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Abstract 

Although alkaline hydrolysis treatment emerges as an alternative 

disinfection/sterilization method for medical waste, information on its effects on 

the inactivation of biological indicators is scarce. The effects of alkaline 

treatment on the resistance of Geobacillus stearothermophilus  spores were 

investigated and  the influence of temperature (80 oC, 100 oC and 110 oC) and 

NaOH concentration was evaluated. In addition, spore inactivation in the 

presence of animal tissues and discarded medical components, used as surrogate 

of medical waste, was also assessed. The effectiveness of the alkaline treatment 

was carried out by determination of survival curves and D-values. No significant 

differences were seen in D-values obtained at 80 oC and 100 oC for NaOH 

concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 oC (2.3-0.5 min) 

were approximately 3 times lower than those at 100 oC (8.8e1.6 min). 

Independent of the presence of animal tissues and discarded medical 

components, 6 log10 reduction times varied between 66 and 5 min at 100 oC-0.1 

M NaOH and 110 oC-1 M NaOH, respectively. The alkaline treatment may be 

used in future as a disinfection or sterilization alternative method for 

contaminated waste. 

 

1. Introduction 

 

A large number of methods are available to inactivate microorganisms. Most of 

them use the same fundamental principle of heat, chemicals, irradiation or 

combinations of these. Several methods are currently used for the sterilization, 

defined as a process that destroys all forms of life including dormant. These 
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methods include plasma, vapour-phase hydrogen peroxide, ozone, chloride 

dioxide, autoclaving, ethylene oxide and radiation. The selection of the method 

depends on the type of material being treated as well as the intended purpose. For 

instance, the last three methods are the most widely used for the sterilization of 

medical instruments. Each of these methods has advantages and disadvantages. 

Autoclaving is usually employed to kill bacteria, viable spores including endo- 

spores and virus in heat resistant materials. At 121 oC or higher, sterilization is 

achieved. When temperatures below 121 oC are used a disinfection process occurs, 

which may kill vegetative forms of microorganisms, such as pathogens or other 

harmful organisms but do not inactivate bacterial endospores (Russell, 2001). 

Autoclaving is extremely time-consuming and is not adequate to treat heat 

sensitive materials. Exposure to ethylene oxide is highly efficient due to its 

penetrative properties. Therefore, it is considered one of the most suitable 

sterilization processes for thermo sensitive materials. However, ethylene oxide 

is extremely toxic and presents risks associated with handling a flammable 

(Mendes et al., 2007). Radiation by gamma rays or electron beam are also very 

effective sterilization methods, but can affect product integrity and can degrade 

polymers and rubbers. Additionally, their utilization requires high capital 

investment (Haji-Saeid et al., 2007). Plasma technology has been studied as an 

alternative to conventional sterilization  methods  (Kylia'n  et  al.,  2006;  Yardimci  

and  Setlow, 2010). This method has some advantages over others, such as low 

energy consumption, absence of residuals and toxic emissions, safety and low 

capital and operational costs (Yardimci and Setlow, 2010). Nevertheless, it has a 

particular limitation, namely its incompatibility with some polymeric materials 

(Lerouge et al., 2002). Sterilization processes are not only necessary for high 

added- value materials. Indeed, tonnes of medical waste are produced per year 

(Diaz et al., 2008; Lee and Huffman, 1996) and must be treated to eliminate the 

infectious potential prior to disposal. 

Autoclaving and incineration are the main processes used for treating medical 

waste, the last being the oldest and, until now, the most used (Lee and Huffman, 

1996; Sukandar et al., 2006). How- ever, this process demands high investment and 

exploration costs and it is not appropriate to treat small quantities of medical wastes. 

In this context, it is essential to develop effective low cost alternative sterilization 

processes. 

Various microorganisms, including pathogens, produce dormant forms, which 

permit their survival under stress conditions, such as high temperature, 

irradiation or chemical damage. Amongst these structures, the endospores, 

herein further designated as spores, produced by some low G C Gram-positive 

bacteria, are the most resistant to harsh conditions. Several spore traits have been 

described to be involved on resistance against physical and chemical 

antimicrobial agents. The low water content in the spore core seems to be the 

most important factor of a spore wet heat resistance. Indeed, the wet heat 

resistance correlates negatively with the core water content (Setlow, 2006). The 
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high core mineralization also confers wet heat resistance; ions such as Ca2+ ensure 

a higher wet heat protection than Mg2+, Mn2+, Na+ and K+. Another essential 

factor to the spore resistance is the high quantity of small acid-soluble spore 

proteins (SASPs) that protect the spore DNA by its saturation with a/b-type SASP 

and DNA repair systems (Leggett et al., 2012; Setlow, 2006). 

