
Manipulation of

Extended Regular 

Expressions with

Derivatives
Rafaela Carolina Ribeiro Bastos
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores
2015

Orientador 
Nelma Resende Araújo Moreira, Professora Auxiliar, 
Faculdade de Ciências da Universidade do Porto

Coorientador 
Rogério Ventura Lages dos Santos Reis, Professor Auxiliar, 
Faculdade de Ciências da Universidade do Porto





Todas  as  correções determinadas 

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________





Para os meus pais

i



ii



Agradecimentos

Os meus sinceros agradecimentos à professora Nelma Moreira e ao professor Rogério
Reis, que tão dedicada e pacientemente me orientaram ao longo dos últimos anos.
Agradeço também à professora Sabine Broda, pelas suas correções e contribuições.

Sou especialmente grata aos meus familiares e amigos, que carinhosamente me acom-
panharam nesta jornada. Sobretudo, à minha mãe e ao meu pai, que tudo tornaram
possível, acompanhando, apoiando e dando todo o suporte. Aos meus irmãos, Paulinho
e Helena. E ao Carlos pela sua quase infinita paciência, ajuda e carinho.

Gostaria também de agradecer aos projetos de investigação CANTE (PTDC/EIA-
CCO/101904/2008) e PEst-C/MAT/UI0144/2013.

iii



iv



Abstract

The use of derivatives for efficiently deciding equivalence and membership problems in
regular languages has been a major topic of recent research. Following these studies,
in this work, we generalize the notions of partial derivative and support to extended
regular expressions (regular expressions enriched with the intersection and complement
operators) and prove that they lead to different automata constructions, unlike what
happens with simple regular expressions.

For a regular expression with intersection, α, we show that 2|α|Σ−|α|∩−1 is a tight worst-
case upper bound for the number of states of partial derivative’s automaton, where
|α|Σ and |α|∩ are the number of occurrences of alphabetic symbols and the number
of occurrences of the intersection operator in α, respectively. We also conducted
an experimental study that suggests that the average-state complexity of partial
derivative’s automaton may even be polynomial w.r.t. the size for these expressions.

Furthermore, adding the complement operator, we prove that the construction of the
set of partial derivatives of an extended regular expression is ensured to be finite only
if extended regular expressions are considered modulo commutativity, idempotence
and identity of intersection.

We also present a special representation for extended regular expressions, which en-
sures the termination of the construction of Brzozowski’s and partial derivative’s
automaton. These regular expressions and associated methods were implemented in
the FAdo system.

Keywords: regular languages, finite automata, extended regular expressions, derivatives.

v



vi



Resumo

O uso de derivadas para decidir os problemas da pertença e da equivalência em
expressões regulares tem sido um importante tópico de investigação. No seguimento
destes estudos, generalizamos as noções de derivada parcial e de suporte a expressões
regulares estendidas (expressões regulares com interseção e complemento). Provamos
também que estas noções conduzem a diferentes construções de autómatos, ao con-
trário do que se verifica para expressões regulares simples.

Para uma expressão regular com interseção, α, demonstramos que 2|α|Σ−|α|∩−1 é um
majorante antigível do número de estados do autómato das derivadas parciais, para
o qual |α|Σ e |α|∩ são o número de ocorrências de símbolos alfabéticos e o número de
ocorrências do operador interseção, respetivamente. Conduzimos também um estudo
experimental que sugere que, no caso médio, o número de estados do autómato das
derivadas parciais pode ser polinomial relativamente ao tamanho destas expressões.

Para além disso, para expressões regulares estendidas, provamos que a construção
do conjunto das derivadas parciais é finita se considerarmos estas expressões módulo
comutatividade, idempotência e identidade do operador interseção.

Apresentamos também uma representação especial para expressões regulares estendi-
das que assegura a conclusão em tempo finito da construção do autómato de Brzo-
zowski e do autómato das derivadas parciais. Estas expressões e os seus respetivos
métodos foram implementados no sistema FAdo.

Palavras-chave: linguagens regulares, autómatos finitos, expressões regulares estendidas,

derivadas.

vii



viii



Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

2 Preliminaries 5

2.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Deterministic Finite Automata . . . . . . . . . . . . . . . . . . 8

2.2.2 Nondeterministic Finite Automata . . . . . . . . . . . . . . . . 9

2.2.3 The equivalence of DFAs and NFAs . . . . . . . . . . . . . . . . 11

2.2.4 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 FAdo System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Regular Expressions 15

3.1 Kleene Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Linear Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



3.5 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Regular Expressions to Finite Automata . . . . . . . . . . . . . . . . . 28

3.6.1 Thompson’s Automata . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.2 Glushkov’s automata . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.3 Brzozowski’s Automata . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.4 Partial Derivative’s Automata . . . . . . . . . . . . . . . . . . . 34

3.7 FAdo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Regular Expressions with Intersection 39

4.1 Algebra of RE∩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Linear Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Support and Partial Derivatives . . . . . . . . . . . . . . . . . . 53

4.6 Regular Expressions in RE∩ to Finite Automata . . . . . . . . . . . . . 57

4.6.1 Extended Thompson’s Automata . . . . . . . . . . . . . . . . . 57

4.6.2 Partial Derivative’s Automata . . . . . . . . . . . . . . . . . . . 58

4.7 FAdo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Extended Regular Expressions 63

5.1 Algebra of RE∩,¬ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



5.3.1 Natural Extension . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Partial Derivatives ∂ . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Support and Partial Derivatives . . . . . . . . . . . . . . . . . . 77

5.5 RE∩,¬ to Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Special Regular Expressions 79

6.1 Rewriting System S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Special Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 RES to Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 FAdo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 93

A Experimental Results 95

Bibliography 99

xi



xii



List of Tables

A.1 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



xiv



List of Figures

2.1 Diagram of the deterministic finite automaton D1. . . . . . . . . . . . . 8

2.2 Diagram of the nondeterministic finite automaton N2. . . . . . . . . . . 10

3.1 Diagram of Thompson’s automaton for (ab+ b)∗. . . . . . . . . . . . . 30

3.2 Diagram of the Glushkov’s automaton for (ab+ b)∗ab. . . . . . . . . . . 33

3.3 Diagram of the Brzozowski’s automaton for (ab+ b)∗ab. . . . . . . . . . 34

3.4 Diagram of the partial derivative’s automaton for (ab+ b)∗ab. . . . . . 36

3.5 Class diagram of the FAdo module reex. . . . . . . . . . . . . . . . . . 36

4.1 Diagram of the Thompson’s automaton for (a+ b) ∩ a. . . . . . . . . . 59

4.2 Diagram of the partial derivative’s automaton for (b+ab+aab+abab)∩
(ab)∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Class diagram of reex for regular expressions with intersection. . . . . 60

6.1 Brzozowski’s automaton of ·[a∗, a]. . . . . . . . . . . . . . . . . . . . . 89

6.2 Partial derivative’s automaton of ¬(·[a∗, a]). . . . . . . . . . . . . . . . 90

6.3 Class diagram of reex for special regular expressions. . . . . . . . . . . 90

xv



xvi



Chapter 1

Introduction

Regular languages, in spite of their apparently limited expressive power, have appli-
cations in almost all areas of Computer Science. Regular expressions are the most
readable and compact representation for regular languages and can be efficiently
transformed into equivalent nondeterministic automata (NFA). In many applications,
however, regular expressions with additional operators, such as intersection (∩) and
complement (¬), are considered. Although these operators do not increase the ex-
pressive power of the associated language, they lead to gains in the succinctness of
the representation. In fact, regular expressions with intersection and complement
(extended regular expressions) are double exponentially more succinct [16].

To verify if two regular expressions are equivalent, or if a word belongs to the language
described by a regular expression, an useful approach is to use finite automata. This is
made by converting the regular expression into an equivalent finite automaton, which
should be small to be efficiently manipulated. For simple regular expressions it is
possible to build equivalent NFAs and deterministic finite automata (DFA) with linear
and exponential number of states, respectively, with respect to the size of the regular
expression. The conversion of an extended regular expression into an equivalent DFA
and NFA, however, involves, in the worst case, an exponential and double exponential
blow up [16], respectively.

The conversion of an extended regular expression into an equivalent DFA can be
done by using Brzozowski’s derivatives [10]. To ensure termination of this conversion,
regular expressions must be considered modulo some algebraic properties such as

1



2 CHAPTER 1. INTRODUCTION

associativity, commutativity, and idempotence of disjunction (ACI+). The Antimirov’s
construction [2] converts a simple regular expressions into an NFA, by using partial
derivatives. This construction is equivalent to the resolution of Mirkin’s systems of
equations [24]. The average complexity of both conversions were recently studied using
the framework of analytic combinatorics [7, 8].

Caron et al. [11] generalized Antimirov’s partial derivatives to extended regular ex-
pressions. These differ from Antimirov’s partial derivatives, since they are sets of sets
of regular expressions instead of a set of regular expressions. These sets of sets can be
seen as a kind of a disjunctive normal form for extended regular expressions.

One of the goals of this work was to continue this line of research. In particular, to
implement extended regular expressions and several derivative based methods within
the FAdo system and test their feasibility. Furthermore, we wanted to generalize
Mirkin’s method to extended regular expressions, as this method provides inductive
definitions that are more adequate for the study of average case complexity using the
analytic framework.

Towards these goals, we gradually added the operators to simple regular expressions.
We began our study with regular expressions with intersection. Then we made
an identical study for extended regular expressions. We concluded our work by
introducing extended regular expression modulo some properties as ACI of disjunction
and intersection.

The structure of this thesis is as follows. The next two chapters contain the essential
theoretical background. Chapter 2 gives an introduction to some concepts of language
theory, to finite automata and to the FAdo system. In Chapter 3, we introduce the
notion of regular expression and its conversion methods to finite automata.

In Chapter 4, we extend simple regular expression with the intersection operator. We
give several notions of derivatives and conversion methods to finite automata. Then,
we compare Antimirov’s construction and Mirkin’s construction and also present a
tight worst-case upper bound for the number of states of both. We also present some
implementations in the FAdo system, as well as some experimental results.

In Chapter 5, extended regular expressions are introduced. Again we extend the
notions of partial derivatives and of solution of a system of expression equations.



3

Comparative studies of Antimirov’s construction and Mirkin’s construction for these
regular expressions are also presented.

Finally, in Chapter 6, we present a special representation for extended regular expres-
sions, which ensures the termination of Brzozowski’s and Antimirov’s constructions.
We also expose how we implemented them in the FAdo system.

Chapter 7 ends this thesis with some conclusions and lines of future research.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

In the context of formal languages, an alphabet , denoted by Σ, is a finite nonempty
set of symbols. A word over Σ is a finite sequence of symbols taken from Σ. The word
consisting in zero symbols is the empty word and it is denoted by ε. For example, a
and b are symbols of the alphabet Σ = {a, b} and ε, a and aaba are words over Σ.
The length of a word w, denoted by |w|, is the number of symbols in w. The words ε,
a and aaba, for example, have length 0, 1 and 4, respectively. The length of a word
w ∈ Σ∗ is defined recursively in the following way:

|ε| = 0,

|wa| = |w|+ 1, where a ∈ Σ.

The set of all words over Σ is denoted by Σ∗. For example, Σ = {a, b}, then

Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . .}.

The concatenation of two words w and u over Σ, denoted w · u or wu, is the word
obtained by juxtaposing the word u at the end of w. For example, the concatenation
of aa and ba is the word aaba. The concatenation of w,w′ ∈ Σ∗ is defined recursively
by the following:

w · ε = w,

w · (w′a) = (w · w′) a, where a ∈ Σ.

5



6 CHAPTER 2. PRELIMINARIES

Furthermore, the concatenation is associative and the empty word is the identity
element, that is w · ε = ε ·w = w. The set Σ∗ is thus a monoid with the concatenation
as the operator and the empty word as the identity.

Given a word w = uvz, where u, v, z ∈ Σ∗, we say that u is a prefix of w, v is a infix
of w and z is a suffix of w. The words u, v and z are subwords of w.

The reversal of a word w = a1 . . . an, denoted by wr, is the word an . . . a1. It is defined
recursively in the following way:

εr = ε,

wr = ura, where w = au, a ∈ Σ and u ∈ Σ∗.

2.1 Languages

A language over an alphabet Σ is a subset of Σ∗. The empty set, ∅, denotes the empty
language. The set Σ∗ denotes the universal language. The cardinality of a language L
is denoted by |L|.

Languages are closed under the standard set operations, such as union, intersection
and difference. The complement of a language L over Σ, denoted by L, is the set
Σ∗\L. The concatenation of L1 and L2, denoted L1L2, is the language

L1L2 = {w1w2 | w1 ∈ L1 and w2 ∈ L2}.

The ith power of a language L, denoted Li, is defined recursively as L0 = {ε} and
Li = LLi−1 for an integer i ≥ 1. The Kleene closure of L, denoted L∗ is the set

L∗ =
∞⋃
i=0

Li

and the positive closure, denoted L+, represents the language LL∗ or equivalently

L+ =
∞⋃
i=1

Li.

The class of regular languages over an alphabet Σ is the smallest class containing
the empty set ∅ and the singletons {a}, where a ∈ Σ, and closed under union,



2.2. FINITE AUTOMATA 7

concatenation and Kleene star. The class of regular languages is also closed under
complement and intersection.

For a regular language L, the function ε(L) is defined by ε(L) = ε, if ε ∈ L, and
ε(L) = ∅, otherwise.

Given a language L over Σ, the left-quotient of L w.r.t. a symbol a ∈ Σ is the language
a−1L = {w | aw ∈ L}. This can be defined recursively as follows:

a−1∅ = ∅, a−1(L1 ∩ L2) = a−1L1 ∩ a−1L2,

a−1{ε} = ∅, a−1(L1L2) = (a−1L1)L2 ∪ a−1L2, if ε ∈ L1,

a−1{a} = {ε}, a−1(L1L2) = (a−1L1)L2, if ε 6∈ L1,

a−1{b} = ∅, b ∈ Σ and b 6= a, a−1(L∗) = (a−1L)L∗,

a−1(L1 ∪ L2) = a−1L1 ∪ a−1L2, a−1(L) = Σ∗\(a−1L),

where L, L1 and L2 are languages over Σ. The definition of left-quotient of a language
L over Σ is extensible to a word w ∈ Σ∗ and it is the language w−1(L) = {w′ | ww′ ∈
L}. Moreover, w−1L can be defined inductively by:

ε−1L = L,

(wa)−1L = a−1(w−1L), a ∈ Σ,

where a ∈ Σ. Observe that it means that a word w belongs to the language L if and
only if ε ∈ w−1(L).

The left-quotient of a regular language is also a regular language. Furthermore, the
set
⋃
w∈Σ∗ w

−1L of all left-quotients of a regular language L over Σ w.r.t. the words
w ∈ Σ∗ is finite.

2.2 Finite Automata

In the context of formal languages, languages are defined by models. The models
that define, and also accept, the regular languages are the finite automata. In this
section we describe two types of finite automata: deterministic finite automata and
nondeterministic finite automata.



8 CHAPTER 2. PRELIMINARIES

Figure 2.1: Diagram of the deterministic finite automaton D1.

2.2.1 Deterministic Finite Automata

Definition 2.1. (Deterministic Finite Automaton) A deterministic finite au-
tomaton (DFA) D is a quintuple 〈Q,Σ, q0, δ, F 〉 where:

• Q is a finite set of states;

• Σ is a finite alphabet;

• q0 ∈ Q is the initial state;

• δ : Q× Σ→ Q is the transition function;

• F ⊆ Q is the set of final states.

A transition diagram is a graphical representation for a DFA. The transition diagram
is a directed graph. The vertices of the graph correspond to the states Q of the DFA.
Each transition from state q to state p with input a, δ(q, a) = p, corresponds to an arc
from state p to state q labeled by the symbol a. The initial state q0 is marked with
an arrow. The final states are represented by a double circle.

Example 2.2. Let D1 = 〈Q,Σ, q0, δ, F 〉 be the deterministic finite automaton described
by the transition diagram in Figure 2.1, where the set of states is Q = {0, 1, 2}, the
alphabet is Σ = {a, b}, the initial state is q0 = 0, the set of final states is F = {2} and
the transition function is defined as follows:

δ(0, a) = 1, δ(1, b) = 2,



2.2. FINITE AUTOMATA 9

δ(0, b) = 1, δ(2, a) = 2,

δ(1, a) = 1, δ(2, b) = 2.

A DFA D = 〈Q,Σ, q0, δ, F 〉 is called complete if the transition function δ is total, i.e.,
if δ is defined for every state q ∈ Q and symbol a ∈ Σ.

Let δ : Q×Σ∗ → Q be a extension of the transition function δ to words. The extended
δ is defined recursively by the following:

δ(q, ε) = q,

δ(q, wa) = δ(δ(q, w), a), w ∈ Σ∗ and a ∈ Σ.

A word w is accepted by a DFA D = 〈Q,Σ, q0, δ, F 〉, if δ(q0, w) is defined and the
image of the last symbol of w is a final state. The language accepted by a DFA D is
the set of words that are accepted by D and it is defined by:

L(D) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

Two automata are said to be equivalent if they accept exactly the same language. A
DFA is minimal if there is no equivalent automaton with fewer states. Furthermore,
there is a unique minimal DFA for every language.

2.2.2 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is an extension of the deterministic finite
automaton. This is obtained by basically allowing the image of the transition function
of the DFA to be a set of states.

Definition 2.3. (Nondeterministic Finite Automaton) A nondeterministic finite
automaton (NFA) N is a quintuple 〈Q,Σ, Q0, δ, F 〉, where Q, Σ and F represent
exactly the same as for a DFA, i.e., the set of states, the alphabet and the set of
final states, respectively, being different only in the initial state and in the transition
function definition. The set Q0 ⊆ Q is the set of initial states. The transition function
is defined as δ : Q× Σ→ 2Q.

Note that we often denote a singleton state, i.e., the set containing exactly one state,
by the state itself when no confusion will be caused.



10 CHAPTER 2. PRELIMINARIES

Example 2.4. Let N2 = 〈Q,Σ, q0, δ, F 〉 be a nondeterministic finite automaton, where
the set of states is Q = {0, 1, 2}, the alphabet is Σ = {a, b}, the initial state is q0 = 0,
the set of final states is F = {2} and the transition function is defined as follows:

δ(0, a) = {0, 1}, δ(1, b) = {0, 2},

δ(0, b) = {0}, δ(2, a) = {2},

δ(1, a) = {1}, δ(2, b) = {1}.

The transition diagram of N2 is shown in Figure 2.2,

�

����

��
�

�

��
�

�

Figure 2.2: Diagram of the nondeterministic finite automaton N2.

The transition function δ, as in DFAs, can be extended to δ : Q × Σ∗ → 2Q. This
function is defined as follows:

δ(q, ε) = {q},

δ(q, wa) =
⋃

p∈δ(q,w)

δ(p, a), w ∈ Σ∗ and a ∈ Σ.

It may also be necessary to use the transition function to map several states, extending
δ to 2Q × Σ∗ → 2Q by

δ(P,w) =
⋃
q∈P

δ(q, w),

where P ⊆ Q.

An NFA N = 〈Q,Σ, Q0, δ, F 〉 accepts a word w ∈ Σ∗ if there is a state qf ∈ F such
that qf ∈ δ(q0, w), for some q0 ∈ Q0. Therefore, the language accepted by an NFA N
is

L(N ) = {w ∈ Σ∗ | δ(Q0, w) ∩ F 6= ∅}.



2.2. FINITE AUTOMATA 11

Two finite automata A and B are equivalent if and only if they accept exactly the
same language, i.e., L(A) = L(B). An NFA is said minimal if there is no equivalent
NFA with fewer states. The number of minimal NFAs for a given language can be
greater than one.

The left language of a state q of N is defined as LL(N , q) = {w ∈ Σ∗ | q ∈ δ(Q0, w)}
and the right language of q as LR(N , q) = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}). Two states of
an NFA are said equivalent states if they have the same right language.

The automaton that accepts the reversal of an input sequence is called the reversal
automaton. The automaton is next defined.

Definition 2.5. (Reversal Automaton) For a nondeterministic finite automaton
A = 〈Q,Σ, Q0, δ, F 〉, the reversal automaton of A is the finite automaton AR = 〈Q,
Σ, F, δR, Q0〉, where

∀a ∈ Σ,∀qi, qj ∈ Q (qi ∈ δR(qj, a)⇔ qj ∈ δ(qi, a)).

We say that an automaton is trimmed if there are no states not reachable from the
initial state. So, we obtain a trimmed automaton by pruning these unreachable states.

An ε-NFA is an extension of NFA that allows transitions with the empty input ε. We
define the ε-NFA as the quintuple 〈Q,Σ, q0, δ, F 〉, having Q, Σ, Q0 and F the same
meaning as for an NFA and being δ the transition function that maps Q×{ε} ∪Σ to
2Q. The ε-NFAs have the same descriptive power of NFAs, i.e., for every ε-NFA there
is an equivalent NFA.

2.2.3 The equivalence of DFAs and NFAs

Since deterministic finite automata are a special case of nondeterministic finite au-
tomata, it is clear that every class of languages accepted by DFAs are also accepted
by NFAs. Moreover, every NFA can be transformed into an equivalent DFA. So the
languages accepted by NFAs are also accepted by DFAs and thus NFAs and DFAs
accept exactly the same class of languages.

The class of languages accepted by NFAs and DFAs is exactly the class of regular
languages. The proof that the class of languages accepted by finite automata contains



12 CHAPTER 2. PRELIMINARIES

the finite languages and that is closed under union, concatenation and Kleene star can
be found in several books, such as [22] and [18].

The transformation of an NFA into a DFA is achieved by the subset construction,
which is described bellow.

Definition 2.6. (Subset Construction) Given an NFA N = 〈Q,Σ, Q0, δ, F 〉, a
DFA equivalent to N is defined as Det(N ) = 〈Qd,Σ, q0, δ

d, F d〉, where:

• Qd = {δ(Q0, w) | w ∈ Σ∗} = {P1, . . . , Pn} ⊆ 2Q;

• δd(Pi, a) = δ(Pi, a);

• q0 = Q0;

• F d = {Pi ∈ Qd | Pi ∩ F 6= ∅}.

Note that all states of N with the same left language were merged into one state in
Det(N ).

In the worst case, the obtained Det(N ) can have 2|Q| states, being exponential larger
than N . The determinisation of an NFA is an EXPTIME-hard problem.

The co-determinisation of an NFA N corresponds to construct the reversal automaton
of N , determinise it and to construct the reversal automaton of the latter automaton,
i.e., Codet(N ) = Det(NR)R. By co-determinising N , we have all states with the same
right language merged into one state. Thereby, Codet(N ) has only a final state.

We obtain the minimal DFA equivalent to an NFA N , Min(N ), if all two states with
the same left language were merged too, i.e., if there are no states with the same right
and left languages. Therefore, in such a way to obtain the minimal DFA equivalent
to N it is enough to determinise Codet(N ), i.e., Min(N ) = Det(Codet(N )).

However, for a nondeterministic finite automaton, merging states with the same right
and left language is not enough to obtain the minimal NFA.

