vN . As Ψ1pϕNpxq�vN � 0 then }^p pΨ1pϕNpxqq}�

0.

3.2 Perturbation (p, ND)

Consider a point x P Γ�p,2. If among the p� 1 first Lyapunov exponents of Φt the value
�8 is not present, we can use the argument in (20) to alter the norm of ^p. In the case
λp�1 � �8, we may take advantage of the fact that, in subbundle E associated to the
Lyapunov exponents λ j for j ¡ p� 1 the norm }Φtpxq|E} is close to zero for n large
enough.

Lemma 3.2.1. Consider ε ¡ 0. If m P N is large enough, then there exists a measurable

function N : Γ�p,2 Ñ N such that, for µ�almost every x P Γ�p,2, and every n ¥N pxq we

may find integrable compact operators L0, � � � ,Ln�1 satisfying

(a) }^ppLn�1 � � � � �L0q} ¤ e
n
�

λ1�����λp�1�
λp�λp�1

2 �ε



if λp�1 ��8;

(b) }^ppLn�1 � � � � �L0q} ¤ e�nε�1
if λp�1 ��8.

Proof. To prove (a) consider Γ�p,2, subset of Γ�ppΦ,mq where m is large enough as de-
manded in Proposition 3.0.2. We may assume that µpΓ�p,2q ¡ 0, otherwise there is nothing
to prove. By definition of Γ�ppΦ,mq we have λp � �8. Thus by Lemma 3.12 of (17) we



3.2 Perturbation (p, ND) 33

conclude that for µ-almost every x P Γ�p,2, there exists N1pxq such that, for all n ¥N1pxq

and s � n
2 then the iterate y � ϕspxq satisfies

}Φmpyq|E2}

}pΦmpyq|E1q
�1pyq}�1 ¥

1
2
.

We can apply Proposition 3.0.2 to such a generic x P Γ�p,2 because, by hypothesis, x

is not periodic and H � E1,x`E2,x, where E1,x has dimension p and corresponds to the
infinite dimensional space spanned by the Lyapunov exponents λ1, � � � ,λp (which may be
not all distinct but whose multiplicities add up to p) and E2,x is associated to the infinite
dimensional vector space spanned by the remaining ones. Therefore, we consider, for
i� 1, � � � ,s,s�m, � � � ,n and for t P r0,1s , the operators Lt

i �Φtpϕ ipxqq and for the iterates
ϕ ipyq with i � 0, � � � ,m�1, we take Lt

i as given by Proposition 3.0.2.

We need now to evaluate the norm of ^ppLn�1 � � � � �L0q. Take Ux the subspace asso-
ciated to the largest Lyapunov exponent of the pth-exterior product, say λ^p

1 �
°p

i�1 λi.
The subspace Ux is one-dimensional because λp ¡ λp�1. Denote by Sx the vector space
related to the remaining Lyapunov exponents, which sum up to λ^p

2 . To the splitting
^ppH q �U `S we may apply Lemma 4.4 of (20) and Proposition 3.0.2 to deduce that

^ppLm�1 � � � � �L0qpyq : ^ppHyq Ñ ^ppHϕmpyqq

satisfies

^ppLm�1 � � � � �L0qpyqpUyq � Sϕmpyq. (3.2.1)

If A1 denotes the action of ^ppΦtq between x and y� ϕspxq and A2 denotes the action
of ^ppΦtq between ϕs�mpxq and ϕnpxq, we can consider a suitable (Oseledets-Ruelle’s)
basis with respect to which A1, A2 and B :� Lm�1�� � ��L0pyq are written as simple 4-block
"matrices"

A1 �

�
Auu

1 0
0 Ass

1

�
, B �

�
Buu Bus

Bsu Bss

�
and A2 �

�
Auu

2 0
0 Ass

2

�

where, for i � 1,2, Auu
i P R and Ass

i is an infinite dimensional operator. It follows from
(3.2.1) that Buu � 0 and so



34 Perturbation Lemmas

^ppLm�1 � � � � �L0q �

�
0 Auu

2 BusAss
1

Ass
2 BsuAuu

1 Ass
2 BssAss

1

�
.

Now, following the arguments in Lemmas 4.5, 4.6 and 4.7 of (14) we conclude that

log}^ppLm�1 � � � � �L0q}   n

�
λ
^p
1 �λ

^p
2

2
� ε

�
.

Recalling that

λ
^p
1 � λ1�λ2��� ��λp�1�λp and

λ
^p
2 � λ1�λ2��� ��λp�1�λp�1,

then

}^ppLn�1 � � � � �L0q} ¤ e
n
�

λ1�����λp�1�
λp�λp�1

2 �ε



.

To prove (b) we proceed as in (a). Since λp�1 ��8, we have λ
^p
2 ��8 and so the

operator Ass
i pi � 1,2q is arbitrarily close to the null one for large choices of n. Moreover,

all entries Auu
1 , Aus

2 , Asu
2 and Ass

2 are bounded. Then it suffices to consider a large n, larger
than N1pxq and m, to reach inequality (b).

