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Resumo 

Preocupações de carácter económico e ambiental têm conduzido a uma procura e 

desenvolvimento incessante para a aplicação de novos materiais e tecnologias, que permitam 

reduzir o peso de componentes utilizados na indústria dos transportes. 

Devido à sua baixa densidade, baixo custo, elevada resistência específica e elevada 

resistência à corrosão, a utilização de polímeros nesta indústria aumentou substancialmente ao 

longo dos últimos anos, com repercussão na procura por novas tecnologias de processamento 

e especialmente de novos métodos de ligação. Técnicas de ligação que visam eliminar ou 

reduzir os principais defeitos associados com os métodos convencionais, a concentração de 

tensões e o peso acrescido das ligações aparafusadas, ou o tempo excessivo de processamento 

das ligações adesivas, são factores que motivam a procura por novas técnicas de ligação. 

A Soldadura por Fricção Linear é um processo de ligação, que embora tenha sido 

originalmente desenvolvido para soldar ligas reactivas como o alumínio e o magnésio, 

começou recentemente a ser estudado, desenvolvido e modificado para que pudesse ser 

aplicado para unir polímeros. O processo referido apresenta múltiplas vantagens em relação 

aos métodos convencionais, das quais se destacam a não adição de componentes nem material 

durante o processo, uma distribuição de tensões uniforme e a possibilidade de utilizar 

diferentes configurações de junta. 

O trabalho experimental realizado foi focado na optimização dos parâmetros de soldadura 

(diâmetro da ferramenta, velocidade de rotação, velocidade de translação e força axial) com o 

objectivo de optimizar os parâmetros de soldadura com o intuito de aumentar a resistência da 

soldadura. As soldaduras foram realizadas em placas de polietileno com 3 mm de espessura, 

na configuração topo-a-topo. Posteriormente, estas placas foram seccionadas em provetes e 

estes testados à tracção de modo a aferir a resistência da soldadura. 

Uma vez que a temperatura é um factor crucial em qualquer método de ligação por 

soldadura, recorreu-se a termopares, colocados em várias posições no cordão de soldadura, de 

maneira a obter uma melhor compreensão da influência deste factor no processo e a influência 

das variáveis na geração de calor. 

Os resultados foram analisados com recurso aos métodos estatísticos de variância 

(ANOVA) e Taguchi Design of Experiments (DOE), que permitiram identificar os parâmetros 

de soldadura com maior impacto na resistência final das juntas e optimiza-los. 

Uma eficiência máxima de junta de 97% foi atingida para uma das combinações de 

parâmetros testada. Todos os factores variáveis (parâmetros DOE) tiveram uma importância 

estatística significativa nos resultados.  

A velocidade de rotação da ferramenta tem a maior contribuição percentual no processo 

(40%), seguida da velocidade de translação (21%), diâmetro da ferramenta (12%) e força 
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axial (6%). O erro residual calculado com a análise de variância tem uma contribuição 

percentual de 20%. 
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Abstract 

 

Joining different materials together were always a challenging subject since humans 

learned how to use and built tools to do their tasks faster with more accuracy. It all started 

with joining different small parts to make a higher and more sophisticated component. 

Nowadays, economical and environmental concerns have led to unceasing demand and 

development of new materials and joining technologies that will reduce the weight of 

components while increase the strength of the final part. Currently, polymers have been 

under intense research investigations due to the strength-to-weight ratio of polymeric 

materials. However, joining polymers is a challenging subject which needs to be addressed 

with a great determination.  

Due to low density, low cost, high specific strength and high corrosion resistance of 

polymeric materials, the use of plastics in the industry has increased considerably over the 

last decades, with repercussions on the demand for new processing technologies and 

especially new joining methods. Joining techniques that aim to eliminate or reduce major 

defects associated with conventional methods such as, concentration of stresses and 

increased weight for the case of mechanical fastening and environmental limitation for 

adhesive bonding. 

Friction Stir Welding (FSW) has become one of the most reliable joining methods due to 

its solid-state philosophy, which originally developed for welding light-weighted metallic 

materials. Although originally developed to weld reactive alloys such as aluminum and 

magnesium, FSW is a joining method that has recently begun to be studied, developed and 

modified to be implemented to weld thermoplastic materials. The aforementioned process 

has many advantages over conventional methods, such as no additional components or 

materials during the process, applicable for various types of joint configurations and 

uniform stress distribution along the weld joint. 