2.2.4 Systems of Equations

Let A = 〈Q,Σ, q0, δ, F 〉 be a finite automaton with the states Q = {0, 1, . . . , n}, the
initial state q0 = 0 and the alphabet Σ = {a1, . . . , ak}. Denote by L0,L1, . . . ,Ln the



2.3. FADO SYSTEM 13

right languages of each state i ∈ Q and define the language Lli, for each l = 1, . . . , k

and i = 1, . . . , n, as

Lli =
⋃

j∈δ(i,al)

Lj,

if A is an NFA, or Lli = Lδ(i,al), if A is a DFA. Therefore, the following system of
equations holds:

L0 = a1L10 ∪ . . . ∪ akLk0 ∪ ε(L0)

L1 = a1L11 ∪ . . . ∪ akLk1 ∪ ε(L1)

...

Ln = a1L1n ∪ . . . ∪ akLkn ∪ ε(Ln).

This system of equations is denoted by SL0 .

2.3 FAdo System

FAdo [14, 1] is an open source system written in Python that provides tools for
formal languages manipulation. At present, most of the standard operations for the
manipulation of regular languages are implemented in this system.

One of the modules provided by FAdo is the module fa. The module fa defines the
classes representing finite automata. The class FA is the main class of this module and
it defines the basic structure of determininstic and nondeterministic finite automata.
The attributes of FA are:

• Sigma: a set of alphabet symbols;

• States : a list of states (each state is referred as its index in the list);

• Initial : an index of the initial state or a set of indexes of the initial states (NFA);

• Final : a set of indexes of the final states;

• delta: a dictionary containing the transition function.

For each subclass of FA there are special methods to add, to delete and to modify
alphabet symbols, states and transitions.



14 CHAPTER 2. PRELIMINARIES

The class DFA provides methods to manipulate deterministic finite automata and it
inherits from FA. The following code demonstrates how to proceed to build the DFA

of Example 2.2:

from FAdo.fa import *

dfa = DFA()

dfa.setSigma({’a’, ’b’})

dfa.addState(0)

dfa.addState(1)

dfa.addState(2)

dfa.setInitial(0)

dfa.addFinal(2)

dfa.addTransition(0, ’a’, 1)

dfa.addTransition(0, ’b’, 1)

dfa.addTransition(1, ’a’, 1)

dfa.addTransition(1, ’b’, 2)

dfa.addTransition(2, ’a’, 2)

dfa.addTransition(2, ’b’, 2)

To verify if a word w is recognized by dfa, we use the function evalWordP("w"):

>>> dfa.evalWordP("aba")

True

>>> dfa.evalWordP("abb")

False

We can use the operator == to test if two DFAs are equivalent (dfa == other_dfa).
It is also possible to minimize and to create the reversal automaton of dfa:

>>> minimal_dfa = dfa.minimal()

>>> reversal_dfa = dfa.reversal()

The class NFA provides methods to manipulate nondeterministic finite automata and,
in the same way as the class DFA, it inherites from FA. The above methods are also
available for NFAs. In FAdo, every NFA can have ε-transitions.

The full documentation of the available methods and classes can be found in the FAdo
webpage [14].



Chapter 3

Regular Expressions

Just as finite automata, regular expressions define the regular languages. In contrast
with the finite automata, regular expressions provide a more succinct and also an
human-readable notation.

Definition 3.1. (Regular Expression) Let Σ be an alphabet. A regular expression
over Σ with intersection is given by the following grammar:

α := ∅ | ε | a ∈ Σ | (α + α) | (α · α) | (α)∗.

The language L(α) associated with α is defined inductively as follows:

L(∅) = ∅, L(α + β) = L(α) ∪ L(β),

L(ε) = {ε}, L(αβ) = L(α)L(β),

L(a) = {a}, L(α∗) = L(α)∗.

The set of all regular expressions is denoted by RE.

The regular expressions in RE will also be called simple regular expressions. We assume
that ∗ has higher precedence than · and +, and that · has higher precedence than +.
Assuming this precedence, parentheses can be omitted in regular expressions. We also
usually omit the operator ·.

Given a set S ⊆ RE, the language of S is defined as being L(S) =
⋃
α∈S L(α). Observe

that a set of regular expressions denotes the same language that the disjunction of

15



16 CHAPTER 3. REGULAR EXPRESSIONS

the regular expressions within that set. That is, given α1, . . . , αn ∈ RE, L({α1, . . . ,

αn}) =
⋃
αi∈S L(αi) = L(α1 + · · ·+ αn).

Two regular expressions α and β over Σ are equivalent , we denote by α = β, if they
represent the same language, i.e., L(α) = L(β). If α and β are syntactically identical,
we write α ≡ β.

We define the size of α, written as |α|, as the number of symbols in α, not counting
parentheses. The alphabetic size of α, written |α|Σ, is the number of alphabet symbols
in α. For example, α = (aa+ b∗)a has size |α| = 8 and alphabetic size |α|Σ = 4.

A regular expression α possesses the empty word property (e.w.p.), if the language of
α contains the empty word. The e.w.p. can be coded by the function ε : RE→ {ε, ∅},
where ε(α) = ε if ε ∈ L(α) and ε(α) = ∅ otherwise. For example, ε(a∗ + b) = ε and
ε(a+ b) = ∅. Being α and β regular expressions over Σ, a recursive definition for ε is
given by the following:

ε(∅) = ∅, ε(α + β) = ε, if ε(α) = ε or ε(β) = ε,

ε(ε) = ε, ε(αβ) = ∅, if ε(α) = ∅ or ε(β) = ∅,

ε(a) = ∅, a ∈ Σ, ε(αβ) = ε, if ε(α) = ε(β) = ε,

ε(α + β) = ∅, if ε(α) = ε(β) = ∅, ε(α∗) = ε.

3.1 Kleene Algebra

A Kleene algebra is an algebraic structure (A,+, ·, ∗, 0, 1), where (A,+, ·, 0, 1) is an
idempotent semiring and ∗ is a unary operator satisfying a set of axioms, that are
specified below. The set of regular expressions RE over Σ forms a Kleene Algebra,
(RE,+, ·, ∗, ∅, ε) .

There are several axiomatizations for the Kleene algebra [25, 19, 13]. However, only
the axiomatic system suggested by Salomaa [25] was extended to other operations
such as intersection and complement. That is why this will be the chosen axiomatic
system.

Salomaa [25] presented the system F1 as an axiomatization for the Kleene algebra,
and showed its completeness and soundness. There are 11 axioms in the system F1,



3.1. KLEENE ALGEBRA 17

these axioms are (A1) - (A11):

α + (β + γ) = (α + β) + γ, (A1)

(α · β) · γ = α · (β · γ), (A2)

α + β = β + α, (A3)

α · (β + γ) = α · β + α · γ, (A4)

(α + β) · γ = α · γ + β · γ, (A5)

α + α = α, (A6)

α · ε = α, (A7)

α.∅ = ∅, (A8)

α + ∅ = α, (A9)

α∗ = ε+ α · α∗, (A10)

α∗ = (ε+ α)∗, (A11)

where α, β, γ ∈ RE. There are also two inference rules in the system F1, which are:

1. Rule of substitution: If α = β and γ′ is the result of replacing an occurrence of
α by β in γ, then we may infer γ′ = γ.

2. Rule of solution of equations : If α = αβ + γ and ε(β) = ∅, then we may infer
α = γβ∗.

In the context of the Kleene algebras, the axioms of ∗ are (A10) and (A11). The
idempotent semiring (RE,+, ·, ∅, ε) satisfies the axioms (A1) to (A9).

We say that two regular expressions are E-similar if one can be transformed to the
other by using the set of axioms E. Two regular expressions are E-dissimilar if and
only if they are not E-similar.

We denote by ACI+ the set of axioms that corresponds to the associativity, commuta-
tivity and idempotence of the operator +. The set ACI+ is constituted by the axioms
A1, A3 and A6.

From (A6) and (A9), it follows that ε+ ε = ε and ε+ ∅ = ε. On the other hand, from
(A7) and (A8), we have that ε · ε = ε and ε · ∅ = ∅. Thus, it is possible to redefine
ε : RE→ {∅, ε} as follows:

ε(∅) = ∅, ε(α + β) = ε(α) + ε(β),



18 CHAPTER 3. REGULAR EXPRESSIONS

ε(ε) = ε, ε(αβ) = ε(α)ε(β),

ε(a) = ∅, a ∈ Σ, ε(α∗) = ε.

3.2 Derivatives

Brzozowski [10] presented the definition of the derivative of a regular expression, which
extends the notion of a left-quotient of a language to regular expressions. In the
same article, it is suggested an algorithm for converting a regular expression into
a deterministic finite automaton, where the derivatives of the regular expressions
represent the states of this automaton. The construction of this automaton will be
described in the section 3.6.

Definition 3.2. (Derivative) Let α ∈ RE be a regular expression over Σ. The
derivative of α w.r.t. a symbol a ∈ Σ, written da(α), is recursively defined as follows:

da(∅) = ∅, da(α + β) = da(α) + da(β),

da(ε) = ∅, da(αβ) = da(α)β + da(β), if ε(α) = ε,

da(a) = ε, da(αβ) = da(α)β, if ε(α) = ∅,

da(b) = ∅, b ∈ Σ and b 6= a, da(α
∗) = da(α)α∗.

Remark 3.3. In the original recursively definition of derivative [10], the derivative
was defined for all boolean operators:

da(f(α, β)) = f(da(α), da(β)),

where f is a boolean function. Since, simple regular expressions only have the disjunc-
tion operator, only this was presented in Definition 3.2.

Example 3.4. Consider the regular expression α ≡ (ab + b)∗ab over {a, b}. The
derivative of α w.r.t. a is

da((ab+ b)∗ab) = da((ab+ b)∗)ab+ da(ab)

= da(ab+ b)(ab+ b)∗ab+ da(a)b

= (da(ab) + da(b))(ab+ b)∗ab+ da(a)b



3.2. DERIVATIVES 19

= (da(a)b+ da(b))(ab+ b)∗ab+ da(a)b

= (b+ ∅)(ab+ b)∗ab+ b.

The definition of derivative of a regular expression α can be extended to a word w ∈ Σ∗

in the following way:

dε(α) = α,

dwa(α) = da(dw(α)), a ∈ Σ.

The left-quotient of the language of α w.r.t. w is the language of dw(α), i.e., w−1L(α) =

L(dw(α)) [10, Theorem 3.1]. A word w belongs to L(α) if and only if ε(dw(α)) = ε.

Furthermore, for every regular expression α over Σ the following equivalence holds
[10, Theorem 4.4]:

α =
∑
a∈Σ

ada(α) + ε(α), (3.1)

where the terms in the sum are disjoint.

Brzozowski also proved that every regular expressions has only a finite number of
ACI+-dissimilar derivatives [10, Theorem 5.2].

Remark 3.5. In the original definition of derivative [10], we have the following
equation for the concatenation of two regular expressions α, β:

da(αβ) = da(α)β + ε(α)da(β),

instead of having [Definition 3.2]

da(αβ) =

da(α)β + da(β), if ε(α) = ε

da(α)β, otherwise.

This modification was proposed by Antimirov [2], since, without this modification,
the set of all ACI+-dissimilar derivatives is not finite. Take as example the regular
expression a∗,

da(a
∗) = εa∗, daa(a

∗) = εεa∗, daaa(a
∗) = εεεa∗, . . .

It is clear to note that the set of all derivatives is infinite, even being ACI+-dissimilars.
With this modification, the set of all ACI+-dissimilar derivatives is finite.



20 CHAPTER 3. REGULAR EXPRESSIONS

The set DACI+(α) over Σ is the set of all ACI+-dissimilar derivatives of a regular
expression α. Namely, the set of representatives of the equivalence class modulo ACI+
of the regular expressions dw(α), for all w ∈ Σ∗.

3.3 Partial Derivatives

Antimirov [2] proposed the notion of partial derivative, which is a nondeterministic
version of the Brzozowski derivative. Instead of a deterministic finite automaton, the
partial derivative leads to a construction of a nondeterministic finite automaton.

Let the operation · : 2RE × RE → 2RE be an extension of concatenation for sets of
regular expressions. The operation is recursively defined as follows:

S · ∅ = ∅,

S · ε = S,

∅ · β = ∅,

{ε} · β = {β},

{α} · β = {αβ},

(S ∪ S ′) · β = (S · β) ∪ (S ′ · β),

where S, S ′ ⊆ 2RE, α ∈ RE \ {∅} and β ∈ RE \ {∅, ε}.

Definition 3.6. (Partial Derivatives) Let α ∈ RE be a regular expression over Σ.
The set of partial derivatives of α w.r.t. a symbol a ∈ Σ, written ∂a(α), is recursively
defined as follows:

∂a(∅) = ∅, ∂a(α + β) = ∂a(α) ∪ ∂a(β),

∂a(ε) = ∅, ∂a(αβ) = ∂a(α)β ∪ ∂a(β), if ε(α) = ε,

∂a(a) = {ε}, ∂a(αβ) = ∂a(α)β, if ε(α) = ∅,

∂a(b) = ∅, b ∈ Σ and b 6= a, ∂a(α
∗) = ∂a(α)α∗.

Example 3.7. For the regular expression α ≡ (ab+ b)∗ab over Σ = {a, b}, the set of
partial derivatives of α w.r.t. a ∈ Σ is

∂a((ab+ b)∗ab) = ∂a((ab+ b)∗)ab ∪ ∂a(ab)



3.3. PARTIAL DERIVATIVES 21

= ∂a((ab+ b))(ab+ b)∗ab ∪ ∂a(a)b

= (∂a(ab) ∪ ∂a(b))(ab+ b)∗ab ∪ ∂a(a)b

= (∂a(a)b ∪ ∂a(b))(ab+ b)∗ab ∪ ∂a(a)b

= ({ε}b ∪ ∅)(ab+ b)∗ab ∪ {ε}b

= {b}(ab+ b)∗ab ∪ {b}

= {b(ab+ b)∗ab} ∪ {b}

= {b(ab+ b)∗ab, b}.

The definition of the set partial derivatives is extended to a word w ∈ Σ∗, to a set of
words W ⊆ Σ∗ and to a set of regular expressions R ⊆ RE in the following way:

∂ε(α) = {α}, (3.2)

∂wa(α) = ∂a(∂w(α)), a ∈ Σ, (3.3)

∂w(R) =
⋃
αi∈R

∂w(αi), (3.4)

∂W (α) =
⋃
w∈W

∂w(α). (3.5)

For any regular expression α and word w ∈ Σ, the left-quotient of the language L(α)

w.r.t. w is equivalent to the language of ∂w(α), i.e. w−1L(α) = L(∂w(α)), such as for
Brzozowski derivatives.

Proposition 3.8. Given a regular expression α ∈ RE over Σ and a word w ∈ Σ,
L(∂w(α)) = w−1L(α).

Proof. Let α ∈ RE and w ∈ Σ∗. The proof proceed by induction on the length of
w. For w = ε, we find that L(∂ε(α)) = L({α}) = ε−1L(α). Let us assume that
L(∂w(α)) = w−1L(α) holds for some w ∈ Σ+, we will prove the claim for w′ = wa,
where a ∈ Σ,

L(∂wa(α)) = L(∂a(∂w(α))) = a−1L(∂w(α))

= a−1w−1L(α) = (wa)−1L(α).

Observe that this follows from Lemma 4.7 and from the fact that L(∂a(S)) = a−1L(α),
which has a straightforward proof.



22 CHAPTER 3. REGULAR EXPRESSIONS

Let Suf (w) be the set of all non-empty suffixes of w, being defined as Suf (w) = {v ∈
Σ+ | ∃u ∈ Σ∗ : uv = w}. The following properties of the function ∂w for every regular
expressions α, β ∈ RE and word w ∈ Σ+ were proved by Antimirov [2, Lemma 3.3]:

∂w(α + β) = ∂w(α) ∪ ∂w(β), (3.6)

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈Suf(w)

∂v(β), (3.7)

∂w(α∗) ⊆
⋃

v∈Suf(w)

∂v(α)α∗. (3.8)

We denote by PD(α) the set of all (syntactical different) partial derivatives of α,
i.e., PD(α) =

⋃
w∈Σ∗ ∂w(α). By ∂+(α), we denote the set of all partial derivatives

excluding the derivative by the empty word, ∂+(α) =
⋃
w∈Σ+ ∂w(α).

Example 3.9. For the regular expression (ab + b)∗ab over Σ = {a, b}, the set of all
partial derivatives of α is:

PD((ab+ b)∗ab) = ∂+((ab+ b)∗ab) = {b(ab+ b)∗ab, (ab+ b)∗ab, b, ε}.

From the equations (3.6), (3.7) and (3.8), Antimirov proved that the following in-
equalities hold [2, Theorem 3.4]:

|∂+(α)| ≤ |α|Σ, (3.9)

|PD(α)| ≤ |α|Σ + 1. (3.10)

In this way, the set of all (syntactical different) partial derivatives of a regular expres-
sion is finite.

3.4 Linear Form

All partial derivatives w.r.t. every alphabet symbol of a regular expression can be
computed on a single pass over the regular expression. With this aim, Antimirov [2]
defined the function linear form, which will be treated in this section.

For a regular expression α and an alphabetic symbol a, the pair (a, α) is called a
monomial with head a and a tail α. We denote by Mon = Σ × RE, the set of all



3.4. LINEAR FORM 23

monomials for a given alphabet Σ. The language associated with a monomial and the
language associated with a set of monomials are defined, respectively, as follows:

L((a, α)) = L(a · α) = {a} · α, (3.11)

L(S) =
⋃

(a,α)∈S

L((a, α)) =
⋃

(a,α)∈S

{a} · L(α), (3.12)

where α ∈ RE over Σ, a ∈ Σ and S ⊆ 2Mon.

Let the binary operator � : 2Mon × RE → 2RE be the extension of concatenation for
sets of monomials:

S � ∅ = ∅,

S � ε = S,

{(a, ∅)} � β = {(a, ∅)},

{(a, ε)} � β = {(a, β)},

{(a, α)} � β = {(a, αβ)},

(S ∪ S ′)� β = (S � β) ∪ (S ′ � β),

where a ∈ Σ, α ∈ RE \ {∅}, β ∈ RE \ {∅, ε} and S, S ′ ⊆ 2RE.

Definition 3.10. (Linear Form) The function lf : RE → 2Mon returns the linear
form of a regular expression and it is recursively defined as follows:

lf (∅) = ∅, lf (αβ) = lf (α)� β ∪ lf (β), if ε(α) = ε,

lf (ε) = ∅, lf (αβ) = lf (α)� β, if ε(α) = ∅,

lf (a) = {(a, ε)}, lf (α∗) = lf (α)� α∗,

lf (α + β) = lf (α) ∪ lf (β).

where α, β ∈ RE over Σ and a ∈ Σ.

Example 3.11. The linear form of the regular expression α ≡ (ab+ b)∗ab is

lf ((ab+ b)∗ab) = lf ((ab+ b)∗)� ab ∪ lf (ab)

= lf ((ab+ b))� (ab+ b)∗ab ∪ lf (a)� b

= (lf (ab) ∪ lf (b))� (ab+ b)∗ab ∪ lf (a)� b

= (lf (a)� b ∪ lf (b))� (ab+ b)∗ab ∪ lf (a)� b



24 CHAPTER 3. REGULAR EXPRESSIONS

= ({(a, ε)} � b ∪ {(b, ε)})� (ab+ b)∗ab ∪ {(a, ε)} � b

= ({(a, b), (b, ε)})� (ab+ b)∗ab ∪ {(a, b)}

= {(a, b(ab+ b)∗ab), (b, (ab+ b)∗ab)} ∪ {(a, b)}

= {(a, b(ab+ b)∗ab), (b, (ab+ b)∗ab), (a, b)}.

Moreover, for every regular expression α over Σ the following equivalence holds [2,
Proposition 2.5]:

α =
∑

(a,α′)∈lf(α)

a · α′ + ε(α).

The set of partial derivatives of α w.r.t. a ∈ Σ can also be defined as [2, Definition
2.8]:

∂a(α) = {α′ ∈ RE \ {∅} | (a, α′) ∈ lf (α)}. (3.13)

3.5 Systems of Equations

We can have a system of equations of regular expressions, in the same way that we
did a system of equations of languages. Let L0 be the language denoted by the
regular expression α0. The system of equations is obtained from SL0 by replacing
each language Li and Lli by the regular expressions αi and αli, respectively, where
Li = L(αi) and Lli = L(αli).

Given α0, . . . , αn ∈ RE over Σ = {a1, . . . , ak}, a system of equations is:

αi = a1α1i + · · ·+ akαki + ε(αi) for all i ∈ {0, . . . , n},

where αli, with l = 1, . . . , k, is a, possibly empty, sum of elements of {α0, . . . , αn}, i.e.,
αli =

∑
j∈Ili αj, where Ili ⊆ {α0, . . . , αn}. This system is denoted by Sα0 .

Example 3.12. Given the regular expressions α0 ≡ a∗b+ ab∗, α1 ≡ a∗b, α2 ≡ b∗ and
α3 ≡ ε over {a, b}, a corresponding system of equations is

a∗b+ ab∗ = a · (a∗b+ b∗) + b · ε+ ∅

a∗b = a · a∗b+ b · ε+ ∅

b∗ = a · ∅+ b · b∗ + ε

ε = a · ∅+ b · ∅+ ε.



3.5. SYSTEMS OF EQUATIONS 25

Given a regular expression α0, the main problem is to find a set of regular expressions
α1, . . . , αn, for which the system Sα0 holds. As previously seen in the section 3.2, for
the deterministic case, the set of ACI+-dissimilar derivatives DACI+(α0) is a solution
for this problem. The Mirkin’s prebases [24] and the partial derivatives are solutions
for the nondeterministic case, as proved by Champarnaud and Ziadi [12]. Moreover,
they proved that the Mirkin’s prebases and the partial derivatives lead to an identical
solution for the system of equations and thus to an identical nondeterministic finite
automaton.

The construction of Mirkin’s automaton is based on the notion of support and prebase
of a regular expression, which are defined bellow.

Definition 3.13. (Support) Consider α0 ∈ RE a regular expression over Σ = {a1,

. . . , ak}. A support of α0 is a set {α1, . . . , αn}, which for each αi ∈ {α0}∪{α1, . . . , αn},
the following equation holds:

αi = a1α1i + · · ·+ akαki + ε(αi), (3.14)

where each αli, with l = 1, . . . , k, is a, possibly empty, sum of elements of {α1, . . . , αn}.

If the set π is a support of the regular expression α, then the set π ∪ {α} is a prebase
of α.

The following proposition gives a recursive definition of a support of a regular expres-
sion. This proposition was proved by Mirkin [24] and Champarnaud [12]. Here, it is
presented a more detailed proof.

Proposition 3.14. Let α ∈ RE be a regular expression over Σ. Then the set π,
recursively defined as follows, is a support of α:

π(∅) = ∅, π(α + β) = π(α) ∪ π(β),

π(ε) = ∅, π(αβ) = π(α)β ∪ π(β),

π(a) = {ε}, π(α∗) = π(α)α∗.