Geobacillus  stearothermophilus  comprise  low  G + C   Gram- positive, thermophilic 

non-pathogenic bacteria, and their  spores are one of the most heat and chemical 

agents resistant. Indeed, the low water content in the core and the intrinsic 

thermostability of proteins confers to spores of thermophilic species a higher 

resistant to wet heat than to those of mesophiles (Guizelini et al., 2012). Therefore, 

the spores of this organism are often used as a biological indicator to assess the 

effectiveness of sterilization methods (Lo'pez et al., 1997; Watanabe et al., 2003; 

Wood et al., 2010). 

This study reports the alkaline treatment as a disinfection and a sterilization 

alternative methods for waste contaminated with infectious agents. The successful 

inactivation of a Creutzfeldt-Jajob disease (CDJ) agent (Taguchi et al., 1991), the 

inactivation of 22A strain of scrapie agent (Taylor et al., 1997), the prion 

decontamination (McDonnell et al., 2013; Murphy et al., 2009) and inactivation of 

potentially infectious agents including virus, bacteria, fungi and protozoa (Kaye et 

al., 1998; Murphy et al., 2007; Neyens et al., 2003; Dixon et al., 2012) have been 

proved. 

In the present study the effect of alkaline treatment on the degree of G. 

stearothermophilus spores inactivation, in terms of decimal reduction times (D-

value), at three temperatures (80 oC, 100 oC and 110 oC) and different sodium 

hydroxide concentrations, was assessed. In addition, dipicolinic acid (DPA) 

released from endospores after the alkaline treatment was detected by the 

terbium dipicolinate fluorescence method. 

 

2. Material  and methods 

 

2.1. Preparation of G. stearothermophilus spores 

 

Strain G. stearothermophilus 22T was obtained from the German Collection    of    

Microorganisms    and    Cell    Cultures    (DSMZ). G. stearothermophilus was grown in  

Nutrient  Agar  (Liofilchem)  at 55 oC for 4 days. After incubation, the biomass was 

scraped from the agar surface and washed with sterile distilled water. The resulting 

suspension was incubated at 80 oC for 15 min. After cooling down, the suspension 

was centrifuged at 1000 g for 30 min at 5 oC. The supernatant was decanted, and 

the biomass was washed in chilled sterile distilled water and re-centrifuged. This 

step was repeated twice. After re-suspension in water, the suspension was incubated 

at 37 oC for 60 min in the presence of lysozyme (100 g/mL) for peptidoglycan 

breakdown. After washing with sterile distilled  water for three times, and 



4 

centrifugation at 1000 x g for 20 min at  5 oC, the suspension was incubated with 

sodium dodecyl sulphate (SDS) at 2.5% and incubated at 60 oC for 15 min, to increase 

the membrane fragmentation. After, the spores were washed with sterile distilled 

water for three times. Confirmation of the integrity of cells and spores after each step 

was carried out through transmission electron microscopy analysis (Fig. 1). The final 

suspension of spores was  serially diluted with sterile distilled  water to  obtain 

approximately   107   colony-forming   units   per   mL   (cfu/mL) and stored at 4 oC. 

 

2.2. Alkaline treatment 

 

The experiments were carried out in a Parr batch reactor with a titanium vessel of 

450 mL capacity under temperature control. Five millilitres of spore suspension at 

107 cfu/mL was mixed with 45  mL of NaOH solution at different concentrations (0.1 

M, 0.25 M, 0.5 M, 0.75 M or 1 M). The reactor was heated at temperatures of 80 oC, 

100 oC or 110 oC with heating rates of 5 oC/min. When the temperature stabilized, 

samples of 1.5-2 mL were taken, at regular time intervals up to 30 min. A control 

was made by heating the spore suspension at 100 oC without  NaOH. 