The experimental work in this study is focused on the optimization of the values of the 

welding parameters (tool diameter, rotational speed, transverse speed and axial force), in 

order to increase the strength of the fabricated welds. The welds were manufactured with 3 

mm thickness polyethylene sheets in butt-joint configuration. Subsequently they were 

sectioned into specimens and tensile tests were performed in order to determine the 

optimized welding parameters with highest joint efficiency. 

Since temperature is a crucial factor in any welding process, thermocouples were used 

and placed in different positions of the weld bead in order to measure the welding 
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temperature during welding, which provided crucial information for a better understanding 

of this process and its variables. 

The results were evaluated using the statistical approach of Analysis of 

Variance (ANOVA) and Taguchi Design of Experiments (DOE), which allowed to identify 

the welding parameters with the greatest impact on the weld strength and to optimize the 

process parameters. 

A maximum joint efficiency of 97% was achieved. All variables (DOE parameters) had 

statistically significant effect on the weld strength with different impact factors. The tool 

rotational speed has the highest percentage of contribution for FSW of 3 mm polyethylene 

(40%), followed by the transverse speed (21%), tool diameter (12%) and axial force (6%). 

The residual error calculated with the analysis of variance has a percentage contribution of 

20% due to the uncontrollable factors during welding. 
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1 Introduction 

Climate change and limited energy resources have transformed the transport industry to 

seek for more reliable and green solutions. The imposition of new regulations by 

governments in order to reduce fuel consumption and the emission of polluting gases led to 

a continuous search and development of solutions capable of increasing the efficiency of 

transportations industries. 

Reducing the weight of the vehicles used in the transportation industry is an extremely 

critical issue to fulfil the most recent regulations. This weight reduction can be achieved by 

applying smarter designs for the components, using less dense materials, and for structural 

components, the use of materials with a superior specific resistance. These subjects have 

been continuously studied by engineers in different research fields in order to improve 

strength-to-weight ratio of the final products. 

As a consequence, the use of polymers in this industry continues to increase, as well as 

growth of the need for better joining techniques compatible with this type of materials. In 

comparison to metallic materials, plastics suffer from proper joining technique which is 

applicable for different materials, thicknesses and configurations due to their low thermal 

conductivity, hardness, melting point and surface energy. 

The application of Friction Stir Welding (FSW) to join thermoplastic materials has 

recently developed but is seen as a good solution to join this type of material, due to the 

advantages that this technology presents compared to the conventional techniques, such as 

no additional components or material during the process are needed, and various types of 

joint configuration can be applied due to absence of gravitation effects, and uniform stress 

distribution along the weld joints. 

In the Optics and Experimental Mechanics Laboratory (LOME), with new developed 

tool, this process has been successfully applied to weld thermoplastic plates with lap joint 

configuration. In this Master thesis, the same tool concept was used, and the butt-joint 

configuration of 3mm polyethylene was successfully implemented. 

  Since temperature is a crucial factor in any welding process, a device was developed 

during this study to measure and record the welding temperature in different locations of the 

weld bead. The obtained data provided important information about the process temperature 

for a better understanding of the frictional heat generation and its variables. Temperature 

measurements during this process applied to thermoplastics is also an innovative study 

approach, which has explained in experimental procedure chapter.  
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1.1 Master thesis goals  

The main objective of this dissertation is to find the optimal set of parameters for 

applying FSW in butt-jointed polyethylene with 3 mm thickness. To determine the best 

parameters, different combinations were analyzed, with the temperature being measured in 

each configuration for a better understanding of heat generated in this process.  

1.2 Research and methodology 

The methodology defined to achieve the main goals of the Master thesis is described in 

this section.  

In order to achieve the main objective of the thesis, the following work plan was 

performed: 

1. A literature review on joining of polymeric materials, with particular emphasis on 

FSW;  

2. Improving the clamping system for the butt-joint configuration; 

3. Developing a temperature acquisition device and its software to measure the 

frictional heat generated during welding; 

4. Set of pre-tests to determine the range of values for the process parameters (input 

factors) and to determine the values of the fixed parameters; 

5. Mechanical characterization of the high molecular weight polyethylene material; 

6. Determination of the design of experiments orthogonal array; 

7. Preparing and welding the plates on accordance with the design of experiments 

table; 

8. Cutting and testing the dogbone specimens obtained from the welded plates; 

9. Analysing the results using two different statistical tools: Taguchi analysis (DOE) 

and Analysis of Variance (ANOVA).  