Proof. Let γ0 ∈ RE be a regular expression over Σ = {a1, . . . , ak}. In order to prove
that a given set π is a support of γ0, we need to prove that the equation (3.14) holds
for γ0 and for each element of π. We will proceed by induction on the structure of γ0.
If γ0 ≡ ε or γ0 ≡ ∅, then we have

γ0 = a1∅+ · · ·+ ak∅+ ε(γ),



26 CHAPTER 3. REGULAR EXPRESSIONS

and we can conclude that the empty set ∅ is a support of ∅ and of ε. In the case that
γ0 ≡ ai ∈ Σ, we have

ai = a1∅+ · · ·+ aiε+ · · ·+ ak∅+ ∅

ε = a1∅+ · · ·+ ak∅+ ε,

and, for each ai ∈ Σ, {ε} is a support of it.

Given α0, β0 ∈ RE, suppose, by induction hypothesis, that π(α0) = {α1, . . . , αn} and
π(β0) = {β1, . . . , βm} are supports of α0 and β0, respectively. Therefore, from the
definition of support, we have

αi = a1α1i + · · ·+ akαki + ε(αi), for all i ∈ {0, . . . , n},

and
βj = a1β1j + · · ·+ akβkj + ε(βj), for all j ∈ {0, . . . ,m},

where, for all l ∈ {1, . . . , k}, αli and βlj are sums of elements of π(α0) and π(β0),
respectively.

1. If γ0 ≡ α0+β0, from the definition of the function π, then π(γ0) = π(α0)∪π(β0) =

{α1, . . . , αn, β1, . . . , βm}. Since π(α0), π(β0) ⊆ π(γ0), it is obvious, by induction
hypothesis, that for each αi and βj, where i = 1, . . . n and j = 1, . . .m, the
equation (3.14) holds. Thus, we just need to prove this for γ0. We have the
following equation

γ0 = α0 + β0 = (a1α10 + · · ·+ akαk0 + ε(α0)) + (a1β10 + · · ·+ akβk0 + ε(β0))

= a1(α10 + β10) + · · ·+ ak(αk0 + βk0) + ε(α0 + β0).

Since αl0 and βl0 (l = 1, . . . , k) are a sum of elements of π(α0) and π(β0),
respectively, then αl0+βl0 is a sum of elements of π(α0)∪π(β0) = π(γ0). Thereby,
the set π(α0) ∪ π(β0) is a support of γ0 = α0 + β0.

2. If γ0 ≡ α0β0, then π(γ0) = π(α0)β0 ∪ π(β0) = {α1β0, . . . , αnβ0, β1, . . . , βm}.
Since π(β0) ⊆ π(γ0), it is obvious that the equation (3.14) holds for each βj

(j = 1, . . . ,m). So, we just need to prove that the equation holds for every αiβ0,
i = 0, . . . , n. Note that, in this way, we are also proving it for γ0. Given that
the following equation holds

αiβ0 = a1α1iβ0 + · · ·+ akαkiβ0 + ε(αi)β0,



3.5. SYSTEMS OF EQUATIONS 27

there are two possible cases: ε(αi) = ∅ or ε(αi) = ε. If ε(αi) = ∅, we have that
ε(αi)β0 = ∅ · β0 = ∅ · ε(β0) = ε(αiβ0) and thus

αiβ0 = a1α1iβ0 + · · ·+ akαkiβ0 + ε(αiβ0).

Since αli, for l = 1, . . . , k, is a sum of elements of π(α0), then αliβ0 is a sum of
elements of π(α0)β0 ⊆ π(γ0). If ε(αi) = ε, the following equation holds:

αiβ0 = a1α1iβ0 + · · ·+ akαkiβ0 + ε(αi)(a1β10 + · · ·+ akβk0 + ε(β0))

= a1(α1iβ0 + β10) + · · ·+ ak(αkiβ0 + βk0) + ε(αiβ0).

Since αliβ0 and βl0 (l = 1, . . . , k) are a sum of elements of π(α0)β0 and π(β0),
respectively, then αliβ0 + βl0 is a sum of elements of π(α0)β0 ∪ π(β0) = π(γ0).
Proved both cases, we can conclude that π(α0)β0 ∪ π(β0) is a support of α0β0.

3. If γ0 ≡ α∗0, then π(γ0) = π(α0)α∗0 = {α1α
∗
0, . . . , αnα

∗
0}. First, we will prove that

the equation (3.14) holds for γ0. We have that

α∗0 = (a1α10 + · · ·+ akαk0 + ε(α0))∗

= (a1α10 + · · ·+ akαk0)∗

= (a1α10 + · · ·+ akαk0)α∗0 + ε

= (a1α10 + · · ·+ akαk0)α∗0 + ε(α∗0)

= a1α10α
∗
0 + · · ·+ akαk0α

∗
0 + ε(α∗0)

Since αl0 (l = 1, . . . , k) is a sum of elements of π(α0), then αl0α
∗
0 is a sum of

elements of π(α0)α∗0. Therefore, we just need to prove that the same holds for
each αiα∗0 (i = 1, . . . , n). We have that

αiα
∗
0 = (a1α1i + · · ·+ akαki + ε(αi))α

∗
0

= a1α1iα
∗
0 + · · ·+ akαkiα

∗
0 + ε(αi)α

∗
0

As in 2., there are two possible cases: ε(αi) = ∅ or ε(αi) = ε. If ε(αi) = ∅, we
have that ε(αi)α∗0 = ∅ · α∗0 = ∅ · ε(α∗0) = ε(αiα

∗
0) and thus the following holds:

αiα
∗
0 = a1α1iα

∗
0 + · · ·+ akαkiα

∗
0 + ε(αiα

∗
0)

Since αli, l = 1, . . . , k, is a sum of elements of π(α0), then αliα
∗
0 is a sum of

elements of π(α0)α∗0 = π(γ0). If ε(αi) = ε, the following holds:

αiα
∗
0 = a1α1iα

∗
0 + · · ·+ akαkiα

∗
0 + ε(αi)(a1α10α

∗
0 + · · ·+ akαk0α

∗
0 + ε(α∗0))



28 CHAPTER 3. REGULAR EXPRESSIONS

= a1(α1iα
∗
0 + α10α

∗
0) + · · ·+ ak(αkiα

∗
0 + αk0α

∗
0) + ε(αiα

∗
0)

Since αliα∗0 and αl0α∗0 (l = 1, . . . , k) are a sum of elements of π(α0)α∗0, then also
is αliα∗0 + αl0α

∗
0. Therefore, have been proved both cases, we conclude that the

set π(α0)α∗0 is a support of α∗0.

Example 3.15. For the regular expression α ≡ (ab+ b)∗ab, the set π(α) is computed
as follows:

π((ab+ b)∗ab) = π((ab+ b)∗)ab ∪ π(ab)

= π(ab+ b)(ab+ b)∗ab ∪ π(a)b ∪ π(b)

= (π(ab) ∪ π(b))(ab+ b)∗ab ∪ π(a)b ∪ π(b)

= (π(a)b ∪ π(b) ∪ π(b))(ab+ b)∗ab ∪ π(a)b ∪ π(b)

= ({ε}b ∪ {ε} ∪ {ε})(ab+ b)∗ab ∪ {ε} ∪ {ε}b

= {b, ε}(ab+ b)∗ab ∪ {b, ε}

= {b(ab+ b)∗ab, (ab+ b)∗ab, b, ε}.

Mirkin [24] also proved that the size of π(α) is finite and |π(α)| ≤ |α|Σ + 1 .

3.6 Regular Expressions to Finite Automata

The methods of transforming regular expressions into an equivalent finite automata
are usually divided in two classes depending on whether ε-transitions are allowed or
not in the resulting finite automaton. The first method presented is the Thompson’s
construction, which converts a regular expression into an ε-NFA. The second method,
due to Glushkov, constructs an NFA without ε-transitions. The last two methods,
Brzozowski’s and Antimirov’s, build a DFA and an NFA, respectively, and are based
on derivatives.

3.6.1 Thompson’s Automata

The Thompson’s automaton [27] transforms a regular expression into an ε-NFA. This
construction can be found in several books on automata and language theory [18,



3.6. REGULAR EXPRESSIONS TO FINITE AUTOMATA 29

22]. Here, we will present the construction proposed by Sheng Yu [28], which differs
from the Thompson’s construction, in the way that the number of final states is not
restricted to one.

Definition 3.16. (Thompson’s Automaton) Let α be a regular expression over the
alphabet Σ. The Thompson’s automaton, Nε, is constructed recursively as follows:

1. If α ≡ ∅, then Nε = 〈{q},Σ, q, δ, ∅〉, where δ(q, a) = ∅, for each a ∈ Σ ∪ {ε}.

2. If α ≡ ε, then Nε = 〈{q},Σ, q, δ, {q}〉, where δ(q, a) = ∅, for each a ∈ Σ ∪ {ε}.

3. If α ≡ a, a ∈ Σ, then Nε = 〈{q, f},Σ, q, δ, {f}〉, where δ(q, a) = f and it is the
only defined transition.

4. Let α1, α2 ∈ RE be regular expressions over Σ, the Nε1 = 〈Q1,Σ, q1, δ1, F1〉 and
Nε2 = 〈Q2,Σ, q2, δ2, F2〉 are the ε-NFA constructed for α1 and α2, respectively.

(a) If α ≡ α1+α2, then Nε = 〈Q,Σ, q, δ, F 〉, such that L(Nε) = L(Nε1)∪L(Nε2)

and where Q = Q1 ∪Q2 ∪ {q}, q 6∈ Q1 ∪Q2, F = F1 ∪ F2 and

δ(q, ε) = {q1, q2},

δ(s, a) = δ1(s, a), if s ∈ Q1 and a ∈ Σ ∪ {ε},

δ(s, a) = δ2(s, a), if s ∈ Q2 and a ∈ Σ ∪ {ε}.

(b) If α ≡ α1α2, then Nε = 〈Q,Σ, q, δ, F 〉, such that L(Nε) = L(Nε1)L(Nε2)

and where Q = Q1 ∪Q2, q = q1, F = F2 and

δ(s, a) = δ1(s, a), if s ∈ Q1 and a ∈ Σ, or s ∈ Q1 \ F1 and a = ε,

δ(s, ε) = δ1(s, ε) ∪ {q2}, if s ∈ F1,

δ(s, a) = δ2(s, a), if s ∈ Q2 and a ∈ Σ ∪ {ε}.

(c) If α ≡ α∗1, then Nε = 〈Q,Σ, q, δ, F 〉, such that L(Nε) = L(Nε1)∗ and where
Q = Q1 ∪ {q}, q 6∈ Q1, F = F1 ∪ {q} and

δ(q, ε) = {q1},

δ(s, ε) = δ1(s, ε) ∪ {q1}, if s ∈ F1,

δ(s, a) = δ1(s, a), if s ∈ Q1 and a ∈ Σ, or s ∈ Q1 \ F1 and a = ε.



30 CHAPTER 3. REGULAR EXPRESSIONS

� ��

�
�

�

�

��
�

�

�
�

�

��

�

Figure 3.1: Diagram of Thompson’s automaton for (ab+ b)∗.

The automaton Nε accepts the language L(α).

In terms of the size of the regular expressions, Thompson’s construction takes linear
space and time.

The diagram corresponding to the Thompson’s automaton of (ab + b)∗ over {a, b} is
shown in Figure 3.1.

3.6.2 Glushkov’s automata

The Glushkov’s automaton (or position automaton) was independently introduced by
Glushkov [17] and McNaughton and Yamada [23]. While the previous construction
builds an ε-NFA, the Glushkov’s automaton is an NFA without ε-transitions.

The marked regular expression of a regular expression α, denoted by α̃, is the regular
expression obtained by marking each alphabet symbol with its position in α. For
example, given α ≡ (ab + b)∗ab, the corresponding marked version is α̃ ≡ (a1b2 +

b3)∗a4b5. The set Σ̃ is the alphabet of the marked regular expression. For example,
α̃ ≡ (a1b2 + b3)∗a4b5 has alphabet Σ̃ = {a1, b2, b3, a4, b5}. The same notation is used to
remove the markings, i.e., ˜̃α ≡ α . The set of positions of α is defined as pos(α) = {1,
2, . . . , |αΣ|} and pos0(α) = pos(α) ∪ {0}.



3.6. REGULAR EXPRESSIONS TO FINITE AUTOMATA 31

Given a regular expression α, the sets first(α̃), last(α̃) and follow(α̃) are defined as
follows:

first(α̃) = {i | aiw ∈ L(α̃), where w ∈ Σ̃∗},

last(α̃) = {i | wai ∈ L(α̃), where w ∈ Σ̃∗},

follow(α̃) = {(i, j) | uaiajv ∈ L(α̃), where u, v ∈ Σ̃∗}.

The set first(α̃) gives the position of the alphabetic symbols that occur at the beginning
of the words in L(α). This set is defined inductively as:

first(∅) = ∅, first(α + β) = first(α) ∪ first(β),

f irst(ε) = ∅, first(αβ) = first(α) ∪ first(β), if ε(α) = ε,

first(ai) = {i}, f irst(αβ) = first(α), if ε(α) = ∅.

f irst(α∗) = first(α),

By contrast, the set last(α̃) gives the position of the alphabetic symbols that occur at
the end of the words in L(α). This set is defined inductively as:

last(∅) = ∅, last(α + β) = last(α) ∪ last(β),

last(ε) = ∅, last(αβ) = last(α) ∪ last(β), if ε(β) = ε,

last(ai) = {i}, last(αβ) = last(α), if ε(β) = ∅.

last(α∗) = last(α),

The set follow(α̃) gives pairs of positions that are consecutive in words of L(α̃). Given
(i, j) ∈ follow(α), ai precedes aj in w. This set is defined inductively as follows:

follow(∅) = follow(ε) = follow(ai) = ∅,

follow(α + β) = follow(α) ∪ follow(β),

follow(αβ) = follow(α) ∪ follow(β) ∪ last(α)× first(β),

follow(α∗) = follow(α) ∪ last(α)× first(α).

Definition 3.17. (Glushkov’s automaton) Let α ∈ RE be a regular expression over
Σ. The Glushkov’s automaton for α is the NFA Npos = 〈pos0(α),Σ, 0, δpos, F 〉, where
δpos(α) = {(0, ãj, j) | j ∈ first(α)} ∪ {(i, ãj, j) | (i, j) ∈ follow(α)} and, if ε(α) = ε,
the final states are F = last(α) ∪ {0}, otherwise, F = last(α). The automaton Npos
accepts the language L(α).



32 CHAPTER 3. REGULAR EXPRESSIONS

The number of states of Npos is exactly n + 1, where n = |α|Σ. The number of
transitions is, in the worst case, n2 + 2. Therefore, the time-complexity of this
construction must be at least O(n2). A naive implementation of the Glushkov’s
automaton is O(n3). Brüggemann-Klein proposed a construction [9] of complexity
O(n2+m), wherem = |α|. Broda et al. [6] presented an alternative recursive definition
for follow(α) , which allows simple implementations in time O(n2).

Example 3.18. For α ≡ (ab + b)∗ab over Σ = {a, b}, the corresponding marked
version of α is α̃ ≡ (a1b2 + b3)∗a4b5 and pos0(α) = {0, 1, 2, 3, 4, 5}. The sets first(α̃),
last(α̃) and follow(α̃) are

first(α̃) = {1, 3, 4},

last(α̃) = {5},

follow(α̃) = {(1, 2), (2, 1), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4), (4, 5)}.

The Glushkov’s automaton for α is the NFA Npos = 〈pos0(α),Σ, 0, δpos, F 〉, where the
transition function is

δpos ={(0, ãj, j) | j ∈ first(α)} ∪ {(i, ãj, j) | (i, j) ∈ follow(α)}

={(0, a, 1), (0, b, 3), (0, a, 4)} ∪ {(1, b, 2), (2, a, 1), (2, b, 3), (2, a, 4),

(3, a, 1), (3, b, 3), (3, a, 4), (4, b, 5)}

and, since ε(α) = ∅, the set of final states is F = last(α) = {5}. The diagram of Npos
is shown in Figure 3.2.

3.6.3 Brzozowski’s Automata

Brzozowski [10] presented a construction of a deterministic finite automaton using
derivatives. This construction builds an automaton where the states are derivatives of
a given regular expression and the transitions of a state by a symbol is given by the
derivative of that state w.r.t. the symbol. Note that, as seen in the section 3.2, a regular
expression has a finite number of ACI+-dissimilar derivatives. This dissimilarity will
be used in the construction, in order to build an automaton with a finite number of
states.

Definition 3.19. (Brzozowski’s Automaton) Let α ∈ RE be a regular expression
over Σ. The Brzozowski’s automaton for α is the DFA D = 〈Q,Σ, q0, δ, F 〉, where the



3.6. REGULAR EXPRESSIONS TO FINITE AUTOMATA 33

�

�
�

�� �

�

�
�
�

�

�

�
�

� ��

Figure 3.2: Diagram of the Glushkov’s automaton for (ab+ b)∗ab.

set of states is Q = DACI+(α), the initial state is q0 = α, the transition function is
defined by δ(q, a) = da(q), for all a ∈ Σ and q ∈ DACI+(α), and the set of final states
is F = {q ∈ DACI+(α) | ε(q) = ε}. The automaton D accepts the language L(α).

Example 3.20. Let α ≡ (ab + b)∗ab over Σ = {a, b}. Let D = 〈Q,Σ, q0, δ, F 〉 be the
Brzozowski’s DFA of α. The initial state of D is q0 = α. The transition function δ is
defined as follows:

δ((ab+ b)∗ab, a) = da((ab+ b)∗ab) = b(ab+ b)∗ab+ b,

δ((ab+ b)∗ab, b) = db((ab+ b)∗ab) = (ab+ b)∗ab,

δ(b(ab+ b)∗ab+ b, a) = da(b(ab+ b)∗ab+ b) = ∅,

δ(b(ab+ b)∗ab+ b, b) = db(b(ab+ b)∗ab+ b) = (ab+ b)∗ab+ ε,

δ((ab+ b)∗ab+ ε, a) = da((ab+ b)∗ab+ ε) = b(ab+ b)∗ab+ b,

δ((ab+ b)∗ab+ ε, b) = db((ab+ b)∗ab+ ε) = (ab+ b)∗ab,

δ(∅, a) = da(∅) = ∅,

δ(∅, b) = db(∅) = ∅.

And thus, the set of states of D is Q = DACI+(α) = {b(ab + b)∗ab + b, (ab + b)∗ab,

(ab + b)∗ab + ε} and the set of final states is F = {(ab + b)∗ab + ε}. The diagram of
D is depicted in Figure 3.3.



34 CHAPTER 3. REGULAR EXPRESSIONS

�����������

� ������������������

�

��

�������������

�

����

�

�

Figure 3.3: Diagram of the Brzozowski’s automaton for (ab+ b)∗ab.

3.6.4 Partial Derivative’s Automata

Antimirov [2] presents a construction for an NFA based on partial derivatives. This
automaton is the nondeterministic version of the Brzozowski’s DFA. The construction
of the automaton is given below.

Definition 3.21. (Partial Derivative’s Automaton) Let α ∈ RE be a regular
expression over Σ. The partial derivative’s automaton for α is the NFA N = 〈Q,
Σ, q0, δ, F 〉, where the set of states is Q = PD(α), the initial state is q0 = α, the
transition function is defined by δ(q, a) = ∂a(q), for all a ∈ Σ and q ∈ PD(α), and
the set of final states is F = {q ∈ PD(α) | ε(q) = ε}. The automaton N accepts the
language L(α).

The partial derivative’s automaton for a regular expression α has at most |α|Σ + 1

states, as proved by Antimirov [2].

As mentioned in the section 3.5, Champarnaud and Ziadi [12] proved that Mirkin’s
prebases and partial derivatives lead to identical nondeterministic finite automata.
Since the set of states of partial derivative’s automaton is Q = PD(α) and the set of
Mirkin’s construction is the prebase of α, then PD(α) = π(α) ∪ {α}.



3.7. FADO 35

Since the linear form is an efficient way to compute partial derivatives, the transi-
tion function of the partial derivative’s automaton of a regular expression α can be
computed using it:

δ(α, a) = {α′ | (a, α′) ∈ lf (α)}, for all α′ ∈ π(α) and a ∈ Σ,

where each (a, α′) ∈ lf (α) denotes a transition from the state α by the symbol a to
the state α′.

Example 3.22. Let α be the regular expression (ab + b)∗ab over Σ = {a, b}. The
corresponding partial derivative’s automaton for α is the automaton N = 〈Q,Σ, q0, δ,

F 〉, where: the set of states is Q = π(α) = {(ab+b)∗ab, b(ab+b)∗ab, b, ε}, as computed
in Example 3.15, the initial state is q0 = α. Since

lf ((ab+ b)∗ab) = {(a, b(ab+ b)∗ab), (a, b), (b, (ab+ b)∗ab)},

lf (b(ab+ b)∗ab) = {(b, (ab+ b)∗ab)},

lf (b) = {(b, ε)},

lf (ε) = {},

the transition function is defined as follows:

δ((ab+ b)∗ab, a) = {b(ab+ b)∗ab, a}, δ(b, a) = ∅,

δ((ab+ b)∗ab, b) = {(ab+ b)∗ab}, δ(b, b) = {ε},

δ(b(ab+ b)∗ab, a) = ∅, δ(ε, a) = ∅,

δ(b(ab+ b)∗ab, b) = {(ab+ b)∗ab}, δ(ε, b) = ∅.

The set of final states is F = {ε}. The diagram of the automaton is shown in Figure
3.4.

3.7 FAdo

The FAdo system provides tools to manipulate regular expressions. As for finite
automata, there is a module defining regular expressions - the module reex. The
main class implemented in this module is the class regexp.



36 CHAPTER 3. REGULAR EXPRESSIONS

�����������

�

������������
�

�

�

�

��

Figure 3.4: Diagram of the partial derivative’s automaton for (ab+ b)∗ab.

The classes atom, epsilon, emptyset, concat, disj and star, representing the
alphabetic symbols, the empty word, the empty set, the concatenation, the disjunction
and the Kleene star, respectively, inherit from regexp. The class diagram in Figure
3.5 shows this inheritance.

���������

�����������

�����������

���������������

��������� �������������

��������������������

������������

���������

Figure 3.5: Class diagram of the FAdo module reex.

Using the function reex.str2regexp(str), we can convert a string into a FAdo
regular expression, where str is the string that we want to convert. The empty word,
the empty set, the disjunction and the Kleene star are represented by the strings
@epsilon, @emptyset, + and ∗, respectively. The string corresponding to (a(ab+c)∗+ε)

is a(ab+c)∗+@epsilon.



3.7. FADO 37

>>> from FAdo.reex import *

>>> re = str2regexp("a(ab+c)* + @epsilon")

>>> re

disj(concat(atom(a),star(disj(concat(atom(a),atom(b)),atom(c))

)),epsilon())

>>> print re

(a ((a b) + c)*) + @epsilon

The methods regexp.treeLength() and regexp.alphabeticLength() returns
the size and alphabetic size of a regular expression, respectively. We can set the
alphabet of a regular expression by using regexp.setSigma(set).

We can test if a regular expression is equivalent to another (regexp.compare(re))
and if a regular expression possesses the empty word property (regexp.ewp()). To
verify if two regular expressions are syntactically identical we use the operator ==.