Doing this perturbation at µ-almost every point of Γ�p,2 and following the argument in
Proposition 7.3. of (20), we deduce that

Corollary 3.2.2. Let Φt be a cocycle in C pH q, ε ¡ 0 and δ ¡ 0. Then there exist m PN,

p P N and a continuous cocycle Ψt P C pH q with Ψt δ -close (with respect to τ) to Φt ,

equal to Φt outside the open set Γ�p,2 and satisfying

λ
^p
1 pΨtq  

# �
λ
^p�1
1 pΦtq�

λppΦ
tq�λp�1pΦ

tq
2

�
� ε i f λp�1pΦ

tq � �8,

�ε�1 i f λp�1pΦ
tq � �8.

It is important to refer that the proof of Corollary 4.2.2 uses Lusin’s theorem. In fact
the perturbation may produce a cocycle Ψt that is measurable and not continuous. The
Lusin theorem ensures the existence of a continuous integrable cocycle Ψ̃t which is equal
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to Ψt outside the open set ΓppA,mq and the set E �
 

x P M : Ψ̃tpxq � Ψtpxq
(

has measure
as small as we want.

3.3 Proof of Theorem A

Consider the pth-entropy function defined by

LEp : F 0 Ñ RYt�8u
Φ Ñ

°p
i�1 λipΦ

tq

where pλipΦ
tqqi�1,��� ,8 are the Lyapunov exponents of the operator Φtpxq, for every x

in OpΦq. This map is upper semicontinuous, so it has a residual subset of points of
continuity in the Baire set F 0. Take Φ in this generic subset, consider a point x in the
Oseledets-Ruelle’s domain OpΦq and denote by K the orbit of x.

If the Lyapunov exponents of Φtpxq are all equal, then the proof is complete. Other-
wise, if p P N is such that λp ¡ λp�1, we pursue as follows:

If x is periodic we follow the arguments in (9) to prove that the Oseledets-Ruelle’s
splitting along the orbit of x is m-dominated for some m.

If x is non-periodic and the Oseledets-Ruelle’s splitting along the orbit of x is m-
dominated for some m, the proofs ends.

If x is non-periodic and belongs to Γ�ppΦ,mq for all m and one of these subsets, say
Γ�ppΦ,m0q, has positive µ measure, then the m0-domination on K of the Oseledets-
Ruelle’s splitting may fail because x is in one of the corresponding sets Γ�p,1 or Γ�p,2.
If x P Γ�p,1, given ε , by Lemma 3.1.1 there is a cocyle Ψ which is τ-close to Φ but
LEppΨq � �8 while LEppΦq is finite. If x P Γ�p,2, by Corollary 4.2.2, given ε there is
a cocyle Ψ which is τ-close to Φ but

• |LEppΦq�LEppΨq| ¡ ε , in the case λp�1pΦ
tq � �8

• LEppΨq � �8 while LEppΦq is finite, when λp�1pΦ
tq � �8.

In both cases the continuity at Φ of map LEp is contradicted.
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Chapter 4

The Lp-case

As in previous chapter let H be an infinite dimensional separable Hilbert space and
C pH q the space of linear compact operators defined in H . Let M be a compact, con-
nected, Hausdorff manifold endowed with a Borel probability measure µ .

Consider a continuous and ergodic flow ϕ t : M Ñ M with respect to the measure µ ,
and a compact cocycle Φtppq : H Ñ H based on ϕ t , differentiable on time parameter
t P R and continuous on space parameter p P M, acting on C pH q.

Let L pH ,H q be the set of linear applications from H to H . If we define a map
A : M ÑL pH ,H q in a point p P M by

Appq �
d
ds

Φ
sppq|s�0,

and along the orbit ϕ tppq by

Apϕ tppqq �
d
ds

Φ
sppq|s�t �Φ

�tpϕ tppqq, (4.0.1)

then Φtppq will be the solution of the linear variational equation

d
ds

upsq|s�t � Apϕ tppqquptq. (4.0.2)

We will call A the infinitesimal generator of (4.0.2). Given a cocycle Φt we can induce
the associated A by using (4.0.1) and given A we can recover the cocycle by solving the
linear variational equation (4.0.2), from which we get Φt . We will use the notation Φt

A to
associate Φt with its infinitesimal generator A.

37
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In this chapter we will define an Lp topology in the set of infinitesimal generators,
which is coarser then the C0 topology and, as a consequence, interchanging directions
will be easier. In Corollary 4.2.2 it was considered the subset Γ�ppΦ,mq of points without
a m-dominated splitting of index p. Considering an Lp topology the dominated splitting is
no more an obstruction to cause a decay on the Lyapunov exponents, so we will perform
the perturbations in a full measure set M. On the other hand, using an Lp topology we
can change Oseledets’ directions with one single perturbation instead of several perturba-
tions as was done in Lemma 3.2.1. As we will not consider the set Γ�ppΦ,mq, we don’t
need to separate the two cases (NB) and (ND), and use always the strategy used in (ND)
case. Note that in Chapter 3 when a point x P Γ�p,1 we performed a perturbation of the
infinitesimal generator that is not close to the original one if we consider an infinitesimal
generator topology and for that reason we used the τ-topology. Now we will only use
the (ND)-strategy so we must use a topology defined in the set of infinitesimal generators
which is stronger than an Lp topology defined in the set of cocycles.