1.3 Thesis overview 

The structure of the thesis is divided in seven different chapters, with the first one being 

the introduction of the thesis, its objectives, and the workflow followed.  

 The remaining chapters are as follows: 

 Chapter 2: A literature review on joining of polymeric materials is presented in 

this chapter. The review is divided in three categories: mechanical fastening, 

adhesive bonding and welding techniques. Multiple joining methods that belong 

to these three categories are presented, describing the general concept and 

mentioning the advantages and disadvantages for each described method.  

 Chapter 3: A literature review on friction stir welding is presented, describing 

the general concepts of this process, process parameters, applications, variants of 
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the process, the use of the process to join polymeric material and the importance 

of the temperature during welding. 

 Chapter 4: All the experimental details are explained in this chapter. The base 

material characterization, the specimen geometry, preliminary tests, tools used, 

clamping system, measurement devices, design of experiments and the 

manufacture of the welds are explained. 

 Chapter 5: Presentation of the welds strength and measured temperatures during 

the tests.  

 Chapter 6: Results analysis with the Taguchi’s (DOE) and ANOVA. Results 

discussion taking into account observations, temperatures and forces measured 

during the welding. 

 Chapter 7: The conclusions obtained within the experimental work as well 

suggestions to improve and continue the research on the subject are presented in 

the last chapter.  
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2 Joining of polymeric materials  

Joining different components together has always been an important concern in order to be 

able to combine several pieces into a single object. Nowadays, joining materials is one of the 

most attractive engineering subjects, with continuous research for improved joining methods 

capable of continuously increase the production rate, joint efficiency, and to produce sound 

welds for similar and dissimilar materials. The joining methods are critical especially when 

the object consists of several parts or complex geometries to be combined in a single object, 

and when disassembly and reassembly is needed, or even when different type of materials are 

used in the finished assembly [1]. 

The joining methods for polymeric materials can be classified into three categories: 

mechanical fastening, adhesive bonding and welding, as described in Table 1. Choosing an 

appropriate joining method often depends on various parameters, such as joint assembly, used 

materials and cost/time production, among others. 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Mechanical fastening  

Due to its simplicity, mechanical fastening still remains the most common method of 

joining multiple materials for industrial applications. Among other reasons, it has a smaller 

Table 1 – Types of plastic joining. 
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learning curve, meaning that less skilled workers are needed on the assembly process when 

compared with other joining methods. 

This technique originally used for joining metallic materials, it is also well-established for 

joining plastics, dissimilar plastics and plastics to other materials. There are two main 

categories of industrial fasteners, referred to as permanent and non-permanent joints. 

 Non-permanent fastening 2.1.1

Designing a fastening element into a part is still the simplest solution to join plastic 

components, as shown in Figure 1. Non-permanent fastening allows to disassemble and 

reassemble the components multiple times without damaging the components. This method 

can join plastics, dissimilar plastics and dissimilar materials, which are crucial for multiple 

types of applications.  

 

 

 

 

 

 

 

 

 

 

 

 

Screws, rivets, pins and sheet-metal nuts are examples of non-permanent fasteners, since 

they can be removed, replaced and reused. These parts, however, can increase the production 

cost due to the increased assembly time and might be more difficult to handle and align. The 

main advantages of using this type of fasteners are [2], [3]: 

 

 Non-permanent fastening is highly useful in applications that may need 

repair/maintenance or need access to the interior, for instance hollow components; 

 Ability to join dissimilar materials, not only to join different plastics but also to join 

plastics to other materials; 

 Being a long-established joining process, it does not require advanced technology. 

The usage of fasteners to join polymers has its limitations and disadvantages, which are 

[2], [3]: 

 

 Stress concentrations; 

Figure 1 – Example of a non-permanent fastening element to joint two plastic parts. 
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 Increased component weight; 

 The joint can loosen in service, especially in the presence of vibrations; 

 Differentials in the coefficients of linear thermal expansion; 

 Only stronger plastics are recommended for this method, in order to withstand the strain 

of the assembly, service load and possible repeated use; 

 Unpleasant appearance; 

 Requires a sophisticated design of the joint in order to avoid failure; 

 Reduces the fatigue life; 

 Many plastics exhibit notch sensitivity, and screws threads are nothing if not a series of 

notches, where very high stress loadings occur. These can lead to an unpredicted failure; 

 Tiny cracks known as crazing have a tendency to appear as a result of the localized 

stresses caused by fasteners. These can lead to the failure of the joint;  

 Frequently limited to overlap joint configuration.  