>>> re.compare(str2regexp("@epsilon + a(ab+c)*")

True

>>> re == str2regexp("@epsilon + a(ab+c)*")

False

>>> re.ewp()

True

Furthermore, it is possible to evaluate the derivative and the set of partial deriva-
tives w.r.t. a symbol of a regular expression (regexp.derivative(symbol) and
regexp.partialDerivatives(symbol), respectively), the linear form of a regular
expression (regexp.linearForm()), the set of all partial derivatives (regexp.PD())
and the support (regexp.support()) of a regular expression.

>>> re = str2regexp("aa+b")

>>> re.derivative(’a’)

disj(concat(epsilon(),atom(a)),emptyset())

>>> re.partialDerivative(’a’)

set([atom(a)])

>>> re.linearForm(’a’)

{’a’: set([atom(a)]), ’b’: set([epsilon()])}

>>> re.support()

set([atom(a), epsilon()])



38 CHAPTER 3. REGULAR EXPRESSIONS

>>> re.support().union({re}) == re.PD()

True

There are several methods available to convert a regular expression into a finite au-
tomata. Among these, we can build the Thompson’s (regexp.nfaThompson()), the
Glushkov’s (regexp.nfaPosition()) and the partial derivate’s (regexp.nfaPD())
automaton. Since the operator == defined for the above classes is not ACI+-dissimilar,
the construction of the Brzozowski’s automaton is not possible in FAdo.



Chapter 4

Regular Expressions with Intersection

Since the regular languages are closed under intersection, a regular expression can be
enriched with the binary operator ∩, representing the intersection. The definition of
a regular expression with intersection is given bellow.

Definition 4.1. (Regular Expression with Intersection) Let Σ be an alphabet.
A regular expression with intersection over Σ is given by the following grammar:

α := ∅ | ε | a ∈ Σ | (α + α) | (α ∩ α) | (α · α) | (α)∗.

The language L(α) associated with α is defined inductively as defined for RE (see page
15), adding the case L(α ∩ β) = L(α) ∩ L(β). The set of all regular expressions with
intersection is denoted by RE∩.

We assume that the operator ∩ has higher precedence than + and lower precedence
than ·. Hence, we have the following precedences: ∗ > · > ∩ > +. The definitions
of equivalence, size, alphabetic size and empty word property (e.w.p.) are defined in
exactly the same way as for RE. However, given α, β ∈ RE∩, the function ε : RE∩ → {ε,
∅}, defining the e.w.p., is defined recursively as for RE, adding the following cases:

ε(α ∩ β) = ε, if ε(α) = ε(β) = ε,

ε(α ∩ β) = ∅, if ε(α) = ∅ or ε(β) = ∅.

39



40 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

4.1 Algebra of RE∩

The set of regular expression RE∩ over Σ constitutes an algebraic structure (RE∩,+,

·,∩, ∗, ∅, ε), where (RE∩,+, ·, ∗, ∅, ε) is a Kleene algebra and ∩ is a binary operator
satisfying the axioms (A12) to (A24), which are presented below.

Antimirov [3] presents an axiomatization for the regular expressions with intersection
RE∩, the system AX, and also proved that AX is complete and sound. The axiomatic
system AX is an extension of the system F1, presented in the section 3.1. The
axiomatic system AX is a set of 24 equational axioms, the axioms of the system
F1, (A1)-(A11), and the 13 axioms presented below:

(ε ∩ β) = ∅ ∧ (α = βα + γ)⇒ α = β∗γ, (A12)

ε ∩ (α · β) = (ε ∩ α) ∩ β, (A13)

ε ∩ α∗ = ε, (A14)

ε ∩ a = ∅, (A15)

∅ ∩ α = ∅, (A16)

α ∩ α = α, (A17)

α ∩ β = β ∩ α, (A18)

α ∩ (β ∩ γ) = (α ∩ β) ∩ γ, (A19)

α ∩ (β + γ) = (α ∩ β) + (α ∩ γ), (A20)

α + (α ∩ β) = α, (A21)

(a1 · α) ∩ (a2 · β) = (a1 ∩ a2)(α ∩ β), (A22)

(α · a1) ∩ (β · a2) = (α ∩ β) · (a1 ∩ a2), (A23)

ai ∩ aj = ∅, ai, aj ∈ Σ such that ai 6= aj, (A24)

for all a, a1, a2 ∈ Σ and all α, β, γ ∈ RE∩.

In RE, the empty word property cannot be interpreted as universal Horn formula.
However in RE∩ this problem disappears, since the e.w.p. can be expressed equation-
ally by

α possesses e.w.p. ⇐⇒ ε ∩ α = ε,

α does not possess e.w.p. ⇐⇒ ε ∩ α = ∅.



4.2. DERIVATIVES 41

In this way, the solution of equations rule can be expressed by an equational implica-
tion, which is given by the axiom (A12).

Note that the operator · is not distributive over the operator ∩, that is, the following
equations are, in general, not valid in RE∩:

α · (β ∩ γ) = (α ∩ β) · (α ∩ γ),

(α ∩ β) · γ = (α ∩ γ) · (β ∩ γ),

for all α, β, γ ∈ RE∩. It is only valid a restricted distributivity given by the axioms
A22 and A23.

Since, ε ∩ ∅ = ∅ ∩ ε = ∅, by (A16) and (A18), and that ε ∩ ε = ε, by (A17). Thus, it
is possible to redefine the inductive case α ∩ β of the function ε : RE∩ → {∅, ε}, as
follows:

ε(α ∩ β) = ε(α) ∩ ε(β).

4.2 Derivatives

As mentioned in Remark 3.5, the recursive definition of derivative was also defined by
Brzozowski for the operator intersection. Since the definition for all inductive cases
of RE∩, excepting for intersection, was presented in the section 3.2, for convenience,
only the new case is given bellow.

Definition 4.2. (Derivative) Let α ∈ RE∩ be a regular expression over Σ. The
derivative of α w.r.t. a symbol a ∈ Σ, written da(α), is defined recursively as for RE,
adding the inductive case:

da(α ∩ β) = da(α) ∩ da(β).

Example 4.3. The derivative of α ≡ (b+ ab+ aab+ abab)∩ (ab)∗ w.r.t. a is given by

da(α) = da((b+ ab+ aab+ abab) ∩ (ab)∗)

= da((b+ ab+ aab+ abab)) ∩ da((ab)∗)

= (b+ ab+ bab) ∩ b(ab)∗.



42 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Given α ∈ RE∩ over Σ, the derivative of a regular expression α is extended in the same
way for a word w ∈ Σ∗ as for a regular expression in RE and the property L(dw(α)) =

w−1L(α) holds. For every regular expression α, the equivalence α =
∑
a∈Σ

ada(α) + ε(α)

holds, cf. equation (3.1). Moreover, every regular expression in RE∩ has only a finite
number of ACI+-dissimilar derivatives.

4.3 Partial Derivatives

Caron et al. [11] extended the notion of partial derivative to regular expressions with
intersection and complement. While the partial derivative of simple (non-extended)
regular expressions (Definition 3.6) returns a set of regular expressions, the partial
derivative proposed by the authors returns a set of sets of regular expressions. This
change of codomain is not necessary for partial derivatives of regular expressions with
intersection only. Therefore, here, we present a recursive definition for partial deriva-
tive for regular expressions with intersection, returning a set of regular expressions,
and study some properties of this partial derivatives.

Firstly, let the operation ∩· : 2RE∩ × 2RE∩ → 2RE∩ be an extension of the intersection
for sets of regular expressions. This operation is defined recursively as follows:

∅ ∩· S = ∅, (4.1)

{α} ∩· S = {α ∩ β | β ∈ S}, (4.2)

({α} ∪ S) ∩· S ′ = ({α} ∩· S ′) ∪ (S ∩· S ′), (4.3)

for all S, S ′ ⊆ 2RE∩ and all α, β ∈ RE∩ \ {∅}. The operator ∩· is also right-distributive
over the operator ∪. Thereby, the operator ∩· is distributive over ∪.

Lemma 4.4. Given S, S ′ ⊆ RE∩, L(S ∩· S ′) = L(S) ∩ L(S ′).

Proof. First recall that, for every α1, . . . , αn ∈ RE∩, the equality L({α1, . . . , αn}) =

L(α1 + · · ·+αn) holds. Let S = {α1, . . . , αn} ⊆ RE∩ and S ′ = {β1, . . . , βm} ⊆ RE∩ be
sets of regular expressions. Then, we have the following:

L(S ∩· S ′) = L({α1, . . . , αn} ∩· {β1, . . . , βm})

= L({α1 ∩ β1, . . . , α1 ∩ βm, . . . , αn ∩ β1, . . . , αn ∩ βm}



4.3. PARTIAL DERIVATIVES 43

= L(α1 ∩ β1 + · · ·+ α1 ∩ βm + · · ·+ αn ∩ β1 + · · ·+ αn ∩ βm)

= L(α1 ∩ (β1 + · · ·+ βm) + · · ·+ αn ∩ (β1 + · · ·+ βm))

= L(α1 + · · ·+ αn) ∩ (β1 + · · ·+ βm))

= L(α1 + · · ·+ αn) ∩ L(β1 + · · ·+ βm)

= L({α1, . . . , αn}) ∩ L({β1, . . . , βm})

= L(S) ∩ L(S ′).

Definition 4.5. (Partial Derivatives) Let α ∈ RE∩ be a regular expression over Σ.
The partial derivative of α w.r.t. a symbol a ∈ Σ, written ∂a(α), is defined recursively
as for RE, adding the inductive case:

∂a(α ∩ β) = ∂a(α) ∩· ∂a(β).

The definition of the set of partial derivatives is extended to words, sets of words and
to sets of regular expressions in the same way as for simple regular expressions.

Example 4.6. The set of partial derivatives of α ≡ (b+ab+aab+abab)∩ (ab)∗ w.r.t.
a is given by

∂a(α) = ∂a((b+ ab+ aab+ abab) ∩ (ab)∗)

= ∂a((b+ ab+ aab+ abab)) ∩· ∂a((ab)∗)

= {b, ab, bab} ∩· {b(ab)∗}

= {b ∩ b(ab)∗, ab ∩ b(ab)∗, bab ∩ b(ab)∗}.

The relation between the partial derivative and the derivative of a regular expressions
with intersection is given by Proposition 3.8. This relation is obtained by proving
that the partial derivative of a regular expression α ∈ RE∩ over Σ denotes the same
language as the left quotient of that regular expression, since L(dw(α)) = w−1L(α),
for every w ∈ Σ∗. In order to prove that L(∂w(α)) = w−1L(α), we first need to prove
that L(∂a(α)) = a−1L(α), for a ∈ Σ.

Lemma 4.7. For all a ∈ Σ and all α ∈ RE∩, L(∂a(α)) = a−1L(α).

Proof. We proceed by induction on the structure of α. Antimirov [2] proved this for all
cases, excepting for α∩ β. Thus, here we will only present the proof for the inductive



44 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

case α ∩ β. Let α, β ∈ RE∩ and a ∈ Σ and suppose by inductive hypothesis that
L(∂a(α)) = a−1L(α) and L(∂a(β)) = a−1L(β). Then

L(∂a(α ∩ β)) = L(∂a(α) ∩· ∂a(β))

= L(∂a(α)) ∩ L(∂a(β))

= a−1L(α) ∩ a−1L(β)

= a−1L(α ∩ β).

Proposition 4.8. Given w ∈ Σ∗ and α ∈ RE∩, L(∂w(α)) = w−1L(α).

Proof. The proof follows in the same way as the proof for the case that α ∈ RE

(Proposition 3.8).

The next lemma states an useful property of ∂w extended to sets of regular expressions
with intersection.

Lemma 4.9. For all S, S ′ ⊆ RE∩ over Σ and a ∈ Σ, the following property holds

∂a(S ∩· S ′) = ∂a(S) ∩· ∂a(S ′). (4.4)

Proof. Let a ∈ Σ and let S, S ′ ⊆ RE∩, such that S = {α1, . . . , αn} and S ′ = {β1, . . . ,

βm}. Then,

∂a(S ∩· S ′) =∂a({α1, . . . , αn} ∩· {β1, . . . , βm})

=∂a({α1 ∩ β1, . . . , α1 ∩ βm, . . . , αn ∩ β1, . . . , αn ∩ βm})

=∂a(α1 ∩ β1) ∪ · · · ∪ ∂a(α1 ∩ βm) ∪ · · · ∪

∂a(αn ∩ β1) ∪ · · · ∪ ∂a(αn ∩ βm)

=(∂a(α1) ∩· ∂a(β1)) ∪ · · · ∪ (∂a(α1) ∩· ∂a(βm)) ∪ · · · ∪

(∂a(αn) ∩· ∂a(β1)) ∪ · · · ∪ (∂a(αn) ∩· ∂a(βm))

=
⋃

αi∈S,βj∈S′
{α′i ∩ β′j | α′i ∈ ∂a(αi), β′j ∈ ∂a(βj)}

=
⋃
αi∈S

∂a(αi) ∩·
⋃
βj∈S′

∂a(βj)

=∂a(S) ∩· ∂a(S ′).



4.3. PARTIAL DERIVATIVES 45

Recall that Suf (w) is the set of all non-empty suffixes of w, being defined as Suf (w) =

{v ∈ Σ+ | ∃u ∈ Σ∗ : uv = w}. The following lemma presents some properties of the
function ∂w.

Lemma 4.10. For every regular expressions α, β ∈ RE∩ and word w ∈ Σ+, ∂w satisfies
the following:

∂w(α + β) = ∂w(α) ∪ ∂w(β), (4.5)

∂w(α ∩ β) = ∂w(α) ∩· ∂w(β), (4.6)

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈Suf(w)

∂v(β), (4.7)

∂w(α∗) ⊆
⋃

v∈Suf(w)

∂v(α)α∗. (4.8)

Proof. Antimirov[2] proved the equations (4.5), (4.7) and (4.8). Thus, we only present
the proof for the equation (4.6).

The proof of the statement ∂w(α ∩ β) = ∂w(α) ∩· ∂w(β) is done by induction on w.
If w = ε, then ∂ε(α ∩ β) = {α ∩ β} = {α} ∩· {β} = ∂ε(α) ∩· ∂ε(β). Suppose that
∂w(α∩ β) = ∂w(α)∩· ∂w(β) holds for a given w, we prove it for w′ = wa, where a ∈ Σ.
So, from Lemma 4.9, we have the following

∂wa(α ∩ β) = ∂a(∂w(α ∩ β)) = ∂a(∂w(α) ∩· ∂w(β))

= ∂a(∂w(α)) ∩· ∂a(∂w(β)) = ∂wa(α) ∩· ∂wa(β).

As previously shown, for a simple regular expression, the set ∂+ can be defined
inductively by systems of equations. In this section, we prove that this is not possible
for a regular expression with intersection. For now, we present some inclusions for this
set.

Proposition 4.11. For every regular expression α, β ∈ RE∩, the following inclusions
hold:

∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β), (4.9)

∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β), (4.10)

∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β), (4.11)

∂+(α∗) ⊆ ∂+(α)α∗. (4.12)



46 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Proof. First note that, given a set E and a regular expression α ∈ RE∩, if ∂w(α) ⊆ E,
for all w ∈ Σ+, then it holds that

⋃
w∈Σ+ ∂w(α) ⊆ E and thus ∂+(α) ⊆ E. Moreover,

we know that for every w ∈ Σ+, ∂w(α) ⊆ ∂+(α), since ∂+(α) =
⋃
w∈Σ+ ∂w(α). Let

α, β ∈ RE∩ be regular expressions over Σ. In order to prove the inclusions (4.9), (4.10),
(4.11) and (4.12), the facts mentioned above are used. The proof of each inclusion is
given, respectively, by the following four proofs:

1. From equation (4.5), for all w ∈ Σ+, the following holds:

∂w(α + β) = ∂w(α) ∪ ∂w(β) ⊆ ∂+(α) ∪ ∂+(β).

And thus, we can conclude that ∂+(α ∪ β) ⊆ ∂+(α) ∪ ∂+(β).

2. In the same way, from equation (4.6), for all w ∈ Σ+, the following holds:

∂w(α ∩ β) ⊆ ∂w(α) ∩· ∂w(β) ⊆ ∂+(α) ∩· ∂+(β).

And then, ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β).

3. From equation (4.7), for all w ∈ Σ+, the following holds:

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈Suf(w)

∂v(β)

⊆ ∂+(α)β ∪ ∂+(β).

Thus, ∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β).

4. Finally, from equation (4.8), for all w ∈ Σ+, the following holds:

∂w(α∗) ⊆
⋃

v∈Suf(w)

∂v(α)α∗ ⊆ ∂+(α)α∗.

Therefore, we have that ∂+(α∗) ⊆ ∂+(α)α∗.

Example 4.12. For the regular expression α ≡ (b + ab + aab + abab) ∩ (ab)∗ over
{a, b}, we have

∂a(α) = {b ∩ b(ab)∗, ab ∩ b(ab)∗, bab ∩ b(ab)∗}, ∂b(α) = ∅,

∂a(b ∩ b(ab)∗) = ∅, ∂b(b ∩ b(ab)∗) = {ε ∩ (ab)∗},



4.4. LINEAR FORM 47

∂a(ab ∩ b(ab)∗) = ∅, ∂b(ab ∩ b(ab)∗) = ∅,

∂a(bab ∩ b(ab)∗) = ∅, ∂b(bab ∩ b(ab)∗) = {ab ∩ (ab)∗},

∂a(ε ∩ (ab)∗) = ∅, ∂b(ε ∩ (ab)∗) = ∅,

∂a(ab ∩ (ab)∗) = {b ∩ b(ab)∗}, ∂b(ab ∩ (ab)∗) = ∅,

and thus ∂+(α) = {bab ∩ b(ab)∗, ab ∩ b(ab)∗, b ∩ b(ab)∗, ab ∩ (ab)∗, ε ∩ (ab)∗}. However,
being β = (b+ ab+ aab+ abab), it follows that

∂+(β) ∩· ∂+((ab)∗) ={bab ∩ b(ab)∗, ab ∩ b(ab)∗, b ∩ b(ab)∗,

ε ∩ b(ab)∗, bab ∩ (ab)∗, ab ∩ (ab)∗, b ∩ (ab)∗, ε ∩ (ab)∗}.

And then, we can conclude that ∂+(α) $ ∂+(b+ ab+ aab+ abab) ∩· ∂+((ab)∗).

4.4 Linear Form

Since, partial derivatives are extensible to intersection, the notion of linear form can
also be extended. In this section we present the definition of the linear form of a regular
expression with intersection and prove that it computes all the partial derivatives w.r.t.
every alphabet symbol of the regular expression.

Let us define Mon∩ = Σ × RE∩ as the set of all monomials for a given alphabet Σ.
Recall that a monomial is a pair (a, α), where a ∈ Σ and α ∈ RE∩, and that the
properties given by equations (3.11) and (3.12) hold for monomials.

Furthermore, we need to extend the operator ∩· to sets of monomials. Let the operation
∩· : 2Mon∩×2Mon∩ → 2Mon∩ be an extension of intersection for sets of monomials. The
operator is defined recursively as:

∅ ∩· S = ∅, (4.13)

{(a, α)} ∩· S = {(a, α ∩ β) | (a, β) ∈ S}, (4.14)

({(a, α)} ∪ S) ∩· S ′ = ({(a, α)} ∩· S ′) ∪ (S ∩· S ′), (4.15)

where a, b ∈ Σ, α, β ∈ RE∩ \ {∅} and S, S ′ ⊆ 2RE∩ . The extended operator ∩· is also
right-distributive over the operator ∪. And thus the operator ∩· is distributive over ∪.

Definition 4.13. (Linear Form) The function lf : RE∩ → 2Mon∩ returns the linear
form of a regular expression with intersection and it is defined recursively as for RE,



48 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

adding the inductive case:

lf (α ∩ β) = lf (α) ∩· lf (β),

where α, β ∈ RE over Σ.

Example 4.14. The linear form of α ≡ (b+ ab+ aab+ abab) ∩ (ab)∗ is

lf (α) =lf ((b+ ab+ aab+ abab) ∩ (ab)∗)

=lf ((b+ ab+ aab+ abab)) ∩· lf ((ab)∗)

={(b, ε), (a, b), (a, ab), (a, bab)} ∩· {(a, b(ab)∗)}

={(a, b ∩ b(ab)∗), (a, ab ∩ b(ab)∗), (a, bab ∩ b(ab)∗)}.

As for the case of simple regular expression, the set of partial derivatives w.r.t. a
symbol of a regular expression with intersection can also be defined using the function
lf. This is showed by the next proposition.

Proposition 4.15. Given α ∈ RE∩ over Σ and a ∈ Σ, then

∂a(α) = {α′ ∈ RE∩ \ {∅} | (a, α′) ∈ lf (α)}.

Proof. We proceed by induction on the structure of α. The proof for all cases, except
for α ∩ β, was given by Antimirov [2]. Therefore, here, we only present the proof for
the inductive case α∩β. First note that, for a regular expression α ∈ RE∩ over Σ and
a ∈ Σ, ∂a(α) = {α′ ∈ RE∩ \ {∅} | (a, α′) ∈ lf(α)} is the same as having

lf (α) =
⋃
a∈Σ

{(a, α′) | α′ ∈ ∂a(α)}. (4.16)

Thus, given α, β ∈ RE∩ over Σ = {a1, . . . , ak}, suppose by inductive hypothesis that
the equation (4.16) holds for α and β. Then, we have

lf (α ∩ β) =lf (α) ∩· lf (β)

=
⋃
a∈Σ

{(a, α′) | α′ ∈ ∂a(α)} ∩·
⋃
a∈Σ

{(a, β′) | β′ ∈ ∂a(β)}

=

( ⋃
α1i∈∂a1 (α)

(a1, α1i) ∪ · · · ∪
⋃

αki∈∂ak (α)

(ak, αki)

)
∩·

∩·

( ⋃
β1j∈∂a1 (β)

(a1, β1j) ∪ · · · ∪
⋃

βkj∈∂ak (β)

(ak, βkj)

)



4.5. SYSTEMS OF EQUATIONS 49

=

( ⋃
α1i∈∂a1 (α)

(a1, α1i) ∩·
⋃

β1j∈∂a1 (β)

(a1, β1j)

)
∪ · · · ∪

∪

( ⋃
α1i∈∂a1 (α)

(a1, α1i) ∩·
⋃

βkj∈∂ak (β)

(ak, βkj)

)
∪ · · · ∪

∪

( ⋃
αki∈∂ak (α)

(ak, αki) ∩·
⋃

β1j∈∂a1 (β)

(a1, β1j)

)
∪ · · · ∪

∪

( ⋃
αki∈∂ak (α)

(ak, αki) ∩·
⋃

βkj∈∂ak (β)

(ak, βkj)

)

={(a1, α1i ∩ β1j) | α1i ∈ ∂a1(α), β1j ∈ ∂a1(β)} ∪ · · · ∪

∪ {(ak, αki ∩ βkj) | αki ∈ ∂ak(α), βkj ∈ ∂ak(β)}

=
⋃
a∈Σ

{(a, α′ ∩ β′) | α′ ∈ ∂a(α), β′ ∈ ∂a(β)}

=
⋃
a∈Σ

{(a, α′ ∩ β′) | α′ ∩ β′ ∈ ∂a(α) ∩· ∂(β)}

=
⋃
a∈Σ

{(a, α′ ∩ β′) | α′ ∩ β′ ∈ ∂a(α ∩ β)}.