Consider the set G of the measurable maps A : M Ñ L pH ,H q and the set GIC of
maps A P G such that Φt

A satisfies the integrability condition

»
M

log� }Φ1
Apxq}dµpxq   8, (4.0.3)

where log�pyq � maxt0, logpyqu. For A,B P G set

}A�B}p :�

# �³
M }Apxq�Bpxq}p dµ

� 1
p ,

8 in case that the above integral does not converge,

if 1 ¤ p  8, and for p �8 put

}A�B}p :� ess supxPM }Apxq�Bpxq} ,

where }�} is the norm operator. We will call }�}p the Lp-norm.

Set

dppA,Bq �

$&
%

}A�B}p
1�}A�B}p

if }A�B}p  8,

1 if }A�B}p �8.
(4.0.4)

The following lemma is analogous to Lemma 2.1 of (3).



The Lp-case 39

Lemma 4.0.1. Let 1 ¤ p ¤8 and consider dp as defined above, then

(i) dp is a metric on G , hence on GIC;

(ii) If A P GIC and B P G with dppA,Bq   1, then B P GIC. In particularly, GIC is both

dp-closed and dp-open in G ;

(iii) pG ,dpq, hence pGIC,dpq, is complete.

Proof. The proof of piq is elementary.

To prove (ii) suppose first that p � 1, let A P GIC and B P G with d1pA,Bq   1. Then
}A�B}1  8. As log�px� yq ¤ log�pxq� y for any positive x, y, then for any w P M

log�
��Φ1

Bpwq
��¤ log�

��Φ1
Apwq

��� ��Φ1
Bpwq�Φ

1
Apwq

�� .
Therefore

³
M log�

��Φ1
Bpwq

�� dµpwq   8, and hence B P GIC.

Suppose 1   p ¤8, A P GIC and B P G with dppA,Bq   1. Then }A�B}p  8. This
implies }A�B}1  8, hence d1pA,Bq   1. Thus B P GIC.

To prove (iii) let 1 ¤ p   8 and tAnunPN be a Cauchy sequence in pG ,dpq. By the
completeness of the classical Lp-spaces there exists Ap�q from G such that

»
M
}Anpxq�Apxq}p dµpxq Ñ

nÑ8
0.

Therefore dppAn,Aq Ñ
nÑ8

0. By (ii), A P GIC. Thus pGIC,dpq is complete.

Similarly, pGIC,d8q is complete.

We will call the topology induced by 4.0.4 as the Lp infinitesimal generator topology.

As by Lemma 4.0.1 pGIC,dpq is complete for 1 ¤ p ¤8 we can conclude that pGIC,dpq

is a Baire space.

Theorem B. There exists an Lp-residual subset R of the set of integrable compact cocy-

cles GIC such that, for A PR and µ-almost every x P M

lim
tÑ8

ppΦtpxqq�Φ
tpxqq

1
2t � r0s,

where r0s stands for the null operator.
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4.1 Entropy Functions

Let us consider the following function LEk, analogous to the entropy function defined in
Section 2.4,

LEk : GIC ÝÑ RYt�8u
A ÞÝÑ

°k
i�1 λipΦ

t
Aq.

Recall that, as µ is ergodic and by Proposition 2.4.1, for µ-almost every x P M and
A P GIC we have

LEkpAq � λ
^k

1 � lim
tÑ�8

1
t

log}^k pΦt
Apxqq} � inf

nPN

1
n

log}^k pΦn
Apxqq}. (4.1.1)

We can prove that, for each k the function LEk is upper semicontinuous when we en-
dow GIC with the Lp infinitesimal generator topology, 1¤ p 8, using the same strategy
of the proof of Proposition 3.11 of (14). The continuity of the Lp-norm is ensured by
Lemma 3.2 of (14).

4.2 Perturbation

The next result is the basic perturbation tool which allows us to interchange Oseledets’
directions, using the ideas of Lemma 3.0.1. The only novelty is the perturbation flowbox
following the proof of Lemma 3.4 of (14).

Lemma 4.2.1. Given 1 ¤ p   8, a continuous differential system A P GIC, ε ¡ 0 and

x P M, for all θ P
�
0, π

2

�
, there exists r ¡ 0 (depending on ε) such that for all σ P p0,1q,

all y P Bpx,σrq (the ball transversal to ϕ t at x) and a two-dimensional subspace Ex �H ,

such that rank
�
Φ1

Apxq|Ex

�
� 2, there exists a continuous integrable cocycle Bθ such that:

(a) dppA,Bθ q   ε;

(b) Bθ pyq � Apyq�Hpyq for all y P Bpx,σrq, where H is a perturbation supported in the

flowbox F :� tϕ tpyq : t P r0,1s ,y P Bpx,rqu, such that }H}p   ε , and Bθ pzq � Apzq

if z RF ;

(c) Φt
Bθ
pyq �u � Φt

Apyq �u, @u P EK
x and for all y P M;
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(d) Φ1
Bθ
pyq �u � Φ1

Apyq �Rθ �u, for all u P Ex and y P Bpx,σrq, where Rθ is the rotation

of angle θ in Ex.