 Permanent fastening 2.1.2

 

Permanent fasteners, such as the snap-fits seen in Figure 2, are integrated into the parts 

through direct molding, offering an interlocking configuration. A snap-fit is an arrangement 

of compatible locators, locks and enhancements acting to form a mechanical joint between 

parts. The use of permanent fasteners is increasing because of their sturdiness and smaller 

potential for working loose, when compared with non-permanent fasteners [4]. 

As illustrated in Figure 2, in snap fits, the two parts to be joined are aligned (Figure 2a) and 

forced against each other (Figure 2b). A protrusion on one part (hook, stud, bead) is briefly 

deflected during joining due to the applied force (Figure 2c) to catch in a depression or 

undercut molded into the other part (Figure 2d). The force required for joining depends on the 

snap-fit. However, it is important to mention that some level of flexibility in the integral 

locking feature is required. After the brief joining stress, it becomes resistant to vibrations and 

is usually stress free [2].  

Permanent fasteners are more robust, economical, and no additional materials or operations 

are required. They also allow the joining of dissimilar materials and elevated assembly rates, 

which explain the increased use of this technique. As a result of the mentioned benefits, the 

use of  permanent fasteners is increasing in industry [3]. 

However, this joining technique works better with ductile materials as they allow sufficient 

elastic deformation in the assembly process. The use of ductile materials also improves the 

fatigue life of the components, which is one of the main concerns with this joining method. 
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2.2 Adhesive bonding 

In the adhesive bonding process, a structural bond is formed when an adhesive material is 

applied to a substrate, which is allowed to cure/harden the two surfaces that are held together. 

The adhesive layer is much thinner when compared to the base materials that are joined 

together. This process is the most versatile of all joining techniques and can be used to join 

dissimilar materials [5].  

In this method, good wetting of the substrate is crucial to ensure strong and durable bonds. 

In order to achieve that, the surface of the substrate needs to be clean and high surface energy 

of the substrate is recommended. Surface energy counteracts the attraction forces within a 

liquid. In a way, higher surface energy of the substrate causes the same volume of liquid to 

spread into a larger area with lower contact angles [6] [7], as illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3 – Wetting and contact angle comparison between different surface energy [7].  

Figure 2 – Cantilever beam snap-fit assembly stages [2].  
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The surface energy of a solid is directly proportional to the surface tension, which is 

defined as “the work required to increase the area of a surface isothermally and reversibly by 

a unit amount” [8]. The surface tension value in plastics is low, and surface treatment is 

required in order to increase the surface energy to be suitable for adhesive bonding. 

While chemical treatments such as anodization or mechanical treatments such as abrasion 

are normally used to increase the surface energy of the substrate, in most plastics these 

methods are not effective. In such cases, physical method techniques allow better results by 

cleaning and chemically modifying the surface, exposing it to highly energetic or other ionic 

species. The most common methods are flame treatment, corona discharge and plasma [9]. 

Flame treatment is used as a surface treatment for some plastics, specially polyethylene 

and polypropylene. In this process, the surface of the plastic is rapidly melted and oxygen-

containing groups are incorporated in the surface during the transition, in a short period of 

time [7]. The aforementioned technique increases wettability and hence the adhesion, but only 

for a short period of time, so the substrates must be bonded immediately. 

In the corona discharge process the plastic is positioned above a metal electrode coated 

with a dielectric material, which consists of an insulating material that can be polarized by an 

electric field. Then plasma is generated as a result of a high voltage applied to the electrode. 

This process is mainly used for polyolefins where surface energy is improved by the creation 

of adhesion-enhancing carbonyl groups [9] . 

The increase of the surface energy of a substrate in the plasma surface treatment is 

achieved by covering the surface with ions of gases such as argon, ammonia or nitrogen. 

According to the gas selected and the exposure conditions, the surface can be cleaned, etched 

or chemically activated. The results typically show up to a two or three-fold increase in 

surface wetting. [9] 

The main advantages of this joining process are [3], [5]: 
 

 It is an efficient, economical and durable procedure for assembling plastics to plastics 

or to other type of materials; 

 It is capable of joining a major percentage of plastics whereas mechanical fastening 

and welding can be limited by the materials and joint properties; 

 Produces a permanent and uniform seal with good visual aspect; 

 Does not produce any deformation in the materials or substrates; 

 Allows to join substrates with different geometries, sizes and composition; 

 Forces are distributed over a larger area and with low stress concentration, especially 

when compared with mechanical fastening (Figure 4); 

 High levels of fatigue tolerance; 

 Large range of physical and chemical properties available; 

 Low density; 

 Process can be automated. 
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Figure 4 – Difference in stress distribution between adhesive joint and bolted joint [10]. 