4.5 Systems of Equations

In this section, we present a recursive definition of a support of regular expressions
with intersection. We also prove an upper bound for the size of this support and that
the upper bound is tight by exhibiting a witness.

Let α0 ∈ RE∩ be a regular expression over Σ = {a1, . . . ak}. As seen in the section 3.5,
a support of α0 is defined as being a set {α1, . . . , αn}, which for each αi ∈ {α0}∪ {α1,

. . . , αn}, the following equation holds:

αi = a1α1i + · · ·+ akαki + ε(αi),

where each αli, with l = 1, . . . , k, is a, possibly empty, sum of elements of {α1, . . . , αn}.
The next proposition extends the notion of support for regular expressions in RE∩.



50 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Proposition 4.16. Let α ∈ RE∩ be a regular expression over Σ. Then the set π,
defined recursively as follows, is a support of α:

π(∅) = ∅, π(α + β) = π(α) ∪ π(β), π(α∗) = π(α)α∗.

π(ε) = ∅, π(α ∩ β) = π(α) ∩· π(β),

π(a) = {ε}, π(αβ) = π(α)β ∪ π(β),

Proof. We proceed by induction on the structure of the regular expression γ0 ∈ RE∩
The proof for all inductive cases of γ0, excluding α0∩β0, was presented in Proposition
3.14, so here we need prove that case. In order to demonstrate that a set π is a support
of a regular expression, we need to prove that the equation (3.14) holds for the regular
expression and for each element in π.

Given the regular expressions α0, β0 ∈ RE∩ over Σ = {a1, . . . , ak}, suppose by induc-
tion hypothesis that π(α0) = {α1, . . . , αn} and π(β0) = {β1, . . . , βm} are supports of
α0 and β0, respectively. Therefore, from the definition of support, we have

αi = a1α1i + · · ·+ akαki + ε(αi), for all i ∈ {0, . . . , n},

and
βj = a1β1j + · · ·+ akβkj + ε(βj), for all j ∈ {0, . . . ,m},

where, for all l ∈ {1, . . . , k}, αli and βlj are sums of elements of π(α0) and π(β0),
respectively.

In the case that γ0 ≡ α0 ∩ β0, we have that π(γ0) = π(α0 ∩ β0) = π(α0) ∩· π(β0) =

{α1 ∩ β1, . . . , α1 ∩ βm, . . . , αn ∩ β1, . . . , αn ∩ βm}. Notice that, if we prove that the
equation (3.14) holds for each αi ∩ βj, such that i = 0, . . . , n and j = 0, . . . ,m, we are
proving it for the regular expression γ0 ≡ α0 ∩ β0 and for each element belonging to
π. That is what we will do. So, we have

αi ∩ βj =(a1α1i + · · ·+ akαki + ε(αi)) ∩ (a1β1j + · · ·+ akβkj + ε(βj)) (4.17)

=(a1α1i ∩ a1β1j) + · · ·+ (a1α1j ∩ akαki) + (a1α1j ∩ ε(βj)) + · · ·+

+ (akαki ∩ a1β1j) + · · ·+ (akαki ∩ akβkj) + (akαki ∩ ε(βj)) + · · ·+

+ (ε(αi) ∩ a1β1j) + · · ·+ (ε(αi) ∩ akβkj) + (ε(αi) ∩ ε(βj)) (4.18)

=(a1 ∩ a1)(α1i ∩ β1j) + · · ·+ (a1 ∩ ak)(α1j ∩ αki)+

+ (a1 ∩ ε(βj))(α1j ∩ ε) + . . .+ (ak ∩ a1)(αki ∩ β1j) + · · ·+



4.5. SYSTEMS OF EQUATIONS 51

+ (ak ∩ ak)(αki ∩ βkj) + (ak ∩ ε(βj))(αki ∩ ε) + · · ·+

+ (ε(αi) ∩ a1)(ε ∩ β1j) + · · ·+ (ε(αi) ∩ ak)(ε ∩ βkj)+

+ (ε(αi) ∩ ε(βj)) (4.19)

=(a1 ∩ a1)(α1i ∩ β1j) + · · ·+ (ak ∩ ak)(αki ∩ βkj) + (ε(αi) ∩ ε(βj)) (4.20)

=a1(α1i ∩ β1j) + · · ·+ ak(αkj ∩ βkj) + ε(αi ∩ βj), (4.21)

for each i = 0, . . . , n and j = 0, . . . ,m. In these calculations, we made use of some
axioms of the system F1. In the step (4.18), the axiom A20 was used, corresponding
to the distributivity of + over ∩. In the step (4.19), A7, A13 and A22 were the axioms
used. In the step (4.20), we made use of A15, A16 and A24. In the last step (4.21), it
was used the axiom A17, corresponding to the idempotence of ∩.

We know that each αli and βlj, l = 1, . . . , k, is a sum of elements of π(α0) and π(β0),
respectively. Let Ili ⊆ {1, . . . , n} and Jlj ⊆ {1, . . . ,m} be sets of indexes of regular
expressions in π(α0) and π(β0), respectively, such that αli =

∑
i′∈Ili

αi′ and βlj =
∑
j′∈Jlj

βj′ .

Since, for all l = 1, . . . , k, i = 0, . . . , n and j = 0, . . . ,m, the following equation holds

αli ∩ βlj =
∑
i′∈Ili

αi′ ∩
∑
j′∈Jlj

βj′ =
∑

i′∈Ili,j′∈Jlj

(αi′ ∩ βj′),

the regular expression αli ∩ βlj is a sum of expressions in π(α0) ∩· π(β0) = π(γ0) and
thus the set π(α0) ∩· π(β0) is a support of α0 ∩ β0.

Example 4.17. For the regular expression α ≡ (b+ ab+ aab+ abab) ∩ (ab)∗, the set
π(α) is computed as follows:

π(α) =π((b+ ab+ aab+ abab) ∩ (ab)∗)

=π((b+ ab+ aab+ abab)) ∩· π((ab)∗)

=(π(b) ∪ π(ab) ∪ π(aab) ∪ π(abab)) ∩· π((ab)∗)

=({ε} ∪ {b, ε} ∪ {ab, b, ε} ∪ {bab, ab, b, ε}) ∩· {b(ab)∗, (ab)∗}

={bab, ab, b, ε} ∩· {b(ab)∗, (ab)∗}

={bab ∩ b(ab)∗, ab ∩ b(ab)∗, b ∩ b(ab)∗, ε ∩ b(ab)∗, bab ∩ (ab)∗,

ab ∩ (ab)∗, b ∩ (ab)∗, ε ∩ (ab)∗}.

Let us define |α|∩ as the number of occurrences of the operator ∩ in α. The next
proposition provides an upper bound on the cardinality of π(α), α ∈ RE∩, proving
that the set is finite.



52 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Proposition 4.18. For every α ∈ RE∩, the inequality |π(α)| ≤ 2|α|Σ−|α|∩−1 holds.

Proof. We proceed by induction on the structure of the regular expression α. The proof
that the statement holds for the base cases ε, ∅ and a ∈ Σ is trivial. Assume that the
result holds for some α, β ∈ RE∩. We will make use of the fact that 2m+2n ≤ 2m+n+1,
for any m,n ≥ 0.

Case α + β:

|π(α + β)| = |π(α) ∪ π(β)| = |π(α)|+ |π(β)|

≤ 2|α|Σ−|α|∩−1 + 2|β|Σ−|β|∩−1

≤ 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1+1

= 2|α+β|Σ−|α+β|∩−1.

Case α ∩ β:

|π(α ∩ β)| = |π(α) ∩· π(β)| ≤ |π(α)| · |π(β)|

≤ 2|α|Σ−|α|∩−1 · 2|β|Σ−|β|∩−1

= 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1

= 2|α∩β|Σ−(|α∩β|∩−1)−2

= 2|α∩β|Σ−|α∩β|∩−1.

Case αβ:

|π(αβ)| = |π(α)β ∪ π(β)| ≤ |π(α)β|+ |π(β)|

= |π(α)|+ |π(β)|

≤ 2|α|Σ−|α|∩−1 + 2|β|Σ−|β|∩−1

≤ 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1+1

= 2|αβ|Σ−|αβ|∩−1.

Case α∗:

|π(α∗)| = |π(α)α∗| = |π(α)| ≤ 2|α|Σ−|α|∩−1

= 2|α
∗|Σ−|α∗|∩−1.



4.5. SYSTEMS OF EQUATIONS 53

The next example presents a family of regular expressions, denoted rn, that proves
that the upper bound proved in Proposition 4.18 is tight.

Example 4.19. Let the regular expression rn ∈ RE∩ be defined inductively by

r0 ≡ a∗a,

rn ≡ rn−1 ∩ a∗a.

Using the recursively definition of support it is straightforward that we have the fol-
lowing

π(r0) = π(a∗a) = {a∗a, ε},

π(rn) = {a∗a, ε} ∩· · · · ∩· {a∗a, ε}︸ ︷︷ ︸
n+1

= {α1 ∩ · · · ∩ αn | ∀i ∈ {1, . . . , n}. αi ∈ {a∗a, ε}} for n ≥ 1,

and thus |π(r0)| = 2 and |π(rn)| = |π(r0)|n+1 = 2n+1. Note that |rn|Σ = 2n + 2 and
|rn|∩ = n. So, we have that the support of rn is given by the following

|π(rn)| = 2n+1 = 22n+2−n−1

= 2|rn|Σ−|rn|∩−1,

which is the upper bound given in Proposition 4.18.

4.5.1 Support and Partial Derivatives

As seen in the section 3.5, Champarnaud and Ziadi proved that, for every regular
expression α ∈ RE, π(α)∪ {α} = PD(α). Here, we will prove that this relation is not
verified for every regular expression in RE∩, that is, PD(α′) $ π(α′) ∪ {α′}.

Since PD(α) = ∂+(α) ∪ {α}, then relating PD(α) with π(α) ∪ {α} is the same as to
relate ∂+(α) with π(α). Throughout this section, the latter approach will be preferred.

Proposition 4.20. Given α ∈ RE∩, ∂+(α) ⊆ π(α).

Proof. The proof proceeds by induction on the structure of α. It is trivial that ∂+(∅) =

π(∅), ∂+(ε) = π(ε) and ∂+(a) = π(a), for a symbol a ∈ Σ. Assuming that ∂+(α) ⊆
π(α) and ∂+(β) ⊆ π(β) holds, for α, β ∈ RE∩, consider the following cases:



54 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

1. For the case α + β, from the inclusion (4.9), we have the following:

∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β) ⊆ π(α) ∪ π(β).

2. For the case α ∩ β, since the inclusion (4.10) holds, we have:

∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β) ⊆ π(α) ∩· π(β).

3. For the case αβ, from the inclusion (4.11), we have:

∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β) ⊆ π(α)β ∪ π(β).

4. Finally, for α∗, we can conclude, from the inclusion (4.12), that:

∂+(α∗) ⊆ ∂+(α)α∗ ⊆ π(α)α∗.

Since, for every regular expression α ∈ RE∩, the set π(α) is finite, Proposition 4.20
also proves that the set ∂+(α) is finite.

The next example demonstrates that there exists α ∈ RE∩ such that π(α) 6= ∂+(α).

Example 4.21. For the regular expression α ≡ (b + ab + aab + abab) ∩ (ab)∗), from
Example 4.17, we have

π(α) ={bab ∩ b(ab)∗, ab ∩ b(ab)∗, b ∩ b(ab)∗, ε ∩ b(ab)∗, bab ∩ (ab)∗,

ab ∩ (ab)∗, b ∩ (ab)∗, ε ∩ (ab)∗}.

However, from Example 4.12, ∂+(α) = {bab ∩ b(ab)∗, ab ∩ b(ab)∗, b ∩ b(ab)∗, ab ∩ (ab)∗,

ε ∩ (ab)∗}. So we can conclude that π(α) 6= ∂+(α).

Although, for (b+ab+aab+abab)∩ (ab)∗, π(α) 6= ∂+(α), there are regular expressions
for which that equality holds, for example, for the regular expression a∗. In this way,
we are able to conclude that ∂+(α) ⊆ π(α), for every α ∈ RE∩, but the inverse is not
true.

For regular expressions α, β ∈ RE∩, the following proposition presents a sufficient and
necessary condition for the equality of π(α ∩ β) and ∂+(α ∩ β).



4.5. SYSTEMS OF EQUATIONS 55

Proposition 4.22. Given α, β ∈ RE∩, π(α ∩ β) = ∂+(α ∩ β) if and only if π(α) =

∂+(α), π(β) = ∂+(β) and ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β).

Proof. (⇒) Let α, β ∈ RE∩. First, from the equation (4.10), note that ∂+(α ∩ β) ⊆
∂+(α) ∩· ∂+(β) and thus |∂+(α ∩ β)| ≤ |∂+(α)| × |∂+(β)|. Moreover, from proposition
4.20, it follows that ∂+(α) ⊆ π(α) and ∂+(β) ⊆ π(β). Now, suppose by contradiction
that ∂+(α) ⊂ π(α) or ∂+(β) ⊂ π(β). Then |∂+(α)| < |π(α)| or |∂+(β)| < |π(β)| and
we have the following:

|∂+(α ∩ β)| ≤ |∂+(α)| × |∂+(β)|

< |π(α)| × |π(β)|

= |π(α) ∩· π(β)| = |π(α ∩ β)|.

So |∂+(α ∩ β)| < |π(α ∩ β)| and then ∂+(α ∩ β) ⊂ π(α ∩ β), which is a contradiction
since π(α ∩ β) = ∂+(α ∩ β). Thus, π(α) = ∂+(α) and π(β) = ∂+(β). Consequently,
we conclude that ∂+(α ∩ β) = π(α ∩ β) = ∂+(α) ∩· ∂+(β).

(⇐) This follows trivially from the definition of support, i.e., π(α∩ β) = π(α)∩· π(β),
since π(α) = ∂+(α) and π(β) = ∂+(β).

The lemma bellow is a useful tool when proving that ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β),
where α, β ∈ RE∩,

Lemma 4.23. Given α, β ∈ RE∩, such that ∂w(α) = π(α) or ∂w(β) = π(β) holds for
all w ∈ Σ+, then ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β).

Proof. First, notice that if γ ∈ RE∩ and ∂w(γ) = π(γ) for every w ∈ Σ+, then
∂+(γ) =

⋃
w∈Σ+ ∂w(γ) = π(γ).

Given α, β ∈ RE∩, there are three possible cases to prove. First, suppose that, for all
w ∈ Σ+, we have ∂w(α) = π(α) and ∂w(β) = π(β). Then

∂+(α ∩ β) =
⋃
w∈Σ+

(∂w(α) ∩· ∂w(β))

= π(α) ∩· π(β) = ∂+(α) ∩· ∂+(β).

It remains to prove the cases that either ∂w(α) = π(α) or ∂w(β) = π(β), for all w ∈ Σ+.
The proof is the same for both cases. We only present the proof for the first case.



56 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Suppose that, for all w ∈ Σ+, ∂w(α) = π(α), it holds that

∂+(α ∩ β) =
⋃
w∈Σ+

(∂w(α) ∩· ∂w(β))

=
⋃
w∈Σ+

(π(α) ∩· ∂w(β))

=
⋃
w∈Σ+

{αi ∩ βj | αi ∈ π(α), βj ∈ ∂w(β)}

=

{
αi ∩ βj

∣∣∣ αi ∈ π(α), βj ∈
⋃
w∈Σ+

∂w(β)

}
= {αi ∩ βj | αi ∈ π(α), βj ∈ ∂+(β)}

= π(α) ∩· ∂+(β)

= ∂+(α) ∩· ∂+(β).

For every regular expression α ∈ RE∩, Proposition 4.20 showed that the set ∂+(α) is
a subset of π(α). In this way, the upper bound on the cardinality of ∂+(α) is at most
the upper bound of |π(α)|, given by Proposition 4.18, i.e., |∂+(α)| ≤ 2|α|Σ−|α|∩−1. This
upper bound can be reached and the following proposition proves it.

Proposition 4.24. For any n ∈ N there exists a regular expression rn ∈ RE∩ of size
O(n) such that |∂+(rn)| = 2|rn|Σ−|rn|∩−1.

Proof. Let the regular expression rn ∈ RE∩ be defined inductively by the following:

r0 = a∗a,

rn = rn−1 ∩ a∗a.

The alphabetic length of rn is given by |rn|Σ = 2n + 2 and thus rn = O(n). The
number of occurrences of the operator ∩ is given by |rn|∩ = n. The cardinality of the
support of rn is given by |π(rn)| = 22n+2−n−1 = 2|rn|Σ−|rn|∩−1 (see Example 4.19).

Now, we will prove that π(rn) = ∂+(rn). The proof proceed by induction on n. For
n = 0, ∂+(a∗a) = {a∗a, ε} = π(a∗a). Let us assume by induction hypothesis that
π(rn) = ∂+(rn), for n ≥ 1. Then we want to show that it holds for rn+1. First, note
that rn+1 = rn ∩ a∗a. Since, for all w ∈ Σ∗, ∂w(a∗a) = π(a∗a), from Lemma 4.23, we
can conclude that ∂+(rn ∩ a∗a) = ∂+(rn)∩· ∂+(a∗a). Being π(a∗a) = ∂+(a∗a), π(rn) =



4.6. REGULAR EXPRESSIONS IN RE∩ TO FINITE AUTOMATA 57

∂+(rn), by induction hypothesis, and ∂+(rn ∩ a∗a) = ∂+(rn) ∩· ∂+(rn), therefore, from
Proposition 4.22, π(rn ∩ a∗a) = ∂+(rn ∩ a∗a) or, equivalently, π(rn+1) = ∂+(rn+1).

4.6 Regular Expressions in RE∩ to Finite Automata

As presented in the section 3.6, the conversion of a simple regular expression into an
nondeterministic finite automata can be done efficiently. For regular expressions with
intersection, however, Gelade [15] gives a 2Ω(n) lower bound to the conversion into
an NFA and a 22Ω(n) lower bound to the conversion into a DFA, with respect to the
number of states.

In the same way as for the simple regular expression, the methods of conversion
of regular expressions with intersection into finite automata can also be divided in
two classes: the methods that the converted automaton allows ε-transitions and the
methods that the automaton does not allow. In this section, we present an extended
version of the Thompson’s automaton. The Brzozowski’s automaton and the partial
derivative’s automaton are defined in the same way as for simple regular expression.
Remember that the Brzozowski’s construction is only finite under ACI+-dissimilarity
and thus it may not terminate for extended regular expressions.

The Glushkov’s automaton, in constrast, does not extend to regular expression with
intersection, since the operator ∩ is not compatible with notion of position. Let us
take as example the regular expression α ≡ (ab∗) ∩ a. The marked version of α is
α̃ ≡ (a1b

∗
2) ∩ a3. Although (ab∗) ∩ a = a, the marked version gets (a1b

∗
2) ∩ a3 = ∅.

So, the language denoted by α is L(α) = {a} and the language denoted by α̃ is
L(α̃) = ∅. And an automaton that accepts the language denoted by α̃ does not accept
the language of α. Thereby, the Glushkov’s construction is not compatible with the
intersection.

4.6.1 Extended Thompson’s Automata

The Thompson’s construction transforms a given regular expression into an equivalent
ε-NFA. Although Thompson does not present an extension of the construction for the
intersection, it is possible to extend it by using the product of automata.



58 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Given α1 ∈ RE and α2 ∈ RE and its corresponding ε-NFA, Nε1 and Nε2 . The language
denoted by the product of Nε1 and Nε2 is the same as the language denoted by the
intersection of α1 and α2, i.e., L(Nε1×Nε2) = L(α1∩α2). And the automaton resulting
from the product of Nε1 and Nε2 is also an ε-NFA.

Definition 4.25. (Extended Thompson’s Automaton) Let α be a regular ex-
pression in RE∩. The ε-NFA Nε is the extended Thompson’s automaton and it is
constructed recursively on the structure of α. All inductive cases, excepting α is α1∩α2,
are defined in Definition 3.16. So here we only define the undefined case.

Let α1, α2 ∈ RE∩ be regular expressions over Σ, the Nε1 = 〈Q1,Σ, q1, δ1, F1〉 and
Nε2 = 〈Q2,Σ, q2, δ2, F2〉 are the Thompson’s automata for α1 and α2. If α is α1 ∩ α2,
then Nε = Nε1 × Nε2 and L(Nε) = L(Nε1) ∩ L(Nε2). That is Nε = 〈Q,Σ, q, δ, F 〉,
where the set of states is Q = {(qi, qj) | qi ∈ Q1 and qj ∈ Q2}, the initial state is
q = (q1, q2), the set of final states is F = {(qi, qj) | qi ∈ F1 and qj ∈ Q2} and the
transition function is given by

δ((qi, qj), ε) ={(q′i, q′j) | q′i ∈ δ(qi, ε) and q′j ∈ δ(qj, ε)}

∪ {(q′i, qj) | q′i ∈ δ(qi, ε)}

∪ {(qi, q′j) | q′j ∈ δ(qj, ε)},

δ((qi, qj), a) ={(q′i, q′j) | q′i ∈ δ(qi, a) and q′j ∈ δ(qj, a)},

for all a ∈ Σ, qi ∈ Q1 and qj ∈ Q2.

The number of states of the automaton resulting from this construction for a regular
expression with intersection is exponential with respect to the size of the regular
expression.

Given the regular expression α = (a+b)∩a, the diagram of the Thompson’s automaton
for α is shown in Figure 4.1.

4.6.2 Partial Derivative’s Automata

As previously mentioned, the partial derivative’s automaton is defined in the same
way as for simple regular expressions. For a regular expression with intersection α,
the partial derivative’s automaton has at most 2|α|Σ−|α|∩−1 + 1 states (cf. Proposition
4.24).



4.6. REGULAR EXPRESSIONS IN RE∩ TO FINITE AUTOMATA 59

�
��

�

�

��

�
�

�

Figure 4.1: Diagram of the Thompson’s automaton for (a+ b) ∩ a.

�

�����������

�

�������������

�������������

�

�����������

�����������

�

�

Figure 4.2: Diagram of the partial derivative’s automaton for (b+ab+aab+abab)∩(ab)∗.



60 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

Example 4.26. Let α be the regular expression (b+ab+aab+abab)∩(ab)∗ over Σ = {a,
b}. The partial derivative’s automaton of α is the automaton Npd = 〈Q,Σ, q0, δ, F 〉,
where the set of states is Q = ∂+(α) = {bab ∩ b(ab)∗, ab ∩ b(ab)∗, b ∩ b(ab)∗, ab ∩ (ab)∗,

ε∩ (ab)∗}, as computed in Example 4.21, the initial state q0 = α, the set of final states
is F = {ε ∩ (ab)∗} and the transition function is

δ(α, a) = {b ∩ b(ab)∗, ab ∩ b(ab)∗, bab ∩ b(ab)∗}, δ(α, b) = ∅,

δ(b ∩ b(ab)∗, a) = ∅, δ(b ∩ b(ab)∗, b) = {ε ∩ (ab)∗},

δ(ab ∩ b(ab)∗, a) = ∅, δ(ab ∩ b(ab)∗, b) = ∅,

δ(bab ∩ b(ab)∗, a) = ∅, δ(bab ∩ b(ab)∗, b) = {ab ∩ (ab)∗},

δ(ab ∩ (ab)∗, a) = {b ∩ b(ab)∗}, δ(ab ∩ (ab)∗, b) = ∅.