Proof. For a given small r¡ 0 we take the closed ball centered in x and radius r transversal
to the flow direction and denoted it by Bpx,rq. We fix σ P p0,1q. Let also ζ : RÑ r0,1s
be a C8 function such that ζ ptq � 0 for t ¤ σ and ζ ptq � 1 for t ¥ 1.

Consider Rθ �

�
cospθ q �sinpθ q
sinpθ q cospθ q

�
.

For each u PHp consider the decomposition u� v�w, where v P Ep and w P EK
p . For

t P R define

Rt �u � Rξ gptq � v�w.

Note that, since Rt is constant on EK
p , i.e. Rt �w � w, we have that

pRtq1 �u � ξ g1ptq

�
�sinpξ gptqq �cospξ gptqq

cospξ gptqq �sinpξ gptqq

�
� v,

and pRtq�1 � vt � R�ξ gptq � vt .

We know that uptq � Φt
Appq is a solution of the linear variational equation

9uptq � Apϕ tppqq �uptq.

Take Φt
Appq �R

t and compute the time derivative using the derivative of the product
of operators:

pΦt
Appq �R

tq1 � pΦt
Appqq

1Rt �Φt
AppqpR

tq1

� Apϕ tppqqΦt
AppqR

t �Φt
AppqpR

tq1.

(4.2.1)

Let ϒt : HϕtppqÑHp be a map such that for each ut PHϕtppq, with the decomposition
ut � vt �wt , vt P Eϕtppq and wt P EK

ϕtppq, ϒtpϕ tppqq �ut � pΦt
Apϕ

tppqq�1 � vt �wt .

Since pRtq1 �u � R1
ξ gptq � v we can write
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Φ
t
AppqpR

tq1 � Φ
t
AppqpR

tq1pRtq�1
ϒ

tpϕ tppqqΦt
AppqR

t ,

and, using (4.2.1),

pΦt
Appq �R

tq1 � Apϕ tppqqΦt
AppqR

t�

�Φt
AppqpR

tq1pRtq�1ϒtpϕ tppqqΦt
AppqR

t

�
�
Apϕ tppqq�Φt

AppqpR
tq1pRtq�1ϒtpϕ tppqq

�
�
�
Φt

AppqR
t
�
.

Define Bξ pϕ
tppqq � Apϕ tppqq�Hpϕ tppqq, where

Hpϕ tppqq � Hpξ , tq � Φ
t
AppqpR

tq1pRtq�1
ϒ

tpϕ tppqq.

Let L ¡ 0 be sufficiently large in order to get
��pRtq1pRtq�1

��   L and take K :�
max
zPM

 ��Φt
Apzqq

�� ,}ϒtpϕ tpzqq}
(

for t P r0,1s.

Consider the flowbox F :� tϕ tpyq : t P r0,1s ,y P Bpx,rqu and define the continuous
linear differential system

Bpzq �

#
Apzq, if z RF ,

Apzq�
�

1�ζ

�
}x�y}

r

		
Hpzq, if z � ϕ tpyq PF .

To prove paq we need to evaluate }H}p. As in (14) we consider Rokhlin’s theorem on
disintegration of the measure µ into a measure µ̂ in the transversal section and the length
in the flow section, say µ � µ̂ �dt. Take r   0 such that

µ̂pBpx,rqq  
�

ε

K2L

	p
.

Then, we have
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}H}p �
�³

F }Hpzq}p dµpzq
� 1

p

�
�³1

0

³
Bpx,rq }Hpϕ

tpyqq}p dµ̂pyqdt
	 1

p

�
�³1

0

³
Bpx,rq

��Φt
ApyqpR

tq1pRtq�1ϒtpϕ tpyqq
��p dµ̂pyqdt

	 1
p

¤ pK2Lqpµ̂pBpx,rqqq
1
p   ε.

So dppA,Bq   ε .

As in Lemma 3.0.1 we have that the perturbed system B generates the linear flow Φt
B �

Φt
A�H which is the same as Φt

A �R
t by unicity of solutions with same initial conditions.

So for t � 1, y P Bpx,σrq and u P Ep we obtain Φ1
Bθ
pyq �u � Φ1

Apyq �Rθ �u.

If u P EK
x clearly Φt

Bθ
pyq �u � Φt

Apyq �u for all y P M, so (c) and (d) are proved.

Doing this perturbation we can deduce that

Proposition 4.2.2. Let Φt
A be a cocycle in C pH q, ε ¡ 0 and δ ¡ 0. Then there exist

m P N, p P N and a continuous cocycle Φt
B P C pH q with dppA,Bq   ε satisfying

λ
^p
1 pΦt

Bq  

# �
λ
^p�1
1 pΦt

Aq�
λppΦ

t
Aq�λp�1pΦ

t
Aq

2

�
� ε i f λp�1pΦ

t
Aq � �8,

�ε�1 i f λp�1pΦ
t
Aq � �8.