 

Despite this advantages, adhesive bonding presents some drawbacks [3], [5]: 

 

 Limited shelf and working life of some adhesives and possible sensitive to 

environment; 

 Rigorous surface preparation and sometimes lengthy cure times are required, which 

leads to a slow assembly process; 

 Requires good joint design, since some joints types lead to poor strength of the bond, 

as shown in Figure 5. 

 

 

Figure 5 – Joint designs for adhesive bonding [5]. 
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2.3 Plastic welding 

Plastic welding is a process where a molecular bond is created between two compatible 

thermoplastics. Welding processes relies on applying heat to the joint in order to melt the 

adjacent polymer, forming a weld when the polymer solidifies. Welding is not applicable to 

thermosetting plastics since this type of material does not melt when heat is applied [11]. 

Welding offers superior strength and often significantly reduces production times when 

compared with mechanical joining (screws) and chemical bonding (adhesives). The welding 

process usually consists of three main steps which are pressing, heating and cooling [12]. 

In the first step, a vertical force is applied and often maintained through both the heating 

and cooling stages. The resulting pressure is used to hold the parts in the proper position and 

to improve the melt flow through the weld bead [12]. 

On the second stage, heat is used to melt and consequently allow intermolecular diffusion 

from one part to the other across the faying surface (melt mixing), which is crucial to form a 

molecular bond. Therefore, the joint surface on both of the parts must be melted to allow the 

plastic molecules to diffuse across the interface and bond with molecules of the other part. For 

higher temperatures, a more intense molecular movement is achieved, allowing the weld to be 

made in a shorter cycle time. Amorphous polymers must be heated to above their glass 

transition temperature, while semi-crystalline polymers must be heated to above their melting 

temperature [12]. 

Cooling is necessary to solidify the newly-formed bond. The implementation of this stage 

is crucial, since the cooling rate have a significant effect on the thermoplastic microstructure, 

which plays a major role in the weld strength. Slower cooling rate are indicated as an 

important factor to achieve sound welds [13]. 

There are several variations of plastic welding as shown in Figure 6. These are primarily 

differentiated by their heating method: internal heating or external heating [14]. On the 

internal heating processes mechanical movement or electromagnetic radiation are used to 

generate heat. External heating processes rely on convection or conduction of the generated 

heat to the base material at the weld bead [15]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Classification of welding techniques [14]. 
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 Ultrasonic welding 2.3.1

Ultrasonic welding is a well-established process to join thermoplastic components due to 

its several advantages [16]: 

 
 Free of foreign substances; 

 High strength of the bond; 

 Short cycle time; 

 Easily automated; 

 Localized heating (more efficient).  

The ultrasonic process works through the transformation of the AC current into mechanical 

vibration. The vibrations are then passed from the tool to the joint, at which point they cause 

stress and strain in the contact area between the two parts, which induces a localized heat and 

in consequence the melting of the thermoplastic [12]. Ultrasonic welding disadvantages are 

usually related with the tooling costs (specially designed joints are required) and possibility of 

damaging the electrical components due to the generated vibration [17]. 

A functional diagram of ultrasonic welding is illustrated in Figure 7. With a transducer (1), 

electrical vibrations with a frequency of 20-50 kHz are produced, with an ultrasonic generator 

(USG) the electrical vibrations are then transformed into longitudinal mechanical vibrations. 

These vibrations are delivered to the parent material (4) attached to a base (5) through an 

elastic vibration transformer (2) and a working instrument (3) called a waveguide. Reliable 

contact of the waveguide with the welded parts is provided by the static pressure (Pst) of the 

working end of the waveguide on the parts. Pst also increases the concentration of mechanical 

energy in the welding zone. Mechanical vibrations induce a dynamic force, F, so that the 

temperature required for welding is created in the welding zone. The combined effect of the 

static pressure and the dynamic force leads to a strong welded joint. The optimum values of 

the static pressure and dynamic force differ according to with the polymers to be welded [16]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 – Functional diagram of ultrasonic welding [16]. 
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 Vibration welding 2.3.2

Vibration welding is a robust method to physically join thermoplastics without using an 

external heating source. It is carried out by rubbing the surfaces to be joined in a sinusoidal 

oscillation manner against each other, under pressure, as illustrated in Figure 8. The 

movement between the two parts to be joined can be either linear or orbital [18]. 