The diagram of Npd is depicted in Figure 4.2.

4.7 FAdo

To represent regular expressions with intersection, we define the class conj that
inherits from regexp. The new class diagram of the module reex is depicted in
Figure 4.3.

���������

�����������

�����������

���������������

��������� ��������� �������������

��������������������

������������

���������

Figure 4.3: Class diagram of reex for regular expressions with intersection.

The function reex.str2regexp(str) can also be used to convert a string into a
class reex.str2regexp(conj). In FAdo the string & represents the intersection.



4.8. EXPERIMENTAL RESULTS 61

>>> from FAdo.reex import *

>>> re = str2regexp("a*a&a*&aa")

>>> re

conj(conj(concat(star(atom(a)),atom(a)),star(atom(a))),concat(

atom(a),atom(a)))

>>> print re

((a*a)&a*)&(aa)

The measure methods of regexp were also implemented for the class conj. The
method regexp.conjLength(), which returns the number of occurences of the op-
erator intersection, is now available for all subclasses of regexp.

The existing methods to calculate the derivative, the set of partial derivatives, the
linear form, the set of all partial derivatives and the support of a regular expression
were extended for the class conj.

We can convert a regular expression with intersection into a finite automaton by
using the method regexp.nfaPD(), building the partial derivative’s automaton. The
Gluskov’s automaton, Thompson’s automaton and Brzozowski’s automaton are not
available for regular expressions with intersection.

4.8 Experimental Results

In order to compare the number of states of the partial derivative’s automaton and
the support for regular expressions with intersections, we ran some experiments. Since
the grammar for RE∩ generates regular expressions denoting the empty language with
high probability, for these experiments, we chose a simpler version of this grammar in
prefix notation:

α := a ∈ Σ | + α α | ∩ α α | · α α | ∗ α,

For the results to be statistically significant, regular expressions were uniformly ran-
dom generated using the grammar above. For each size n ∈ {25, 50, 100, 150, 200} and
alphabet size k ∈ {1, 2, 5, 10}, samples of 10000 regular expressions were generated.
Then, for each sample we calculated the average and the maximum value of several
measures, which are presented in the table in Appendix A.



62 CHAPTER 4. REGULAR EXPRESSIONS WITH INTERSECTION

As we can observe, by the values in Table A.1, the set of partial derivatives is on
average much smaller than the support, and than the worst-case. Moreover, it also
suggests that the state complexity of partial derivative’s automaton may even be
polynomial for these expressions.



Chapter 5

Extended Regular Expressions

The regular languages, in addition to be closed under intersection, are also closed
under complement. Thus, regular expressions can be enriched with this operation.
We call extended regular expressions the result of extending RE∩ to complement. The
unary operator that represents the complement is ¬.

Definition 5.1. (Extended Regular Expressions) Let Σ be an alphabet. An
extended regular expression over Σ is given by the following grammar:

α := ∅ | ε | Σ+ | Σ∗ | a ∈ Σ | (α + α) | (α ∩ α) | (α · α) | (α)∗ | ¬(α).

The language L(α) associated with α is defined inductively as for RE∩, adding the
following cases: L(Σ+) = Σ∗ \ {ε}, L(Σ∗) = Σ∗ and L(¬α) = Σ∗ \ L(α). The set of
all extended regular expressions is denoted by RE∩,¬.

A regular expression in RE∩,¬\{Σ∗,Σ+} is called a regular expression with intersection
and complement. We assume that the operator ¬ has higher precedence than ∗.
Therefore, we have the following precedences: ¬ > ∗ > · > ∩ > +.

Observe that Σ∗ = ¬∅ and Σ+ = ¬ε. This follows from the fact that L(¬∅) =

Σ∗ \ L(∅) = L(Σ∗) and L(¬ε) = Σ∗ \ L(ε) = L(Σ+), respectively.

The definitions of equivalence, size, alphabetic size and empty word property (e.w.p.)
are defined in the same way as for RE. The function ε : RE∩,¬ → {ε, ∅} is defined
recursively as for RE∩, adding the following cases:

ε(Σ∗) = ε, ε(Σ+) = ∅, ε(¬α) = ε(¬ε(α)).

63



64 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

5.1 Algebra of RE∩,¬

The set of regular expression RE∩,¬ over Σ forms an algebraic structure (RE∩,¬,+, ·,
∩, ∗,¬, ∅, ε), where (RE,+, ·, ∗, ∅, ε) is a Kleene algebra, and ∩ and ¬ are a binary and
an unary operators, respectively, satisfying the axioms (A25), (A26) and (A27), which
are defined bellow.

Salomaa and Tixier [26] suggest a complete and sound axiomatization for the extended
regular expressions - the system F . The axiomatic system F is an extension of the
system F1, presented in the section 3.1. The axioms in F are the axioms of F1 (A1)-
(A11) and the following three axioms:

α ∩ β = ¬(¬α + ¬β), (A25)

¬(α1a1 + . . .+ αkak + ε) = (¬α1)a1 + . . .+ (¬αk)ak, (A26)

¬(α1a1 + . . .+ αnan) = (¬α1)a1 + . . .+ (¬αn)an + ε, (A27)

for all α, αi, β ∈ RE∩,¬ and all ai ∈ Σ, i = 1, . . . , n. The rules of inference of F are the
same as those for F1 (see page 17).

The symbol Σ∗ is the identity element w.r.t. ∩ and the zero element w.r.t. + on
extended regular expressions. This is due to the fact that, for every extended regular
expression α over Σ, L(α) ⊆ Σ∗ and thus

L(α ∩ Σ∗) = L(α) ∩ L(Σ∗) = L(α) ∩ Σ∗ = L(α),

L(α + Σ∗) = L(α) ∪ L(Σ∗) = L(α) ∪ Σ∗ = Σ∗ = L(Σ∗).

By the commutativity of ∩ and +, L(Σ∗ ∩ α) = L(α ∩ Σ∗) = L(α) and L(Σ∗ + α) =

L(α + Σ∗) = L(Σ∗).

Observe that, from (A26) and (A27), for every αi ∈ RE∩,¬, we also have:

¬(a1α1 + . . .+ anαn + ε) = a1(¬α1) + . . .+ an(¬αn), (5.1)

¬(a1α1 + . . .+ anαn) = a1(¬α1) + . . .+ an(¬αn) + ε. (5.2)

As we have previously seen, given a regular expression α over Σ, α = a1α1 + · · · +
akαk + ε(α), where ai ∈ Σ and αi ∈ RE∩,¬. Moreover, from the definition of the
function ε and from the equations (5.1) and (5.2), we obtain the following equation:

¬α = a1¬α1 + · · ·+ ak¬αk + ε(¬α). (5.3)



5.2. DERIVATIVES 65

5.2 Derivatives

The recursive definition of derivative was also extended to the complement of a regular
expression [10]. Here we present this extension and the derivative of the regular
expressions Σ∗ and Σ+.

Definition 5.2. (Derivative) Let α be an extended regular expression over Σ. The
derivative of α w.r.t. a symbol a ∈ Σ, written da(α), is defined recursively as for RE∩,
adding the following inductive cases:

da(Σ
∗) = Σ∗, da(Σ

+) = Σ∗, da(¬α) = ¬da(α).

We want to prove that for all w ∈ Σ∗ and all α ∈ RE∩,¬, L(dw(α)) = w−1L(α).
Brzozowski [10, Theorem 3.2] proved that this holds for every regular expression with
intersection and complement. Since the proof only depends on L(da(α)) = a−1L(α),
we just need to prove this for Σ∗ and Σ+. As previously seen, Σ∗ = ¬∅ and Σ+ = ¬ε,
and thus, for all a ∈ Σ, da(Σ∗) = da(¬∅) = ¬da(∅) = ¬∅ = Σ∗. The proof proceeds in
the same way for Σ+. Therefore, L(dw(α)) = w−1L(α), for all α ∈ RE∩,¬ and w ∈ Σ∗.

Moreover, as was also proved by Brzozowski, every regular expression α ∈ RE∩,¬ over
Σ is equivalent to

∑
a∈Σ

ada(α) + ε(α), cf. equation (3.1), and has only a finite number

of ACI+-dissimilar derivatives.

5.3 Partial Derivatives

In this section, the notion of partial derivative defined for RE∩,¬ is generalized to
extended regular expressions. We will present two different definitions for this. First,
we define a naive extension and then we improve it.

Let the operation ¬ : 2RE∩,¬ → 2RE∩,¬ be an extension of the complement for sets of
regular expressions. Given α, α1, . . . , αn ∈ RE∩,¬, the operation is defined recursively
as follows:

¬∅ = {Σ∗}, (5.4)

¬{α} = {¬α}, (5.5)

¬{α1, . . . , αn} = {¬α1 ∩ · · · ∩ ¬αn}. (5.6)



66 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

Lemma 5.3. For every set S ⊆ RE∩,¬, L(¬S) = Σ∗\L(S).

Proof. Let α, α1, . . . , αn be extended regular expressions and S be a set of extended
regular expressions. We will make use of the fact that L(S) =

⋃
αi∈S L(αi) and

L(¬α) = Σ∗\L(α). The proof of each inductive case is given, respectively, by the
following three proofs.

Case S = ∅:

L(¬∅) = L({Σ∗}) = Σ∗ = Σ∗\L(∅).

Case S = {α}:

L(¬{α}) = L({¬α}) = Σ∗\L(α).

Case S = {α1, . . . , αn}:

L(¬{α1, . . . , αn}) = L({¬α1 ∩ · · · ∩ ¬αn}) = L(¬α1 ∩ · · · ∩ ¬αn)

= L(¬(α1 + · · ·+ αn)) = Σ∗\L(α1 + · · ·+ αn)

= Σ∗\L({α1, . . . , αn}).

5.3.1 Natural Extension

Caron et al. [11] proposed a natural extension of partial derivatives using the derivative
of ¬α, i.e., ∂a(¬α) = {da(¬α)}. With this extension, there is only one regular
expression belonging to the set of partial derivatives of ¬α. Here, we present an
extension, also natural, by using the operator ¬ : 2RE∩,¬ → 2RE∩,¬ . This definition of
partial derivatives will be called natural extension.

Definition 5.4. (Partial Derivative) Let α be an extended regular expression over
Σ. The set of partial derivatives of α w.r.t. a symbol a ∈ Σ, written ∂a(α), is defined
recursively as for RE∩, adding the following inductive cases:

∂a(Σ
∗) = {Σ∗}, ∂a(Σ

+) = {Σ∗}, ∂a(¬α) = ¬∂a(α).



5.3. PARTIAL DERIVATIVES 67

In the same way as the natural extension of Caron et al., the set ¬∂a(α) is a singleton
set. The definition of set of partial derivatives of an extended regular expression is
extended to words, to sets of words and to sets of regular expressions in the same way
as for simple regular expressions.

The following facts relate the natural extension of partial derivatives and the left
quotient of a language.

Lemma 5.5. Given α ∈ RE∩,¬ over Σ and a ∈ Σ, L(∂a(α)) = a−1L(α).

Proof. Let γ be an extended regular expression over Σ and a ∈ Σ. The proof proceeds
by induction on the structure of γ. The proof for all cases, excluding Σ+, Σ∗ and
γ ≡ ¬α, has already been given (see Lemma 4.7 and [2]). Therefore, here we only
present the proof for the remaining cases. First, recall that Σ∗ = ¬∅ and Σ+ = ¬ε. If
α ≡ ε or α ≡ ∅, then the following holds:

a−1L(¬α) = Σ∗\a−1L(α) = Σ∗\∅

= L(Σ∗) = L({Σ∗}) = L(∂a(¬α)).

Let α be an extended regular expression. Suppose by inductive hypothesis that
L(∂a(α)) = a−1L(α). So, if γ ≡ ¬α, from Lemma 5.3, we have:

L(∂a(¬α)) = L(¬∂a(α)) = Σ∗\L(∂a(α))

= Σ∗\a−1L(α) = a−1L(¬α).

Proposition 5.6. Given α ∈ RE∩,¬ over Σ and w ∈ Σ∗, L(∂w(α)) = w−1L(α).

Proof. The proof follows in the same way as the proof for the case that α ∈ RE (see
Proposition 3.8).

Although, for regular expressions with intersection, the set of all partial derivatives is
finite, for extended regular expressions this cannot be guaranteed. The next example
is a witness that the set of all partial derivatives can be an infinite set for extended
regular expressions.



68 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

Example 5.7. For the regular expression α = ¬(a∗a) over Σ = {a}, we have the
following sets of partial derivatives of α:

∂a(¬(a∗a)) = ¬∂a(a∗a) = ¬{a∗a, ε} = {¬(a∗a) ∩ ¬ε}

= {¬(a∗a) ∩ Σ+},

∂aa(¬(a∗a)) = ∂a(¬(a∗a) ∩ Σ+) = ∂a(¬(a∗a)) ∩· ∂a(Σ+)

= {¬(a∗a) ∩ Σ+} ∩· {Σ∗} = {¬(a∗a) ∩ Σ+ ∩ Σ∗},

∂aaa(¬(a∗a)) = ∂a(¬(a∗a) ∩ Σ+ ∩ Σ∗) = ∂a(¬(a∗a)) ∩· ∂a(Σ+) ∩· ∂a(Σ∗)

= {¬(a∗a) ∩ Σ+} ∩· {Σ∗} ∩· {Σ∗} = {¬(a∗a) ∩ Σ+ ∩ Σ∗ ∩ Σ∗},

· · ·

∂ a···a︸︷︷︸
n

(¬(a∗a)) = {¬(a∗a) ∩ Σ+ ∩ Σ∗ ∩ · · · ∩ Σ∗︸ ︷︷ ︸
n−1

}.

Since, for every w ∈ Σ∗, the size of the regular expression belonging to ∂w(α) increases
with the length of w, ∂+(α) =

⋃
w∈Σ+

∂w(α) is an infinite set.

Remark 5.8. Let α, β be an extended regular expressions. The derivative of αβ w.r.t.
a1 · · · ar ∈ Σ∗ can has the form1:

da1···ar(αβ) = da1···ar(α)β + ε(da1···ar−1(α))dar(β) + · · ·

+ ε(da1(α))da2···ar(β) + ε(α)da1···ar(β).

And thus the number of terms in dw(αβ) can increase with the length of w ∈ Σ∗. The
same problem can happen with regular expressions with star as outer most operator,
since the derivative w.r.t. a symbol is a concatenation. The operators disjunction,
intersection and complement do not lead to this problem. As previously seen, if
the size of dw(α) increases indefinitely, the set of all derivatives is an infinite set.
Brzozowski [10, Theorem 5.2] proved that every extended regular expression has a
finite set of ACI+-dissimilar derivatives. As such, we use the ACI+ axioms to identify
syntactically identical terms in dw and to express dw with the previous derivatives.

If, instead of da(¬(αβ)) = ¬(da(α)β + ε(α)(da(β)), it was da(¬(αβ)) = ¬(da(α)β) ∩
¬(da(β)), dw(¬(αβ)) it would have the form:

da1···ar(¬(αβ)) = ¬(da1···ar(α)β) ∩ ¬(ε(da1···ar−1(α))dar(β)) ∩ · · ·

1The function ε : RE∩,¬ → {∅, ε} is used to show the form of dw(αβ), although it is not in the
definition of derivative (cf. Definition 3.2).



5.3. PARTIAL DERIVATIVES 69

∩ ¬(ε(da1(α))da2···ar(β)) ∩ ¬(ε(α)da1···ar(β)).

Then the number of terms dw(¬(αβ)) would increase with the length of w. In the other
hand, dw(¬(αβ)) is an intersection of terms, instead of being a disjunction of terms.
So, to identify syntactically identical terms in dw we would also need the associativity,
commutativity and idempotence of intersection (ACI∩).

With the set of partial derivatives (see Definition 3.6) and the associativity, commuta-
tivity and idempotence of the operator ∪ on sets, the finiteness problem of dw for simple
regular expressions was solved by Antimirov. The problem remained solved, when we
extended the notion of partial derivatives to regular expressions with intersection.

However, when extending partial derivatives to extended regular expressions, the set
properties are no longer sufficient (cf. Example 5.7). Suppose ∂a(α) = {α1, . . . , αn},
∂a(β) = {β1, . . . , βm} and ε(α) = ε, then ∂a(¬(αβ)) = {¬(α1β) ∩ · · · ∩ ¬(αnβ) ∩
¬β1 ∩ · · · ∩ ¬βm}. Note that this construction corresponds to the application of the
De Morgan law to ∂a(αβ), as applied in da(¬(αβ)) = ¬(da(α)β) ∩ ¬(da(β)). So, in
the same way as for this derivatives, the ACI+ axioms are not sufficient to ensure the
finiteness of ∂w. This is also verified when ε(α) = ∅ and for the inductive case α∗.

Let us denote by CII∩ the set of axioms corresponding to the commutativity, idempo-
tence and identity of ∩. We show that the set of all CII∩-dissimilar partial derivatives
is finite. In order to prove this, we use the following lemma.

Lemma 5.9. Given α ∈ RE∩,¬ over Σ and w ∈ Σ∗,

∂w(¬α) =CII∩ ¬∂w(α).

Proof. The proof proceeds by induction on the length of w ∈ Σ∗. If w = ε, the
following holds:

∂ε(¬α) = {¬α} = ¬{α} = ¬∂ε(α).

Suppose by inductive hypothesis that ∂w(¬α) =CII∩ ¬∂w(α) and ∂w(α) = {α1, . . . ,

αn}. We want to prove that the claim also holds for wa, where a ∈ Σ. Note that

¬∂wa(α) = ¬(∂a(∂w(α)) = ¬(∂a({α1, . . . , αn})) = ¬(∂a(α1) ∪ · · · ∪ ∂a(αn)),



70 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

And thus, from the commutativity and idempotence of ∪ on sets, the intersection
belonging to ¬∂wa(α) has only syntactically different terms. Since ∂w(¬α) =CII∩

¬∂w(α) = {¬α1 ∩ · · · ∩ ¬αn},

∂wa(¬α) = ∂a(∂w(¬α)) = ∂a(¬∂w(α))

= ∂a({¬α1 ∩ · · · ∩ ¬αn})

= ∂a(¬α1) ∩· · · · ∩· ∂a(¬αn)

= ¬∂a(α1) ∩· · · · ∩· ¬∂a(αn).

We know that, for each i = 1, . . . , n, there is no syntactically identical terms in the
intersection belonging to ¬∂a(αi). However, it is not guaranteed that ∂a(αi)∩∂a(α′i) =

∅, for all αi, α′i ∈ ∂a(α) with αi 6= α′i. And thus, it is possible the existence of
syntactically identical terms in the intersection in ¬∂a(α1)∩· · · · ∩· ¬∂a(αn). Therefore,
we need the commutativity and the idempotence of ∩ to identify syntactically identical
terms. Moreover, if there is αi such that ∂a(αi) = ∅, then ¬∂a(αi) = {Σ∗} and it is
not necessary that Σ∗ exists in ∂wa(α). So, in that case, we also need the identity
property of ∩.

Proposition 5.10. Given α ∈ RE, ∂+(¬α) ⊆CII∩ {¬S | S ∈ 2∂
+(α)}.

Proof. Let E be a set and α be an extended regular expression. If ∂w(α) ⊆ E, for
all w ∈ Σ+, then we have

⋃
w∈Σ+ ∂w(α) ⊆ E and thus ∂+(α) ⊆ E. Moreover, since

∂+(α) =CII∩

⋃
w∈Σ+ ∂w(α), we know that for every w ∈ Σ+, ∂w(α) ⊆CII∩ ∂+(α). Let

∂w(α) = {α1, . . . , αn}. Then, the following holds:

∂w(¬α) =CII∩ ¬∂w(α) =CII∩ ¬{α1, . . . , αn}

=CII∩ {¬α1 ∩ · · · ∩ ¬αn} ⊆CII∩ {¬S | S ∈ 2∂
+(α)}.

And thus, we can conclude that ∂+(¬α) ⊆CII∩ {¬S | S ∈ 2∂
+(α)}.

5.3.2 Partial Derivatives ∂

Now, we present an alternative extension of the notion of partial derivatives to ex-
tended regular expressions. In contrast with the previous extension, this new recursive
definition of partial derivatives has the advantage of to make nonderterminism of
∂a(¬α) explicit.



5.3. PARTIAL DERIVATIVES 71

Definition 5.11. (Partial Derivatives) Let α ∈ RE∩,¬ be a regular expression over
Σ. The set of partial derivatives of α w.r.t. a symbol a ∈ Σ, written ∂a(α), is defined
recursively as for RE∩, adding the inductive cases:

∂a(Σ
∗) = {Σ∗}, ∂a(Σ

+) = {Σ∗}, ∂a(¬α) = ∂a(α).

The set ∂a(α) is defined inductively as follows:

∂a(Σ
∗) = ∅, ∂a(α + β) = ∂a(α) ∩· ∂a(β),

∂a(Σ
+) = ∅, ∂a(α ∩ β) = ∂a(α) ∪ ∂a(β),

∂a(∅) = {Σ∗}, ∂a(αβ) = ¬(∂a(α)β) ∩· ∂a(β), if ε(α) = ε,

∂a(ε) = {Σ∗}, ∂a(αβ) = ¬(∂a(α)β), if ε(α) = ∅,

∂a(a) = {Σ+}, ∂a(α
∗) = ¬(∂a(α

∗)),

∂a(b) = {Σ∗}, b ∈ Σ and b 6= a, ∂a(¬α) = ∂a(α).

While, for every α ∈ RE∩,¬, ¬∂a(α) is always a singleton set, it does not holds for
∂a(α). This is demonstrated in the next example.

Example 5.12. Let α ≡ (aa+ a) ∩ a∗ ∩ ¬(a∗a). The set of partial derivatives of ¬α
w.r.t. a given by the natural extension is

∂a(¬α) = ¬∂a((aa+ a) ∩ a∗ ∩ ¬(a∗a))

= ¬(∂a(aa+ a) ∩· ∂a(a∗) ∩· ∂a(¬(a∗a)))

= ¬({a, ε} ∩· {a∗} ∩· ¬{a∗a, ε})

= ¬({a, ε} ∩· {a∗} ∩· {¬(a∗a) ∩ ¬ε})

= ¬{a ∩ a∗ ∩ ¬(a∗a) ∩ ¬ε, ε ∩ a∗ ∩ ¬(a∗a) ∩ ¬ε}

= {¬(a ∩ a∗ ∩ ¬(a∗a) ∩ ¬ε) ∩ ¬(ε ∩ a∗ ∩ ¬(a∗a) ∩ ¬ε)}.