4.3 Proof of Theorem B

As LEk is upper semicontinuous it has a residual subset of points of continuity in the Baire
set GIC. Let A P GIC be a continuity point of the functions LEk for all k.

If the Lyapunov exponents of Φt
Apxq are all equal, then the proof is complete. Other-

wise, if p P N is such that λk ¡ λk�1, we use the perturbation given by Lemma 4.2.1 to
mix Oseledet’s directions and obtain a cocyle B P GIC such that dppA,Bq   ε but

• |LEppAq�LEppBq| ¡ ε , in the case λp�1pΦ
t
Aq � �8

• LEppBq � �8 while LEppAq is finite, when λp�1pΦ
t
Aq � �8.

In both cases the continuity at A of map LEk is contradicted.
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Chapter 5

Removing Zero Lyapunov Exponents

In Chapter 3.3 we proved that there exists a τ-residual subset R of the set of cocycles F 0

such that for Φ PR and µ- almost every x P M, either the limit operator

lim
tÑ8

�
pΦtpxqq�Φ

tpxq
� 1

2t

is the null operator or the Oseledets-Ruelle’s splitting of Φt along the ϕ t-orbit of x has
a dominated splitting. However, a domination splitting does not prevent the existence of
zero Lyapunov exponents.

In (10) the authors established a perturbation scheme, in context of discrete-time in-
finite dimensional cocycles, to increase the sum of central Lypaunov exponents, while
keeping the sum of all the center-unstable Lyapunov exponents invariant. After that they
perform another C0-perturbation such that each Lyapunov exponent of the central direc-
tion became different from zero.

In this chapter we intend to prove the continuous counterpart of Theorem 1 of (10).

Theorem C. Non-uniformly Anosov cocycles (see Definitions 5.2.1 and 5.2.2 ) are C0-

dense in the set of partially hyperbolic cocycles with nontrivial unstable bundles.

5.1 Definitions

In this section we will use the same definition of dominated splitting used in Section 2.3,
replacing the condition (C3.2) by

pC3.2�q

��Φ`
Apxq �u

����Φ`
Apxq � v

�� ¤ α,

45
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where α Ps0,1r. We will use the notation

E1 ¡`,α E2

to refer that the direct sum E1pxq`E2pxq is p`,αq-dominated.

Definition 5.1.1. An p`,αq-dominated direct sum E1 `E2 on X is said to be the finest

if, after a nontrivial decomposition of any of these two subspaces, the sum is no longer

dominated.

Given a dominated sum E1 `E2 on M, we may find a finest one and it is unique.
But the continuation of a finest dominated sum is not necessarily finest for the perturbed
cocycle. Still, the set of cocycles to whom this happens is a closed meagre set, that is, its
complement, which we denote by SFE1,E2 , is open and dense.

Definition 5.1.2. Given a positive integer ` and a number α Ps0,1r, a splitting E1pxq`

� � � `Ekpxq � H , defined on a ϕ t-invariant set K, is p`,αq-dominated if, for any x P K

and every 1 ¤ i   j ¤ k, we have Ei ¡`,α E jpxq.

As in Chapter 2 the splitting we are interested in is the Oseledets-Ruelle’s decomposi-
tion associated to the Lyapunov exponents. Hence, conditions (C1) and (C2) are fulfilled
a priori. In what follows we will always address to this specific decomposition.

Definition 5.1.3. The Oseledets-Ruelle’s decomposition in OpAq is said to be p`,αq-

dominated if there are a positive integer ` and a number α Ps0,1r such that, for each

x P OpAq, we may rewrite this decomposition as a direct sum of k subspaces, say E1pxq`

� � �`Ekpxq, so that:

(D1.) For all i P t1,2, � � � ,ku, the dimension of Eipxq is independent of x P OpAq.

(D2.) For all x P OpAq and every i   j, we have Ei ¡`,α E jpxq.

By definition, a dominated Oseledets-Ruelle’s decomposition regards the order of
the Lyapunov exponents: for instance, E1 is associated with a finite number of the first
(biggest) Lyapunov exponents.

5.2 Partial Hyperbolicity

Definition 5.2.1. A cocycle Φt
A with an extended Oseledets-Ruelle’s decomposition is said

to be partially hyperbolic if, for any x P M, this splitting may be rewritten as a direct sum

of three subspaces, say Eu
x `Ec

x `Es
x � H , and there are ` P N, α Ps0,1r and β Ps0,1r

such that:
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PH1. Eu
x contains only Oseledets’ subspaces associated to positive Lyapunov exponents.

PH2. Ec
x contains all the Oseledets’ subspaces associated to zero Lyapunov exponents.

PH2. Es
x contains only Oseledets’ subspaces associated to negative Lyapunov exponents

and includes all the Oseledets’ subspaces determined by Lyapunov exponents equal

to �8.