To evaluate the behaviour of spores in the presence of material usually present 

in medical waste, experiments with animal tissues (pork meat and bone) and a 

mix of discarded medical components (cotton, diapers, tubes for transfusion, 

surgical gloves, examination gloves, adhesives, surgical masks, bag collectors for 

urine, serum bottles and syringes) were performed. Except for cotton, the animal 

tissues were cut in fragments of approximately 1 cm2 and all the assays were 

carried out using samples with 1 g of each component. 

The experiments performed with those materials were carried out at the same 

conditions used in their absence. Approximately 10 g of animal tissues or 

discarded medical components was added to the spore suspension (107 cfu/mL) 

with 50 mL of 0.5 M NaOH solution. 

 

2.3. Incubation and survival counts 

 

The number of surviving spores was determined by the viable plate count 

method. Samples of heated  spore  suspensions (1.5e2 mL) were cooled in ice-

water and neutralized with an HCl solution to pH 7. Samples were serially 

diluted in sterile saline solution (0.85% NaCl, w:v) and 0.1 mL were spread on 

triplicate nutrient agar plates and incubated at 55 oC for 24 h, 48 h, 72 h, 96 h and 

120 h. It was verified an increase in the cell counts over time, stabilizing at 96 h. 

Thus, the D-values were calculated using data obtained after 96 h of incubation. 

A positive control consisting on the enumeration of the total cell counts of the 

spore suspension used in each assay was performed in parallel. 
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2.4. Fluorimetric  detection  of DPA 

 

The DPA released by a 106 cfu/mL spore suspension after auto- claving at 121 oC 

for 30 min and after the hydrolysis at 110  oC, with 1 M NaOH was determined 

through a fluorimetric method, as previously described (Navarro et al., 2008). 

Briefly, a 1000 L aliquot of suspension was added into 1 cm quartz cuvette with 

40 L of 10 nM TbCl3 and 800 mL water distilled. The photo- luminescence was 

measured at 270 nm excitation and 546 nm emission wavelengths. A calibration 

curve was prepared with DPA (2,6 pyridinedicarboxylic) concentrations ranging 

from 0 up to  10 nM. As control, a standard DPA solution at 10 nM was quantified 

after the aforementioned autoclaving and alkaline treatments. Four independent 

replicates were carried out for each condition. 

 

2.5. Transmission  electron microscopy 

 

Bacterial and spore suspensions were fixed for 4 h with 2.5% glutaraldehyde 

and 4% formaldehyde (obtained from hydrolysis of paraformaldehyde) diluted in 

0.1 M cacodylate buffer (pH 7.2), post-fixed overnight with 2% OsO4 in cacodylate 

buffer, stained in bloc with 1% uranyl acetate, dehydrated with ethanol and 

embedded in Epon. Ultrathin sections were stained with uranyl acetate and lead 

citrate before being observed in a JEOL 100CXII transmission electron 

microscope. 

 

3. Results 

 

Preliminary assays with vegetative cells of G stearothermophilus (Fig. 1A) 

demonstrated that they were very sensitive to alkaline solutions, since 0.1 M NaOH 

at 100 oC killed 99.9999% of the initial 106 cells/mL after 30 min of contact (data not 

shown). Under the same conditions, 99.9% of the G. stearothermophilus spores were 

inactivated. In opposition, the spores were not inactivated at 100 oC in the absence 

of NaOH (Fig. 2). Spore morphology was not affected by treatment with lysozyme 

(Fig. 1B) or SDS (Fig. 1C). 

The survival curves, obtained when the G. stearothermophilus spores were 

exposed to alkaline conditions, exhibited biphasic curves with a slope tailing, as 

shown in Figs. 2 and 3. There are several models that describe the inactivation 

of microorganisms (Chick, 1908; Cole et al., 1993; Kamau et al., 1990). Cerf (1977) 

proposed a model for populations constituted by two-fraction with a constant 

inactivation rate for each fraction. In this model it is assumed that inactivation 

of both fractions is independent and irreversible, each following first order 

kinetics (Equation (1)). 
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where N(t)/N0 is the proportion of surviving spores, t is the exposition time (min), k1 

and k2 (k1 > k2 ≥ 0) are the death rate constants for first fraction and second fraction, 

respectively, f and (1  f) are  the initial proportion in first fraction and second fraction, 

respectively, and  e  is  the Naperian  base. The  first and second  fractions describe 

the death of the less and the more resistant spores, respectively (Xiong et al., 

1999). 