However, if we use the new extension, we have ∂a(¬α) = ∂a(α), which is given by

∂a(α) = ∂a((aa+ a) ∩ a∗ ∩ ¬(a∗a))

= ∂a(aa+ a) ∪ ∂a(a∗) ∪ ∂a(¬(a∗a))

= (∂a(aa) ∩· ∂a(a)) ∪ ∂a(a∗) ∪ ∂a(a∗a)

= (¬(∂a(a)a) ∩· {Σ+}) ∪ ¬(∂a(a)a∗) ∪ (∂a(a
∗)a ∪ ∂a(a))

= ({¬a} ∩· {Σ+}) ∪ {¬a∗} ∪ {a∗a, ε}



72 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

= {¬a ∩ Σ+,¬a∗, a∗a, ε}.

The set ∂a(α) is not a singleton set. Moreover, the partial derivatives belonging to
∂a(α) have a smaller size than the partial derivative in ¬∂a(α).

The definition of the set of partial derivatives is extended to words, to sets of words
and to sets of regular expressions in the same way as for simple regular expressions.

In order to prove that the language denoted by the set of partial derivatives of an
extended regular expression is the same as the left-quotient of the language of the
regular expression, i.e., L(∂w(α)) = w−1L(α), for all w ∈ Σ∗, we first need to prove
that L(∂a(α)) = a−1L(α), for all a ∈ Σ. The next lemma is an useful tool to prove it.

Lemma 5.13. Given α ∈ RE∩,¬ over Σ and a ∈ Σ, the following holds:

L(∂a(α)) = Σ∗\L(∂a(α)).

Proof. Let γ ∈ RE∩,¬ over Σ. The proof proceed by induction on the structure of γ.
We begin by proving the base cases. If γ = Σ∗ or γ = Σ+, then

L(∂a(γ)) = L(∅) = Σ∗\Σ∗ = Σ∗\L({Σ∗}) = Σ∗\L(∂a(γ)).

In the case that γ = ∅, γ = ε or γ = b, where b ∈ Σ and b 6= a, we have:

L(∂a(γ)) = L(Σ∗) = Σ∗ = Σ∗\L(∅) = Σ∗\L(∂σ(γ)).

Finally, if α = a, where a ∈ Σ, the following holds:

L(∂a(a)) = L({Σ+}) = Σ∗\L({ε}) = Σ∗\L(∂a(a)).

Let α and β be extended regular expressions over Σ. Suppose by induction hypothesis
that L(∂a(α)) = Σ∗\L(∂a(α)) and L(∂a(β)) = Σ∗\L(∂a(β)).

1. If γ ≡ α + β:

L(∂a(α + β)) = L(∂a(α) ∩· ∂a(β)) = L(∂a(α)) ∩ L(∂a(β))

= Σ∗\L(∂a(α)) ∩ Σ∗\L(∂a(β))

= Σ∗\(L(∂a(α) ∪ L(∂a(β)))

= Σ∗\L(∂a(α + β)).



5.3. PARTIAL DERIVATIVES 73

2. If γ ≡ α ∩ β:

L(∂a(α ∩ β)) = L(∂a(α) ∪ ∂a(β)) = L(∂a(α)) ∪ L(∂a(β))

= Σ∗\L(∂a(α)) ∪ Σ∗\L(∂a(β))

= Σ∗\(L(∂a(α) ∩ L(∂a(β)))

= Σ∗\L(∂a(α ∩ β)).

3. If γ ≡ αβ, there are two possible cases: ε(α) = ε and ε(α) = ∅. The Lemma 5.3
is used in both proofs. If ε(α) = ∅, then we have:

L(∂a(αβ)) = L(¬(∂a(α)β)) = Σ∗\L(∂a(α)β)

= Σ∗\L(∂a(αβ)).

On the other hand, if ε(α) = ε, we have:

L(∂a(αβ)) = L(¬(∂a(α)β) ∩· ∂a(β)) = L(¬(∂a(α)β)) ∩ L(∂a(β))

= Σ∗\L(∂a(α)β) ∩ Σ∗\L(∂a(β))

= Σ∗\(L(∂a(α)β) ∪ L(∂a(β))

= Σ∗\L(∂a(αβ)).

4. If γ ≡ α∗, by Lemma 5.3:

L(∂a(α
∗)) = L(¬(∂a(α

∗))) = Σ∗\L(∂a(α
∗)).

5. If γ ≡ ¬α:

L(∂a(¬α)) = L(∂a(α)) = Σ∗\(Σ∗\L(∂a(α)))

= Σ∗\L(∂a(α)) = Σ∗\L(∂a(¬α)).

Lemma 5.14. For all α ∈ RE∩,¬ over Σ and a ∈ Σ, L(∂a(α)) = a−1L(α).

Proof. Let γ be an extended regular expression over Σ and a ∈ Σ. The proof proceeds
by induction on the structure of γ. The proof for all cases, excluding γ ≡ ¬α, has
already been proved (see Lemma 4.7 and Antimirov [2]). Therefore, here we only
present the proof for that case. Given α ∈ RE∩,¬, suppose by inductive hypothesis



74 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

that L(∂a(α)) = a−1L(α). Note that, from the definition of left-quotient of a language,
we have a−1L(¬α) = Σ∗\a−1L(α) and, from Lemma 5.13, L(∂a(α)) = Σ∗\L((∂a(α)).
Then, the following holds:

L(∂a(¬α)) = L(∂a(¬α)) = L(∂a(α))

= Σ∗\L((∂a(α)) = Σ∗\a−1L(α).

Proposition 5.15. Given w ∈ Σ∗ and α ∈ RE∩,¬, L(∂w(α)) = w−1L(α).

Proof. The proof follows in the same way as the proof for simple regular expressions
(see Proposition 3.8).

There are regular expressions such that ¬∂a(α) is equal to ∂a(α). For example, given
α, β ∈ RE∩,¬, if ε(α) = ∅, we have ∂a(αβ) = ¬(∂a(α)β) = ¬∂a(αβ). Moreover,
∂a(α

∗) = ¬∂a(α∗).

Example 5.16. For the extended regular expression α ≡ ¬(a∗a), we have the following
sets of partial derivatives:

∂a(α) = ∂a(a
∗a) = ¬(∂a(a

∗)a) ∩· ∂a(a) = {¬(a∗a)} ∩· {Σ+} = {¬(a∗a) ∩ Σ+}

∂aa(α) = ∂a(¬(a∗a) ∩ Σ+) = ∂a(a
∗a) ∩· ∂a(Σ+) = {¬(a∗a) ∩ Σ+} ∩· {Σ∗}

{¬(a∗a) ∩ Σ+ ∩ Σ∗}

· · ·

∂ a···a︸︷︷︸
n

(¬(a∗a)) = {¬(a∗a) ∩ Σ+ ∩ Σ∗ ∩ · · · ∩ Σ∗︸ ︷︷ ︸
n−1

}

Note that it leads to the same sets of partial derivatives as the natural extension (cf.
Example 5.7).

Proposition 5.17. Every extended regular expression has a finite number of CII∩-
dissimilar partial derivatives.

Proof. The extension of partial derivatives using the set ∂a is an improved version
of the natural extension. However, in the worst case, it is equal to the natural
extension (for example ∂a(α∗) = ¬∂a(α∗) and Example 5.16). Since CII∩-dissimilarity
is sufficient to guarantee the finitiness of the natural extension, it is also sufficient for
the improved version.



5.4. SYSTEMS OF EQUATIONS 75

5.4 Systems of Equations

In this section, we extend the recursive definition of a support of regular expressions
with intersection to extended regular expressions.

Proposition 5.18. Let α be an extended regular expression over Σ. Then the set π,
defined recursively as follows, is a support of α:

π(Σ∗) = {Σ∗}, π(a) = {ε}, π(α∗) = π(α)α∗,

π(Σ+) = {Σ+}, π(α + β) = π(α) ∪ π(β), π(¬α) = {α′ ∈ ¬S | S ∈ 2π(α)},

π(ε) = ∅, π(α ∩ β) = π(α) ∩· π(β),

π(∅) = ∅, π(αβ) = π(α)β ∪ π(β),

Proof. Let γ0 ∈ RE∩,¬ over Σ. The proof proceeds by induction on the structure of γ0.
The proof for all the cases, excepting for Σ+, Σ∗ and ¬α, can be found in Proposition
3.14 and in Proposition 4.16. So here we only prove that cases. In order to prove that
a given set π is a support of γ0, we need to prove that the equation (3.14) holds for
γ0 and for each regular expression in π. We start the proof by proving it for the base
cases. If γ0 ≡ Σ∗, we have that

Σ∗ = a1 · Σ∗ + · · ·+ ak · Σ∗ + ε,

and thus the set {Σ∗} is a support of Σ∗. In the case that γ0 ≡ Σ+, we have

Σ+ = a1 · Σ∗ + · · ·+ ak · Σ∗ + ∅

Σ∗ = a1 · Σ∗ + · · ·+ ak · Σ∗ + ε,

and we can conclude that the set {Σ∗} is a support of Σ+.

Now, given α0 ∈ RE∩,¬, suppose by inductive hypothesis that π(α0) = {α1, . . . , αn} is
a support of α0. Therefore, from the definition of support, we have that

αi = a1α1i + · · ·+ akαki + ε(αi), for all i ∈ {0, . . . , n}

where each αli, for l = 1, . . . , k, is a sum of elements of π(α0).

If γ0 ≡ ¬α0, then π(γ0) = π(¬α0) = {α′ ∈ ¬S | S ∈ 2π(α0)}. That is, π(γ0) =

{Σ∗} ∪ {
⋂
i∈I ¬αi | I ⊆ {1, . . . , n}}. Firstly, we prove that the equation (3.14) holds

for ¬α0. From the equation (5.3),

¬α0 = ¬(a1α10 + · · ·+ akαk0 + ε(α0))



76 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS

= a1¬α10 + · · ·+ ak¬αk0 + ε(¬α0).

We know that each αl0, where l = 1, . . . , k, is a sum of elements of π(α0). So, let Il0
be the set of indexes of the regular expressions in π(α0) such that αl0 =

∑
i′∈Il0 αi′ .

Then, for each l = 1, . . . , k, the following holds:

¬αl0 = ¬
∑
i′∈Il0

αi′ =
⋂
i′∈Il0

¬αi′ ∈ {Σ∗} ∪
{⋂
i∈I

¬αi | I ⊆ {1, . . . , n}
}
.

Therefore, we can conclude that each αl0 is a sum of elements of π(¬α0). We still have
to prove it for each element of π(¬α0). The proof for the element Σ∗ is already done.
So, let Ij ⊆ {1, . . . , n} and βj =

⋂
i∈Ij ¬αi. Using the equations (4.21) and (5.3), we

have the following:

βj =
⋂
i∈Ij

¬αi

=
⋂
i∈Ij

¬(a1α1i + · · ·+ akαki + ε(αi))

=
⋂
i∈Ij

(a1¬α1i + · · ·+ ak¬αki + ε(¬αi))

= a1

⋂
i∈Ij

(¬α1i) + · · ·+ ak
⋂
i∈Ij

(¬αki) + ε
( ⋂
i∈Ij

¬αi
)
.

We also know that each αli, for l = 1, . . . , k and i ∈ I, is a sum of elements of
π(α0). So, let Ili be the set of indexes of the regular expressions in π(α0) such that
αli =

∑
i′∈Il0 αi′ . Then, it holds that:⋂

i∈Ij

¬αli =
⋂
i∈Ij

(
¬
∑
i′∈Ili

αi′
)

=
⋂
i∈Ij

( ⋂
i′∈Ili

¬αi′
)

=
⋂

i∈Ij ,i′∈Ili

¬αi′

∈ {Σ∗} ∪
{⋂
i∈I

¬αi | I ⊆ {1, . . . , n}
}

And thus each αli is a sum of elements of π(¬α0). With this, we can conclude that
the set π(¬α0) is a support of ¬α0.

As consequence of the last proposition, the support of an extended regular expression
is ensured to be finite even not considering extended regular expressions modulo-CII∩.



5.5. RE∩,¬ TO FINITE AUTOMATA 77

5.4.1 Support and Partial Derivatives

In the previous chapter, we proved that, for every α ∈ RE∩, the set of all partial
derivatives of α is a subset of π(α). Here, with α being any extended regular expression,
we prove that the set of all CII∩-dissimilar partial derivatives of α, using the natural
extension, is a subset of π(α). Thereby, in this subsection, we use the definition of the
natural extension of partial derivatives, presented in the section 5.3.1.

Proposition 5.19. Given α ∈ RE∩,¬, ∂+(α) ⊆CII∩ π(α).

Proof. The proof proceeds by induction on the structure of γ ∈ RE∩,¬. The proof
for all cases, excluding ¬α, is given in Proposition 4.20. Thus here we only present
the proof for that case. Given α ∈ RE∩,¬, suppose by inductive hypothesis that
∂+(α) ⊆CII∩ π(α). If γ ≡ ¬α, then the following holds:

∂+(¬α) ⊆CII∩ {¬S | S ∈ 2∂
+(α)}

⊆CII∩ {¬S | S ∈ 2π(α)} = π(¬α).

5.5 RE∩,¬ to Finite Automata

As presented in the previous sections, the set of all derivatives and the set of all
partial derivatives of extended regular expressions can be infinite. In this way, the
construction of Brzozowski’s and partial derivative’s automaton may not terminate.
In the other hand, Glushkov’s and Thompson’s automaton does not generalize to
extended regular expressions.



78 CHAPTER 5. EXTENDED REGULAR EXPRESSIONS



Chapter 6

Special Regular Expressions

As seen in the previous chapters, to ensure the finitude of the set of all derivatives and
of the set of all partial derivatives of an extended regular expression, it is necessary
to consider ACI+-dissimilarity and CII∩-dissimilarity. In order to guarantee these
dissimilarities, we introduce in this chapter a new set of regular expressions, called
special regular expression.

Thus, for a special regular expression the following properties are considered:

• the associative property of disjunction, intersection and concatenation:

α + (β + γ) = (α + β) + γ, (6.1)

α ∩ (β ∩ γ) = (α ∩ β) ∩ γ, (6.2)

α · (β · γ) = (α · β) · γ; (6.3)

• the commutative property of disjunction and intersection:

α + β = β + α, (6.4)

α ∩ β = β ∩ α; (6.5)

• the idempotent property of disjunction and intersection:

α + α = α, (6.6)

α ∩ α = α; (6.7)

79



80 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS

• the identity element property of disjunction, intersection and concatenation:

α + ∅ = ∅+ α = α, (6.8)

α ∩ Σ∗ = Σ∗ ∩ α = α, (6.9)

α · ε = ε · α = α; (6.10)

• and the zero element property of disjunction, intersection and concatenation:

α + Σ∗ = Σ∗ + α = Σ∗, (6.11)

α ∩ ∅ = ∅ ∩ α = ∅, (6.12)

α · ∅ = ∅ · α = ∅. (6.13)

We denote by S the collection of the properties above, (6.1) to (6.13).

Note that the set of all special regular expressions is the set of all S-dissimilar extended
regular expressions. And the ACI+ and the CII∩ properties belong to S. Thus, the set
of all derivatives of any special regular expression is finite, with the same being true
for the set of all partial derivatives.

6.1 Rewriting System S

One possible approach to obtain the set of all S-dissimilar extended regular expression
would be to rewrite every extended regular expression in such way that S-similar
regular expressions are identified. Krauss and Nipkow [20] presented a rewriting
system for simple regular expression which identifies expressions that are equivalent
modulo associativity, commutativity and idempotence of +, associativity of ·, zero of
+ and · and identity of ·.

If we add the associativity, commutativity and idempotence rules of ∩ (ACI∩), the zero
rule of ∩, and the identity rules of + and ∩ to the Krauss and Nipkow’s system, we
obtain a rewriting system to identify S-similar expressions. This extension is trivial,
since the ACI∩ and ACI+ rules are similar, as well the zero and identity rules of all
the operators. The resulting extension is called rewriting system S and it is given by
the following:

∅+ α→ α, Σ∗ ∩ α→ α,



6.2. SPECIAL REPRESENTATION 81

α + ∅ → α, α ∩ Σ∗ → α,

Σ∗ + α→ Σ∗, ∅ ∩ α→ ∅,

α + Σ∗ → Σ∗, α ∩ ∅ → ∅,

(α + β) + γ → α + (β + γ), (α ∩ β) ∩ γ → α ∩ (β + γ),

α + (β + γ)→ α + γ, if α = β, α ∩ (β ∩ γ)→ α ∩ γ, if α = β,

α + (β + γ)→ β + (α + γ), if β < α, α ∩ (β ∩ γ)→ β ∩ (α ∩ γ), if β < α,

α + α→ α, α ∩ α→ α,

α + β → β + α, if β < α, α ∩ β → β ∩ α, if β < α,

ε · α→ α,

α · ε→ α,

∅ · α→ ∅,

α · ∅ → ∅,

(α · β) · γ → α · (β + γ),

where α, β and γ are any extended regular expression and < some arbitrary total
order on extended regular expressions. The expression resulting from the application
of the rewriting system S is in S-normal formal.

Example 6.1. Considering ∅ < ε < Σ+ < Σ∗ < a ∈ Σ < ¬ < ∗ < · < ∩ < +

and Σ lexicographically ordered, the S-normal form of the extended regular expression
εaa+ ¬a+ aa+ (∅+ (a∗ ∩ Σ∗ ∩ ab)) is ¬a+ (aa+ a∗ ∩ ab).

6.2 Special Representation

Sets are a natural way to enforce associativity, commutativity and idempotence. Lists,
in the other hand, enforce the associativity, non-commutativity and non-idempotence.
Thereby, we represent disjunctions and intersections as sets and concatenations as
lists.

Definition 6.2. (Special Regular Expression) Let Σ be an alphabet. A special
regular expression over Σ is given by the following grammar:

ϕ := ∅ | Σ∗ | α,



82 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS

α := +{β1, . . . , βn} | β,

β := ∩{β′1, . . . , β′n} | δ,

β′ := +{β1, . . . , βn} | δ,

δ := ·[δ′1, . . . , δ′n] | ε | γ,

δ′ := +{β1, . . . , βn} | ∩{β′1, . . . , β′n} | Σ∗ | γ,

γ := ε | Σ+ | a ∈ Σ | (α)∗ | ¬(α),

where n is greater than one. The structures +{_} and ∩{_} have the same properties
as sets and the structure ·[_] has the properties of lists. The language L(ϕ) associated
with ϕ is defined for the base cases (∅, ε, Σ∗, Σ+ and a ∈ Σ), for ¬α and for α∗ as
for RE∩,¬. For the other cases is defined as:

L(+{β1, . . . , βn}) = L(β1 + · · ·+ βn),

L(∩{β′1, . . . , β′n}) = L(β′1 ∩ · · · ∩ β′n),

L(·[δ′1, . . . , δ′n]) = L(δ′1 · · · δ′n).

The set of all special regular expressions is denoted by RES.

The grammar defining RES and the algebra of the structures defining disjuctions and
intersections enforce the S-dissimilarity. The grammar of RES ensures the identity
element and zero element properties and that syntactically identical expressions mod-
ulo associativity of disjunction, intersection and concatenation are not generated. For
example, for concatenation, the regular expressions ·[a, ε, a], ·[a, ∅, a] and ·[a, ·[a,
b]] are not generated by the grammar. The structures +{_} and ∩{_} ensure that
there are no syntactically identical regular expressions modulo commutativity and
idempotence of disjunction and intersection, respectively.

We will assume the precedence ¬ > ∗. We define equivalence, empty word property
and alphabetic size in the same way as for RE. Being ϕ a special regular expression,
the size of ϕ, written |ϕ|, is defined inductively by:

|Σ∗| = |Σ+| = 1, |+{β1, . . . , βn}| = |β1|+ · · ·+ |βn|+ n− 1,

|ε| = |∅| = 1, |∩{β′1, . . . , β′n}| = |β′1|+ · · ·+ |β′n|+ n− 1,

|a| = 1, where a ∈ Σ | · [δ′1, . . . , δ′n]| = |δ′1|+ · · ·+ |δ′n|+ n− 1.

|α∗| = |¬α| = 1 + |α|,



6.2. SPECIAL REPRESENTATION 83

Example 6.3. The extended regular expression α = ¬a + aa + a∗ ∩ ab is equivalent
to the special regular expression ϕ = +{¬a, ·[a, a], ∩{a∗, ·[a, b]}}. The size of ϕ is 13.

The disjunction, intersection and concatenation of extended regular expressions are
represented by binary operators with domain RE∩,¬ × RE∩,¬. In special regular ex-
pressions these operations are represented by structures with restricted elements. For
example, a disjunction is not an element of the structure of a disjunction and the
symbol ε is not an element of the structure of a concatenation. In this way, we need
to extend the disjunction, intersection and concatenation operators to special regular
expressions.

We begin by defining the binary operator ⊕ : RES × RES → RES, which is an
extension of disjunction to special regular expressions. This operator is commutative
and it is defined inductively as follows:

ϕ ⊕ Σ∗ = Σ∗, (6.14)

ϕ ⊕ ∅ = ϕ, (6.15)

ϕ ⊕ ϕ = ϕ, (6.16)

β1 ⊕ β2 = +{β1, β2}, where β1 6≡ β2, (6.17)

+{β1, . . . , βn} ⊕ βn+1 = +{β1, . . . , βn}, if ∃i ∈ {1, . . . , n}. βi ≡ βn+1, (6.18)

+{β1, . . . , βn} ⊕ βn+1 = +{β1, . . . , βn, βn+1}, if ∀i ∈ {1, . . . , n}. βi 6≡ βn+1, (6.19)

+{β1, . . . , βn} ⊕ +{βn+1, βn+2, . . . , βn+m} =

(+{β1, . . . , βn} ⊕ βn+1) ⊕ +{βn+2, . . . , βn+m}. (6.20)

The binary operator ©∩ : RES × RES → RES is an extension of intersection to special
regular expressions, which is commutative and defined inductively by:

ϕ ©∩ ∅ = ∅ (6.21)

ϕ ©∩ Σ∗ = ϕ (6.22)

ϕ ©∩ ϕ = ϕ (6.23)

β′1 ©∩ β
′
2 = ∩{β′1, β′2}, where β′1 6≡ β′2, (6.24)

∩{β1, . . . , βn} ©∩ βn+1 = ∩{β′1, . . . , β′n}, if ∃i ∈ {1, . . . , n}. β′i ≡ β′n+1, (6.25)

∩{β′1, . . . , β′n} ©∩ β′n+1 = ∩{β′1, . . . , β′n, β′n+1}, if ∀i ∈ {1, . . . , n}. β′i 6≡ β′n+1, (6.26)

∩{β′1, . . . , β′n} ©∩ ∩{β′n+1, β
′
n+2, . . . , β

′
n+m} =



84 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS

(∩{β′1, . . . , β′n} ⊕ β′n+1) ©∩ ∩{β′n+2, . . . , β
′
n+m}. (6.27)

Finnaly, we define the binary operator � : RES × RES → RES as an extension of
concatenation to special regular expressions. This operator is defined inductively by
the following:

ϕ� ε = ε� ϕ = ϕ, (6.28)

ϕ� ∅ = ∅ � ϕ = ∅, (6.29)

δ′1 � δ′2 = ·[δ′1, δ′2], (6.30)

δ′1 � ·[δ′2, . . . , δ′n] = ·[δ′1, δ′2, . . . , δ′n], (6.31)

· [δ′1, . . . , δ′n]� δ′n+1 = ·[δ′1, . . . , δ′n, δ′n+1], (6.32)

· [δ′1, . . . , δ′n]� ·[δ′n+1, . . . , δ
′
m] = ·[δ′1, . . . , δ′n, δ′n+1, . . . , δ

′
n+m]. (6.33)

Example 6.4. According to the definition of the above operators, we have the following
equivalences:

∩{a, b} ⊕ ∩{a, b} = ∩{a, b},

· [+{a, ε},Σ∗] ©∩ ∩{a, ·[+{a, ε},Σ∗]} = ∩{a, ·[+{a, ε},Σ∗]},

· [a,+{a∗, b}]� ε = ·[a,+{a∗, b}].