PH4. Eu
x ¡`,α Ec

x and Ec
x ¡`,β Es

x.

The dynamics along Eu
x (respectively Es

x) is strongly expanding (respectively contract-
ing). The weaker forms of expansion or contraction are gathered inside Ec

x . From Lemma
3.3 of (9), we know that, if Φt

A is a partial hyperbolic cocycle, then Eu
x and Ecu

x :� Eu
x `Ec

x

are finite dimensional. We say that a C0 partial hyperbolic cocycle has nontrivial unstable

bundle if, for any x P M, the unstable space Eu
x does not reduce to t0u.

Definition 5.2.2. If, besides being partially hyperbolic, no Lyapunov exponent is zero, the

cocycle is said to be non-uniformly Anosov.

5.3 Center-unstable metric entropy

For µ-almost every x P OpAq, we have

lim
tÑ8

log
��detpΦt

Apxqq|Eu
x

��� ḑ

i�1

ni,Aλ
i
A

and

lim
tÑ8

log
��detpΦt

Apxqq|Ecu
x

��� Ḑ

i�1

ni,Aλ
i
A,

where ni,A is the dimension of U ipxq, λ i
A represents Lyapunov exponents of Φt

A in Eu
x or

Ec
x , and d and D are the dimensions of Eu

x and Ecu
x , respectively (see (10)). To simplify

the notation, OpAq will also stand for this full µ measure set.

We will call

Ḑ

i�1

ni,Aλ
i
A

center-unstable metric entropy of the partially hyperbolic cocycle Φt
A, with respect to ϕ t

and the probability measure µ .
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5.4 Perturbations Lemmas

Proposition 5.4.1. Let Φt
A be an integrable, compact and partially hyperbolic cocycle

with a nontrivial unstable bundle and such that
°

nc,Aλ c
A � 0, where λ c

A denotes Lyapunov

exponents of Φt
A in Ec. Then for any ε ¡ 0, there exists an integrable compact cocycle Φt

B

such that:

• Φt
B is partially hyperbolic;

• B is ε �C0- close to A;

• The center-unstable metric entropy of Φt
B is equal to that of Φt

A;

•
°

nc,Bλ c
B ¡ 0.

The perturbation need for this result will diminish the strength of the expansion along
Eu while keeping the center-unstable metric entropy invariant, so the sum of all the cen-
tral Lyapunov exponents will have to increase. If D� d ¡ 1, this sum may still have
terms equal to zero. To remove them, we need another perturbation that makes all these
summands essentially equal without destroying the positiveness of the sum.

Proposition 5.4.2. Let Φt
B be an integrable, compact and partially hyperbolic cocycle

with a nontrivial unstable bundle and such that
°

nc,Bλ c
B � 0. Then for any ε ¡ 0, there

exists am integrable, compact and non-uniformly Anosov cocyle Φt
C such that C is ε-C0-

close to B.

The next lemma is analogous to Lemma 5.1 of (10) and is the basic tool to perturb a
partial hyperbolic cocycle in order to increase the sum of Lyapunov exponents along the
central directions without changing the center-unstable metric entropy.

Let Bpx,σrq denote the ball transversal to ϕ t at x. Recall that, as µ is ergodic and
positive on nonempty open sets, there is a residual subset of M whose elements have
dense orbits by ϕ .

Lemma 5.4.3. Consider A PC pH q which is partially hyperbolic with D� dimpEcuq and°
nc,Aλ c

A � 0. Fix a point p POpAq with dense orbit, an r ¡ 0 and an ε ¡ 0 small enough.

There exists an angle ξ ¡ 0 and Bξ P C pH q such that for all σ P p0,1q:

(a) Bξ pxq � Apxq�Hpxq for all x P Bpp,σrq, where H is a perturbation supported in

the flowbox F :� tϕ tpyq : t P r0,1s ,y P Bpp,rqu and Bξ pzq � Apzq if z RF ;

(b) Φt
Bξ
pxq � vs

x � Φt
Apxq � v

s
x, @vs

x P Es
x,A and @x P M;
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(c) Φ1
Bξ
pxq � vcu

x � Φ1
Apxq �Rx � vcu

x , @vcu
x P Ecu

x,A and @x P Bpp,σrq, where Rx belongs to

the space SOpD,Rq of rotations in SLpD,Rq;

(d)
��A�Bξ

��¤ ε;

(e)
°

nc,Bλ c
B�

°
nu,Bλ u

B �
°

nu,Aλ u
A;

(f)
°

nc,Bλ c
B ¡ 0.

Proof. Given x P M, we may write each vector vx P Hx � H in a unique way as vx �

vs
x� vcu

x , where vs
x P Es

x,A and vcu
x P Ecu

x,A.

We will now proceed as in Lemmas 3.0.1 and 4.2.1 to perform a perturbation in Ecu
x,A.

Consider a two dimensional subspace Fcu
x,A � Ecu

x,A with rank
�

Φ1
Apxq|Fcu

x,A

	
� 2.