Given the biphasic behaviour of the survival curves of the G. stearothermophilus 

spores, the D-values, at specified conditions, were determined by estimating the 

parameter values of the Cerf's model. Table 1 reports the D-values, 6 log10, f, k1, 

and k2. The differences between the D-values at 80 oC and 100 oC were not 

significant for NaOH concentrations of 0.5 M (1.9 and 1.6 min, respectively) and 

0.75 M (1.0 and 0.9 min, respectively); the 6 log10 reduction times were also 

similar. Given that both incubation at 80 oC and 100 oC are currently used to 

isolate spores of low G C content Gram positive bacteria (Gerhardt, 1994), at 

these two temperatures spore inactivation was solely due to the presence of the 

alkaline solution. Indeed, no spore inactivation was observed in the controls 

performed at 100 oC in the absence of NaOH, as shown in  Fig. 2.  At 100  oC, 6  log10  

reductions varied between  66.1   and 19.7  min in the presence of 0.1  and 0.75 M 

NaOH, respectively. 

As expected, for each temperature tested, the calculated D- values decreased 

with the increase of the NaOH concentration. At 100 oC, the lowest D-value (0.9 

min), obtained with 0.75 M NaOH, was about ten times lower than that obtained 

with 0.1 M NaOH (8.8 min). 

On the other hand, for each NaOH concentration tested, the calculated D-

values decreased with the increase of temperature. For NaOH concentrations of 

0.1 M, 0.25 M and 0.5 M the D-values obtained at 110 oC (2.3-0.5 min) were 

approximately 3 times lower than those at 100 oC (8.8-1.6 min). The combined 

effect of high temperature (110 oC) and NaOH (1 M) led to the complete 

inactivation of spores (6 log10 reduction) after 5 min. 

To confirm spores inactivation, DPA released after alkaline treatment (110 oC, 

1 M NaOH, 30 min) was quantified, and compared to that released after 

autoclaving (121 oC, 30 min). The concentration of DPA after autoclaving (1.8 nM) 

was approximately 3.5 times higher than that quantified after the alkaline 

treatment (0.5 nM) (Table 2). Given this unexpected result, the effect of temperature 

and NaOH on the DPA determination was carried out, using a 10 nM standard 

solution of this compound. It was verified that the presence of NaOH interfere with 

the DPA quantification, since after the alkaline treatment the concentration of this 

organic acid was about 3 times  lower than that after heating at  110  oC  for 30 min 

(Table 2). Confirmation of spores destruction after the alkaline treatment was given 
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by TEM analysis. No spores were observed after the alkaline treatment (Fig. 1D). 

Given the importance of medical waste sterilization, the behaviour of spores in 

the presence of materials usually present in medical waste was assessed at 110 

oC and 0.5 M NaOH. In first minutes (1-2 min), the rate of spores inactivation in 

the presence of animal tissues and discarded medical components was similar to 

that in the absence of materials, as shown in Fig. 3. However, after that period, 

there was a higher heat and alkaline resistance of those spores comparably to the 

ones solely in NaOH solution. Such differences can be explained by diffusion 

mechanism that occurred with sodium hydroxide and materials. In addition, 

NaOH consumption in hydrolysis of the materials occurred. Indeed, under the 

conditions tested, the animal tissues were almost destroyed. Nevertheless, the 

time required for the complete inactivation of spores in the presence of animal 

tissues and discarded medical components (25 min and 26 min, respectively) was 

not much longer than that needed in their absence (24 min). 

 

4. Discussion 

 

The survival curves of G. stearothermophilus spores after being subjected to 

alkaline treatment are typical of a mixture of two fractions or sub-populations 

with different resistance to stressful conditions, such as heat (Abraham et al., 

1990). This difference in heat resistance has been attributed to different 

physiological states in the spore population (Iciek et al., 2006). A dormant spore 

transits to a vegetative cell by activation, germination and outgrowth. The 

activation is a reversible process; only when the germination phase starts the 

spore can no longer return to its dormant state (Leggett et al., 2012). Hence, spore 

suspensions may contain sub- populations of activated and dormant ones. Spores 

in the activated state are described as more sensitive to stressful conditions than 

in the dormant state. Thus, in the present study the spores were inactivated in 

two stages: the first corresponds, most probably, to the inactivation of the less 

resistant spores and the second of the more resistant ones. 