The function ε : RES → {∅, ε} is defined inductively for the base cases and for the
inductive cases α∗ and ¬α as for RE∩,¬, for the other cases it is defined as follows:

ε(+{β1, . . . , βn}) = ε(β1) ⊕ · · · ⊕ ε(βn),

ε(∩{β′1, . . . , β′n}) = ε(β′1) ©∩ · · · ©∩ ε(β′n),

ε(·[δ′1, . . . , δ′n]) = ε(δ′1)� · · · � ε(δ′n).

6.3 Derivatives

With the extension of the function ε and of the binary operators representing the
disjunction, intersection and concatenation, it becomes trivial the extension of the
notion of derivative to special regular expressions.

Definition 6.5. (Derivative) The derivative of a special regular expression ϕ w.r.t.
a symbol a ∈ Σ, written da(ϕ), is defined for the base cases as for RE∩,¬, the other



6.4. PARTIAL DERIVATIVES 85

cases are defined as follows:

da(+{β1, . . . , βn}) = da(β1)⊕ · · · ⊕ da(βn),

da(∩{β′1, . . . , β′n}) = da(β
′
1) ©∩ · · · ©∩ da(β′n),

da(·[δ′1, δ′2]) = (da(δ
′
1)� δ′2) ⊕ (ε(δ′1)� da(δ′2)),

da(·[δ′1, δ′2, . . . , δ′n]) = (da(δ
′
1)� ·[δ′2, . . . , δ′n]) ⊕ (ε(δ′1)� da(·[δ′2, . . . , δ′n])),

da(α
∗) = da(α)� α∗,

da(¬α) = ¬da(α).

Example 6.6. The derivative of the special regular expression ¬ · [a∗, a] w.r.t. to the
symbol a is

da(¬ · [a∗, a]) = ¬((da(a
∗)� a) ⊕ (ε(a∗)� da(a)))

= ¬((da(a)� a∗ � a) ⊕ (ε� da(a)))

= ¬((ε� a∗ � a) ⊕ (ε� ε))

= ¬(·[a∗, a] ⊕ ε)

= ¬(+{·[a∗, a], ε}).

The derivative of a special regular expression w.r.t. a word is defined in the same way
as for extended regular expressions. Given ϕ ∈ RES over Σ and w ∈ Σ∗, since every
special regular expression is equivalent to an extended regular expression, we know
that L(dw(ϕ)) = w−1L(ϕ) holds. From the equation (3.1), it is easy to obtain the
following equivalence:

ϕ =

(⊕
a∈Σ

a� da(ϕ)

)
⊕ ε(ϕ).

Furthermore, the set of all derivatives of any special regular expression is finite.

6.4 Partial Derivatives

Analogously as what was done for derivatives, it is easy to extend the definition of
partial derivatives to special regular expressions. To do this, we must extend the
operators of concatenation, intersection and complement to sets of special regular



86 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS

expressions. We trivially extend this by using the definition of these operators for
extended regular expressions.

An extension of concatenation to sets of special regular expressions is given by the
operator � : 2RES × RES → 2RES , which is defined inductively by:

∅ � ϕ = ∅,

S � ∅ = ∅,

{ϕ1, ϕ2, . . . , ϕn} � ϕ = {ϕ1 � ϕ} ∪ ({ϕ2, . . . , ϕn} � ϕ).

The binary operator ∩· : 2RES × 2RES → 2RES , in other hand, is an extension of
intersection to sets of special regular expression and it is defined inductively as follows:

∅ ∩· S = ∅,

{ϕ} ∩· S = {ϕ ©∩ ϕi | ϕi ∈ S},

({ϕ} ∪ S) ∩· S ′ = ({ϕ} ∩· S ′) ∪ (S ∩· S ′).

Finally, the binary operator ¬ : 2RES → 2RES is an extension of complement to sets of
special regular expressions, being defined inductively by:

¬∅ = {Σ∗},

¬{ϕ1, . . . , ϕn} = {¬ϕ1 ©∩ · · · ©∩ ¬ϕn}.

Definition 6.7. (Partial Derivatives) Given a symbol a ∈ Σ and a special regular
expression ϕ, the set of partial derivatives of ϕ w.r.t. a, written ∂a(ϕ) is defined
inductively by the following:

∂a(Σ
∗) = ∂a(Σ

+) = {Σ∗},

∂a(∅) = ∂a(ε) = ∂a(b) = ∅, where b ∈ Σ and b 6= a,

∂a(a) = {ε},

∂a(+{β1, . . . , βn}) = ∂a(β1) ∪ · · · ∪ ∂a(βn),

∂a(∩{β′1, . . . , β′n}) = ∂a(β
′
1) ∩· · · · ∩· ∂a(β′n),

∂a(·[δ′1, δ′2]) = (∂a(δ
′
1)� δ′2) ∪ (ε(δ′1)� ∂a(δ′2)),

∂a(·[δ′1, δ′2, . . . , δ′n]) = (∂a(δ
′
1)� ·[δ′2, . . . , δ′n]) ∪ (ε(δ′1)� ∂a(·[δ′2, . . . , δ′n])),

∂a(α
∗) = ∂a(α)� α∗,



6.4. PARTIAL DERIVATIVES 87

∂a(¬α) = ∂a(α),

The set ∂a(ϕ) is defined inductively as follows:

∂a(Σ
∗) = ∂a(Σ

+) = ∅,

∂a(∅) = ∂a(ε) = ∂a(b) = {Σ∗}, where b ∈ Σ and b 6= a,

∂a(a) = {Σ+},

∂a(+{β1, . . . , βn}) = ∂a(β1) ∩· · · · ∩· ∂a(βn),

∂a(∩{β′1, . . . , β′n}) = ∂a(β
′
1) ∪ · · · ∪ ∂a(β′n),

∂a(·[δ′1, δ′2]) = ¬(∂a(δ
′
1)� δ′2) ∩· ∂a(δ′2), if ε(δ′1) = ε,

∂a(·[δ′1, δ′2]) = ¬(∂a(δ
′
1)� δ′2), if ε(δ′1) = ∅,

∂a(·[δ′1, δ′2, . . . , δ′n]) = ¬(∂a(δ
′
1)� ·[δ′2, . . . , δ′n]) ∩· ∂a(·[δ′2, . . . , δ′n]), if ε(δ′1) = ε,

∂a(·[δ′1, δ′2, . . . , δ′n]) = ¬(∂a(δ
′
1)� ·[δ′2, . . . , δ′n]), if ε(δ′1) = ∅,

∂a(α
∗) = ¬∂a(α∗),

∂a(¬α) = ∂a(α).

Example 6.8. The set of partial derivatives of the special regular expression ¬· [a∗, a]

w.r.t. a is

∂a(¬ · [a∗, a]) = ∂a(·[a∗, a]) = ¬(∂a(a
∗)� a) ∩· ∂a(a)

= ¬(∂a(a)� a∗ � a) ∩· ∂a(a) = ¬({ε} � a∗ � a) ∩· {Σ+}

= ¬({·[a∗, a]}) ∩· {Σ+} = {¬ · [a∗, a]}) ∩· {Σ+}

= {∩{¬ · [a∗, a],Σ+}}.

We define the extension of the set of partial derivatives to words, sets of words and
sets of special regular expressions in the same way as we defined for simple regular
expressions. As for derivatives, L(∂w(ϕ)) = w−1L(ϕ) holds for every ϕ ∈ RE∩,¬ over
any alphabet Σ and for every w ∈ Σ∗. Moreover, the set of all partial derivatives of
every special regular expression is finite.

Note that this construction of the set of partial derivatives improves the one of Caron
et al. because of our compact representation.



88 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS

6.5 Systems of Equations

In this section we generalize the inductive definition of a support given in Proposition
5.18 to a special regular expression. This extension is given by the next proposition.

Proposition 6.9. Let ϕ be a special regular expression over Σ. The set π, defined
recursively as follows, is a support of ϕ:

π(Σ+) = π(Σ∗) = {Σ∗},

π(∅) = π(ε) = ∅,

π(a) = {ε}, where a ∈ Σ,

π(+{β1, . . . , βn}) = π(β1) ∪ · · · ∪ π(βn),

π(∩{β′1, . . . , β′n}) = π(β′1) ∩· · · · ∩· π(β′n),

π(·[δ′1, δ′2]) = π(δ′1)� δ′2 ∪ π(δ′2),

π(·[δ′1, δ′2, . . . , δ′n]) = π(δ′1)� ·[δ′2, . . . , δ′n] ∪ π([δ′2, . . . , δ
′
n]),

π(α∗) = π(α)� α∗

π(¬α) = {β ∈ ¬S | S ∈ 2π(α)}.

Proof. The proof follows trivially from Proposition 5.18 and from the definition of the
set operators ∩· , � and ¬.

Given α ∈ RE∩,¬, let ∂+(α) be the set of all partial derivatives of α, considering
the natural extension of partial derivatives of an extended regular expression. From
Proposition 5.19, we know that ∂+(α) ⊆CII∩ π(α), for every α ∈ RE∩,¬. Since the set
of all special regular expressions is CII∩-dissimilar, we conclude that ∂+(ϕ) ⊆ π(ϕ),
for every ϕ ∈ RES.

6.6 RES to Finite Automata

The Brzozowski’s automaton and the partial derivative’s automaton are defined for
special regular expressions in the same way as for simple regular expressions. The
main advantage of using special regular expressions, compared with extended regular
expressions, lies in the fact that for special regular expressions both constructions are
always finite.



6.6. RES TO FINITE AUTOMATA 89

As previously seen, the construction of the Brzozowski’s automaton for the regular
expression a∗a is infinite. The following example shows this construction for the
equivalent special regular expression ·[a∗, a].

Example 6.10. The Brzozowski’s automaton of the regular expression α ≡ ·[a∗, a]

over Σ = {a} is the automaton D = 〈Q,Σ, q0, δ, F 〉, where Q = {·[a∗, a],+{·[a∗, a],

ε}}, the initial state is q0 = α, the set of final states is F = {+{·[a∗, a], ε}} and the
transition function is

δ(·[a∗, a], a) = da(·[a∗, a]) = ⊕ {·[a∗, a], ε},

δ(+{·[a∗, a], ε}, a) = da(·[a∗, a]) ⊕ da(ε)

= +{·[a∗, a], ε} ⊕ ∅ = +{·[a∗, a], ε}.

Figure 6.1 shows the diagram of D.

���������������������������

������������������
�

��
�

�

�
����

Figure 6.1: Brzozowski’s automaton of ·[a∗, a].

As we also know, the set of partial derivatives of ¬(a∗a) is infinite. The next ex-
ample presents the partial derivative’s automaton for the equivalent special regular
expression, ¬(·[a∗, a]).

Example 6.11. The partial derivative’s automaton of the special regular expression
α ≡ ¬(·[a∗, a]) over Σ = {a} is the automaton N = 〈Q,Σ, q0, δ, F 〉, where Q = {¬(·[a∗,
a]), ∩{·[a∗, a],Σ+}}, the initial state is q0 = α, the set of final states is F = {¬(·[a∗, a])}
and the transition function is

δ(¬(·[a∗, a]), a) = ∂a(¬(·[a∗, a])) = {∩{¬(·[a∗, a]),Σ+}},

δ(∩{¬(·[a∗, a]),Σ+}, a) = ∂a(¬(·[a∗, a])) ∩· ∂a(Σ∗)

= ∩{¬(·[a∗, a]),Σ+} ∩· {Σ∗} = {¬(·[a∗, a]),Σ+}.

The diagram of the automaton N is depicted in Figure 6.2.



90 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS

����������� �������������������

�

Figure 6.2: Partial derivative’s automaton of ¬(·[a∗, a]).

6.7 FAdo

For the purpose of representing special regular expressions, new classes were im-
plemented in the module reex: sigmaS, sigmaP, sdisj, sconj, sconcat, sstar
and snot. The classes sdisj, sconj, sconcat, sstar and snot represent the
disjunction, the intersection, the concatenation, the Kleene star and the complement
of special regular expressions, respectively. The classes sigmaS and sigmaP represent
the regular expressions Σ∗ and Σ+, respectively. The alphabet symbols, the empty
word and the emptyset are represented as before by the classes atom, epsilon and
emptyset. The class diagram of the implementation is shown in Figure 6.3.

���������

�����������

�������������

��������������������

������������������������

����������������

���������� ���������� ����������� �����������

���������

����������

���������

Figure 6.3: Class diagram of reex for special regular expressions.

In order to ensure the associative, commutative and idempotent properties of the
disjunction and the intersection, these operators were implemented as sets. In the
other hand, ordered lists are used to implement concatenation, allowing us to take
advantage of the associativity of the concatenation. The operators ⊕, ©∩ and � are



6.7. FADO 91

defined by the methods reex._plus(re), reex._inter(re) and reex._dot(re),
respectively.

To build a special regular expression in FAdo, we use the function str2sre(str).
This function converts a string into a special regular expression. The regular expres-
sions Σ∗ and Σ+ are represented by the strings @sigmaS and @sigmaP, respectively.
The string ∼ represents the complement.

>>> from FAdo.reex import *

>>> re = str2sre("~(a*+(@sigmaS & aa + aa))@epsilon")

>>> re

snot(sdisj(frozenset([sconcat((atom("a"), atom("a"))),sstar(

atom("a"))])))

>>> print re

~(aa + a*)

The measure methods implemented for reex, including reex.conjLength(), are also
methods of the new classes. Furthermore, a new measure, which counts the number
of nodes of a regular expression, was implemented. This measure is defined by the
method reex.syntacticLength().

>>> re = str2sre("a*bbb")

>>> re.syntacticLength()

8

>>> re.treeLength()

6

The definitions of derivative, set of partial derivatives, linear form and support were
also implemented for the new classes. In this way, we are able to build the Brzozowski’s
automaton or the partial derivative’s automaton of a special regular expression. The
method to build the Brzozowski’s automaton is reex.dfaBrzozowski(). For special
regular expressions without intersection and complement we are also able to build the
Glushkov’s automaton. All the methods available for a special regular expression can
be found in the FAdo webpage [14].



92 CHAPTER 6. SPECIAL REGULAR EXPRESSIONS



Chapter 7

Conclusion

In this work we presented several derivative based methods for the conversion of regular
expressions with additional operators to finite automata.

For regular expressions with intersection, we proved that Antimirov’s and Mirkin’s
constructions are not identical. Futhermore, we presented a tight worst-case upper
bound for the size of both constructions that is exponential with respect to the
number of states of the regular expression. This could lead to the assumption of the
infeasibility of the manipulation of these expressions. However, as seen in the presented
experimental results, the average state complexity of partial derivative’s automaton
may even be polynomial. A recent study [4], for which this work contributed, shows
that the upper bound of the average state complexity of this automata is exponential
but with a base only slightly above 1.

Since RE∩ ⊂ RE∩,¬, it is trivial that Antimirov’s and Mirkin’s constructions are not
identical for extended regular expressions. Nevertheless, while the set of partial
derivatives is ensured to be finite only if extended regular expressions are CII∩-
dissimilar, the support is finite for every α ∈ RE∩,¬. Moreover, considering the natural
extension, the set of CII∩-dissimilar partial derivatives is a subset of the support.

The special regular expressions, introduced in Chapter 6, in addition to ensure the
termination of Brzozowski’s and partial derivative’s automaton, are also more compact
and allow the construction of smaller automata. This is due to the fact that, with
the S-dissimilarity, more regular expressions are identified in the construction of these

93



94 CHAPTER 7. CONCLUSION

derivatives based automata. When compared with the Caron et al. method, we
also observed that not only we represent partial derivatives with sets of sets, but
also the regular expressions themselves have a more compact representation. The
implementation of these expressions and several associated algorithms can be found
in the FAdo system. A preliminary version of this work has already been reported [5].

Future Research Directions

There are several lines of future research. The first is to further develop the analytical
study of the average state complexity of partial derivative’s automaton for extended
regular expressions. These can also include the analytic combinatorial study of special
regular expressions even without intersection and negation. Besides that, since alter-
nating finite automata [28] (AFAs) allow boolean operators in the transition function,
we could develop algorithms for the construction of small AFAs using derivatives.



Appendix A

Experimental Results

The following table presents the experimental comparative results of the sizes of the
partial derivative automaton and the support of regular expressions with intersection.
The sampling and experimental study were conducted as described in the section 4.8,
using datasets with 10000 regular expressions of size n over an alphabet of k symbols.

For each n and k, the first row has the average values and the second the maximal
values. The column labelled with ∅ indicates the ratio of expressions which are
equivalent to the empty language. The column labelled with |δpd| indicates the number
of transitions of the partial derivative’s automaton.

The values with "-" indicates that the computation did not end after 4 weeks of cpu
time.

95



96 APPENDIX A. EXPERIMENTAL RESULTS

Table A.1: Experimental Results.

k |α| |α|Σ |α|∩ ∅ |δpd| |PD| |π|

1

25
10.1 3.04 0.08 11.39 5.87 6.44

13 9 1 116 23 27

50
19.9 6.30 0.09 31.45 10.65 18.13

24 15 1 3729 151 360

100
39.19 12.7 0.09 161.2 25.95 101.64

47 25 1 69496 1085 9220

150
58.65 19.18 0.1 898.18 55.50 640.77

67 34 1 1376936 9063 845376

200
– – – – – –
– – – – – –

2

25
10.85 3.26 0.27 5.10 3.50 6.81

13 9 1 52 11 46

50
21.2 6.75 0.29 6.83 4.14 19.67

25 17 1 121 29 279

100
41.9 13.68 0.29 8.65 4.78 122.9

48 26 1 378 64 6664

150
62.75 20.54 0.284 10.27 5.25 663.5

70 36 1 710 89 74737

200
83.5 27.5 0.29 10.11 5.25 3691.15

92 45 1 635 115 969658

5

25
11.54 3.50 0.40 3.13 2.70 7.12

13 10 1 44 12 30

50
22.63 7.25 0.43 3.56 2.85 20.99

25 16 1 93 17 328

100
44.75 14.57 0.43 3.76 2.95 134.6

50 26 1 83 22 5760

150
66.89 21.95 0.44 3.95 3.04 831.38

73 39 1 141 29 72241

200
89.02 29.33 0.44 3.99 3.05 4921.26

97 47 1 128 29 959412



97

Table A.1: Experimental Results.

k |α| |α|Σ |α|∩ ∅ |δpd| |PD| |π|

10

25
11.96 3.66 0.47 2.59 2.47 7.22

13 10 1 41 12 40

50
23.40 7.47 0.49 2.86 2.60 21.82

25 16 1 50 16 324

100
46.31 15.02 0.49 3.03 2.66 144.60

50 30 1 76 21 6336

150
69.22 22.76 0.50 3.10 2.69 867.50

75 39 1 92 23 60711

200
92.13 30.37 0.50 3.03 2.67 5579.60

99 50 1 90 32 1619575



98 APPENDIX A. EXPERIMENTAL RESULTS



Bibliography

[1] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUItar:
tools for automata manipulation and visualization. In S. Maneth, editor, 14th
International Conference on Implementation and Application of Automata, CIAA
2009. Proceedings, volume 5642 of LNCS, pages 65–74, Sidney, July 2009.
Springer.

[2] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci., 155(2):291–319, 1996.

[3] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions. In
G. Rozenberg and A. Salomaa, editors, Developments in Language Theory, pages
195 – 209. World Scientific, 1994.

[4] R. Bastos, S. Broda, A. Machiavelo, N. Moreira, and R. Reis. On the
state complexity of partial derivative automata for regular expressions with
intersection. Submited.

[5] R. Bastos, N. Moreira, and R. Reis. Manipulation of extended regular expressions
with derivatives. Technical Report DCC-2013-11, DCC-FC, Universidade do
Porto, September 2013.

[6] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. The average transition
complexity of Glushkov and partial derivative automata. In G. Mauri and
A. Leporati, editors, 15th International Conference on Developments in Language
Theory, DLT 2011. Proceedings, volume 6795 of LNCS, pages 93–104, Milano,
Italy, July 2011. Springer.

99



100 BIBLIOGRAPHY

[7] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. On the average state
complexity of partial derivative automata. International Journal of Foundations
of Computer Science, 22(7):1593–1606, 2011.

[8] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. On the average size of
Glushkov and partial derivative automata. International Journal of Foundations
of Computer Science, 23(5):969–984, 2012.

[9] A. Brüggemann-Klein. Regular expressions into finite automata. Theoret.
Comput. Sci., 48:197–213, 1993.

[10] J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494,
October 1964.

[11] P. Caron, J. M. Champarnaud, and L. Mignot. Partial derivatives of an extended
regular expression. In Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Martín-
Vide, editors, Language and Automata Theory and Applications, volume 6638 of
Lecture Notes in Computer Science, pages 179–191. Springer Berlin Heidelberg,
2011.

[12] J. M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word
partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

[13] J. H. Conway. Regular algebra and finite machines. William Clowes& Sons, Great
Britain, 1971.

[14] Project FAdo. FAdo: tools for formal languages manipulation.
http://fado.dcc.fc.up.pt/, Access date:1.09.2015.

[15] W. Gelade. Succinctness of regular expressions with interleaving, intersection and
counting. Theor. Comput. Sci., 411(31-33):2987–2998, June 2010.

[16] W. Gelade and F. Neven. Succinctness of the complement and intersection of
regular expressions. CoRR, abs/0802.2869, 2008.

[17] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys,
16:1–53, 1961.

[18] J. E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.



BIBLIOGRAPHY 101

[19] D. C. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Infor. and Comput., 110(2):366–390, 05 1994.

[20] A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and
relation algebra. J. Automated Reasoning, 49:95–106, 2012. published online
March 2011.

[21] M.V. Lawson. Finite Automata. Taylor & Francis, 2003.

[22] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1997.

[23] R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 9:39–47, 1960.

[24] B. G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:51—57, 1966.

[25] A. Salomaa. Two complete axiom systems for the algebra of regular events.
Journal of the Association for Computing Machinery, 13(1):158–169, 1966.

[26] A. Salomaa and V. Tixier. Two complete axiom systems for the extended language
of regular expressions. IEEE Transactions on Computers, 17(7):700–701, 1968.

[27] K. Thompson. Regular expression search algorithm. Communications of the
ACM, 11(6):410–422, 1968.

[28] S. Yu. Regular languages. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, volume 1, pages 41–110. Springer, 1997.