Let η P p0,1q and g : R Ñ R be the bump-function defined by gptq � 0 for t   0,
gptq � t for t P rη ,1�ηs and gptq � 1 for t ¥ 1.

For each vcu
x P Ecu

x,A consider the decomposition vcu
x � ucu

x �wcu
x , with ucu

x P Fcu
x,A and

wcu
x P

�
Fcu

x,A

	K
. For t P R consider

Rξ gptq �

�
cospξ gptqq �sinpξ gptqq

sinpξ gptq cospξ gptqq

�
,

and define for vx PHx

Rt � vx � vs
x�Rt

x � v
cu
x ,

where

Rt
x � v

cu
x � Rξ gptqu

cu
x �wcu

x .

For a given small r ¡ 0 we take the closed ball Bpp,rq, centred in p and radius r

transversal to the flow direction. Let also ζ : R Ñ r0,1s be a C8 function such that
ζ ptq � 0 for t ¤ σ and ζ ptq � 1 for t ¥ 1.

Now we proceed as in Lemma 3.0.1 to obtain Hpϕ tpxqq, that is

Hpϕ tpxqq � Hpξ , tq � Φ
t
ApxqpR

tq1pRtq�1
ϒ

tpϕ tpxqq,

where ϒt : HϕtpxqÑHx is a map such that ϒtpϕ tpxqq �vx � vs
x�pΦ

t
Apxqq

�1 �ucu
x �wcu

x , for
every vx PHϕtpxq.
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Consider the flowbox F :� tϕ tpxq : t P r0,1s , x P Bpp,rqu and define the continuous
linear differential system

Bξ pzq �

#
Apzq, if z RF ,

Apzq�
�

1�ζ

�
}p�x}

r

		
Hpzq, if z � ϕ tpxq PF .

By construction, Bξ is a compact operator and Es
x,A and Ecu

x,A era Bξ -invariant for all
x PM. And as, for all x PM, the map Rt

x is a rotation acting in Ecu
x,A, we have Es

x,A � Es
x,Bξ

and Ecu
x,A � Ecu

x,Bξ
. However, for any point x whose orbit visits F , the dynamics dynamics

along Ec
x,A and Eu

x,A changes after the perturbation.

As in Lemma 3.0.1 we have that the perturbed system Bξ generates the linear flow
Φt

Bξ
� Φt

A�H which is the same as Φt
A �R

t by unicity of solutions with same initial con-
ditions. So for t � 1 and vx P Ecu

x,a we obtain Φ1
Bξ
pxq � vx � Φ1

Apxq �R
1
x � vx � Rξ ucu

x �wcu
x .

If vx P Es
x,A clearly Φt

Bξ
pxq � vx � Φt

Apxq � vx, so the first three properties are proved.

Concerning with the fourth property we have that

}A�B} � sup
z�ϕtpxqPF

����1�ζ

�
}p�x}

r

		
Hpzq

���
¤ }H} .

Since t P r0,1s and all the terms in the definition of Hpξ , tq are uniformly bounded for
all x P M, given any size of perturbation allowed by ε ¡ 0 we take ξ sufficiently small o
guarantee that }A�B}   ε .

We also have, by Corollary 5.2 of (10) that the splitting H � Es
B`Ecu

B � Es
A`Ecu

A is
p`,νq-dominated for Φt

B with ν � 1�α

2 .

Since Oseledets theorem is an asymptotic result and Φr
Bpxq, for a fixed r, is a bounded

operator, we can replace Φt
Bpxq � Φr

Bpϕ
npxqqΦnpxq by the last integer time-n map, Φn

Bpxq

and consider
lim

tÑ8

1
t

log |detΦ
t
Bpzq|Ecu

z,B
| � lim

nÑ8

1
n

log |detΦ
n
Bpzq|Ecu

z,B
|.

Concerning the fifth property: as the map Rt belongs to SOpD,Rq and Ecu
x,B � Ecu

x,A,
for any z P OpAqXOpBq we have
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°
nc,Bλ c

B�
°

nu,Bλ u
B � lim

nÑ8

1
n log |detΦ1

Bpϕ
n�1pzqq|Ecu

ϕn�1pzq,B

��� �� |detΦ1
Bpzq|Ecu

z,B
|

� lim
nÑ8

1
n log |detΦ1

Apϕ
n�1pzqq|Ecu

ϕn�1pzq,A

��� �� |detΦ1
Apzq|Ecu

z,A
|

� lim
nÑ8

1
n log |detΦn

Apzq|Ecu
z,A
| �

°
nu,Aλ u

A.

To prove (f ) we can use the same arguments used in (10). The idea is to show that for
some 0  ∆  1 we have that

°
nu,Bλ u

B �
°

nu,Aλ u
A �d logp∆q and then use the invariance

of the center-unstable metric entropy.

Let us resume the proof.

Consider d � 1. As µ is ergodic to evaluate the unstable Lyapunov exponent of Φt
Bpxq

we only need to determine the average growth of Φt
Bpxq � v

u for any x P OpAqXOpBq and
a unit vector vu P Eu

x,A.