The decline observed in spore heat resistance, when the temperature of 110 oC was 

used, can be explained by an increase in the core water content. Although the 

mechanism of spore inactivation by wet heat is not entirely clear yet, it is partially 

due to the rupture of the spore inner membrane permeability barrier, which causes 

an increase in the core water content (Setlow, 2006). The spores inactivation by 

alkaline treatment seems to involve the removal of alkali-soluble coat proteins with 

consequent inactivation of the  lytic enzymes essential for cortex hydrolysis and 

spore germination (Duncan et al., 1972). Treatment efficiency can be proved by the 

release of DPA to the suspension after the alkaline treatment and TEM observations. 

It    has    been    previously    reported    that    inactivation    of G. stearothermophilus 

at low temperatures (<100 oC) can be  achieved using chemicals agents (Mazzola et 

al., 2003; Rogers et al., 2007), high-pressure carbon dioxide (Watanabe et al., 2003) 

and supercritical carbon dioxide with added hydrogen peroxide (Hemmer et al., 
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2007) but the time required to inactivate spores is high. The D-values found in 

literature for inactivation assays carried out at temperature 100 oC were higher than 

those obtained in this work (Table S1), except when using high pressure treatments 

(Patazca et al., 2006). The D-values herein obtained at 100 oC were even lower than 

those found in studies using thermal inactivation  at temperatures above 100 oC. 

Except in the experiments carried out with 0.1 M NaOH, the highest D-value 

obtained was 2.3 min (Table  1).  In  contrast,  at  120  oC,  Lo'pez  et  al.  (1997)  

reported  D- values ranging from 1.32 to 2.84 min, while at 121 oC, Feeherry et al. 

(1987)  and  Guizelini  et  al.  (2012)  reported  D-values  from  1.3 to 5.4 min. 

Nevertheless, the time required to complete inactivation of G. stearothermophilus 

spores in the present study was probably, different from those obtained in 

abovementioned studies. Indeed, at 121 oC the thermal inactivation of spores 

generally follows a first order linear kinetics while under alkaline treatment, as 

described above, inactivation curves were non-linear. 

Some authors (Murphy et al., 2009; Thacker, 2004) estimated the costs for the 

alkaline hydrolysis treatment. Thacker (2004) indicates costs  of  $320  ton-1,  

including  those  with  steam,  water, electricity, chemicals, labor, sanitary sewer 

and maintenance and repair. Similar values ($260-$310 ton-1) were obtained by 

Murphy et al. (2009) using alkaline hydrolysis to dispose of animal tissues and 

carcasses during their study on prion inactivation. These costs do not include the 

initial capital investment. The sterilization conditions, i.e., relation 

temperature/time herein obtained were less aggressive than those described on 

previous studies. Hence, it can be argued that operation costs may be lower than 

reported before. However, further scale-up studies are needed to assess the 

detailed costs under the herein described conditions. 

 

5. Conclusions 

 

The results herein obtained confirm previous reports on the effectiveness of 

alkaline on the treatment of biologically contaminated waste. Low temperature 

values (110 oC), NaOH concentration (1 M) and time (5 min) were needed to 

achieve sterilization. The time required for total inactivation of spores in the 

presence of the tested animal tissues and discarded medical components, identical 

to those commonly found in medical waste, was similar to that obtained in their 

absence. The disadvantage of this treatment is the production of an effluent with 

high alkalinity, which adds to the process one additional neutralization step 

before discharge. 
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Fig. 1. TEM images of Geobacillus stearothermophilus. Vegetative cells 

suspension (A), spores suspension after addition of lysozyme (B), after 

addition of SDS (C) and spore debris after alkaline treatment (D). sc, spore 

coat; co, cortex; cr, core. 
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Fig. 2. Survival curves for the Geobacillus stearothermophilus exposed to alkaline 

treatment at 100 oC with various NaOH concentrations. Vertical bars represent 

standard deviations of the means. 

 

 

 

 

Fig. 3. Survival curves for the Geobacillus stearothermophilus exposed to alkaline 

treatment at 110 oC with various NaOH concentrations. Vertical bars represent 

standard deviations of the means. 
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Table 1 

Decimal time reduction (D-value), 6 log10, estimates of the model parameters and standard derivation values for the Cerf 

model. Data presented are the mean of three in- dependent experiences with standard deviation. 

 

 

 

Table 2 

Concentration of 10 nM standard DPA, and DPA released from endospores after autoclaving and alkaline treatment. 

 