As p is not periodic, we may consider r small enough such that F is a flowbox.
Take x P F XOpAqXOpBqXP , where P is the full µ measure subset of F given by
Poincaré’s recurrence theorem. For a unit vector vu P Eu

x,A we have that

Φ1
Bpxq � v

u � Φ1
Apxq �πEu

x,A
�R1

x � v
u�Φ1

Apxq �πEc
x,A
�R1

x � v
u,

where πEu
x,A

is the projection on Ec
x,A parallel to the bundle Ec

x,A (and analogous definition
for πEu

x,A
). As in (10) we have that in general, while the orbit keeps out of F , we have

Φ
j
Bpxqpv

uq � Φ
j
Apxq �πEu

x,A
�R1

x � v
u�Φ

j
Apxq �πEc

x,A
�R1

x � v
u,

and, by the domination of Eu over Ec under the action of A, there are constants C ¡ 0 and
β Ps0,1r such that, for any m P N and any unit vectors w1 P Eu and w2 P Ec, we have

}Φm
A pw2q} ¤Cβ

m }Φm
A pw1q} . (5.4.1)

Thus, the first component of Φ
j
Bpxq � v

u dominates the second and contributes to λ u
B

with an approximate rate

1
j

log
���Φ j

Bpxq � v
u
���∼ λ

u
A � logp∆q   λ

u
A, (5.4.2)
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where ∆ Ps0,1r is an upper bound of the set tcospξ q : z P Mu and ξz stands for the small
angle of the rotation displaced by the action of Rt . We take r small in order to guarantee,
by Kac’s theorem (see a version of Kac’s theorem for flows in (39)), that the expected
first return to F of the orbit of x amounts to the rather big fraction 1

µpF q , and so the
contribution of the piece of orbit out F for the estimation 5.4.2 is the prevalent one.

We can also obtain an average as in (5.4.2) if we consider the iterate N�1, where N is
an iterate correponding to a return to F of the orbit of x, which happens with probability
µ (see 5.1.1 of (10) for details).

The case d ¡ 1 can be treated with an identical approach. (see 5.1.2 of (10))

If 1�∆ is small enough, we ensure that there is still a uniform gap between the Lya-
punov exponents that correspond to different bundles of the Oseledets-Ruelle’s decompo-
sition of Φt

B. As the decomposition Ecu
B � Eu

B`Ec
B is finest, we can deduce that

Corollary 5.4.4. Φt
B is partially hyperbolic with Eu

B � Eu
A, Ec

B � Ec
A and Es

B � Es
A.

5.5 Proof of Theorem C

The proof of Theorem C follows exactly the same steps of the proof of Theorem 1 of
(10). Let Φt

A be a integrable compact and partially hyperbolic cocyle with an extended
Oseledets-Ruelle’s decomposition Eu `Ec `Es � H such that, for any x P OpAq, the
space Eu

x,A is nontrivial and has dimension d ¡ 0. Denote by D the dimension of Ecu
x,A.

For any k P t1,2, � � � ,Du, consider the map:

LEk : C PC0
I pX ,C pH qq Ñ λ

C
1 ��� ��λ

C
k ,

where λC
j is the jth Lyapunov exponent of the cocycle Φt

C. As LEk is upper semicontinu-
ous, for any k (Sec. 3.5 of (9)), and is defined on a Baire space (Sec. 3.1 of (9)), it has a
residual set Rk of continuity points which is dense in C0

I pX ,C pH qq. Therefore, there is
a partially hyperbolic cocycle A0 inside the residual subset

R1X�� �RDXSFEu,Ec

close enough to A and whose norm is positive. Thus, given ε ¡ 0, there is a neighbourhood
U of A0 such that:

• @C PU , Φt
C is partially hyperbolic, dimpEu

Cq � d and dimpEcu
C q � D;

• @C1,C2 PU @k P t1, � � � ,Du |LEkpC1q�LEkpC2q|   ε .
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If pLED � LEdqpA0q � 0 we can apply Lemma 5.4.3 to A0 to get a cocycle B P U

whose sum of central Lyapunov exponents is positive. If pLED�LEdqpA0q � 0 we take
B � A0.

If either D � d or the Lyapunov exponents corresponding to Ec
B are all equal, there

is nothing to be proved. If both conditions fail, take two distinct Lyapunov exponents,
say λk ¡ λk�1, in Ec

B. As the sum Ecu
B � Eu

B `Ec
B is dominated and finest, and both λk

and λk�1 belong to Ec
B, there is no dominated sum Ecu

B � V1`V2 with dimpV1q � k. As
λk�1 � �8, by Corollary 4.2.2 of Section 3.3 there is a cocycle C P U close to B such
that

LEkpCq   LEkpBq�
λkpBq�λk�1pBq

2
� ε.

Thus

λkpBq�λk�1pBq   2|LEkpCq�LEkpBq|�2ε   4ε

which means that the central Lyapunov exponents are all close to each other. Hence each
one is approximately equal to LED�LEd

D�d , and so doesn’t vanish.
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