 

 

 

 

 

 

 

 

 

The heat generated by friction at the interface of two materials melts the material in the 

interface area. Vibration is continued for a sufficient amount of time to allow pressure-driven 

flow and intermixing within the film [18]. The molten materials together flow under pressure, 

forming a weld after cooling [19]. 

The vibration welding process can be represented in four phases, as demonstrated in Figure 

9 and Figure 10: 

 

 Phase I – Solid friction; 

 Phase II – Unsteady evolution of penetration; 

 Phase III – Steady growth of penetration; 

 Phase IV – Solidification. 

 

 

 

 

 

 

 

 

 

 

 Figure 8 – Schematic of the linear vibration welding [18]. 

Figure 9 – Evolution of the weld zone during the course of vibration welding [18]. 
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Vibration welding offers multiple advantages, such as [19]: 

 

 Short cycle times; 

 Energy efficiency; 

 No additional materials are introduced; 

 Capability of welding large parts; 

 Insensitivity to surface preparation. 

 

The main disadvantages of the vibration welding process are [19]: 

  

 High initial capital cost of the equipment and tooling system; 

 Limited thicknesses of the parent materials; 

 The process has lower sensitivity to warped moldings; 

 The solid material friction in Phase I can cause high bending forces, which can lead to 

the deformation of the thermoplastic. 

 Spin welding 2.3.3

Spin welding or rotational friction welding can be used for bonding thermoplastic 

components along plane mating surfaces. In this process, the parts to be joined are rotationally 

rubbed relative to each other, under pressure. The pressure results from a compressive vertical 

force with a direction of the axis normal to the plane surfaces to be joined [12]. Usually, one 

part is held stationary while the other part is rotated [20], as demonstrated in Figure 11. 

 

 

 

Figure 10 – Schematic representation of weld penetration in the four stages of vibration welding [18]. 
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The resulting friction at the plane interface causes the plastic to heat up and melt. When the 

relative motion is stopped, the molten film is allowed to solidify under pressure, resulting in a 

weld upon cooling. The main parameters of the process are welding pressure, rotational speed 

and welding time [12]. The main disadvantage of spin welding is that the process is limited to 

circular fitments. Nevertheless, spin welding presents several advantages which include [20]: 

 

 Process well-suited to automated assembly line applications; 

 Spin welding is a simple and highly energy efficient process; 

 Strong, hermetic joints can be produced; 

 No foreign materials are introduced. 

  

Figure 11 – Schematic of spin welding of plastics [12]. 
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Figure 12 – Schematic of friction welding [21]. 

3 Friction Stir Welding  

Before the invention of friction stir welding, some important technological developments 

of non-fusion welding processes were made, such as friction welding. In this process, two 

pieces are compressed together and forced to move relative to each other [21], as shown in 

Figure 12, with frictional heat being generated to soften the material in the joining region. The 

final step is made by applying increasing pressure to the softened material to yield a 

metallurgical joint without melting the parent material. The aforementioned process, although 

simple, presents limitations as far as the welding geometry is concerned [22]. 

 

 

 

 

 

 

 

 

 

 

Other innovations and developments in solid-state welding laid an important base for the 

later invention of friction stir welding (FSW) at The Welding Institute (TWI), Cambridge, in 

1991. Wayne Thomas realized that with the use of a rotational probe of a harder material than 

the base material, the parent material could be plasticized and an effective transportation 

mechanism for the plasticized material to join the work pieces together could be achieved 

[22]. 

The basic concept of FSW is remarkably simple. A non-consumable rotating tool with a 

specially designed pin and shoulder attached to each other is inserted into the abutting edges 

of sheets or plates to be joined, and subsequently, traversed along the joint line under an axial 

force, as demonstrated in Figure 13. In some materials, is necessary to initiate a dwell at the 

plunge location in order to allow the tool and parent material to reach the desirable 

temperature [23]. 
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FSW is a solid-state joining technology that brings several benefits over conventional 

welding processes. Due to environmental concerns, the demand for lightweight structures and 

the ability to produce defect-free welds in low-density and highly reactive alloys (in molten 

state) such as aluminium and magnesium, this process found its path to be an interesting 

engineering subject as well as attractive option for industrial applications [24]. 

The frictional heat generated by the FSW tool in the process raises the temperature of the 

base material, consequently deforms the parent materials plastically. Weld dynamics cause the 

material to flow in a non-symmetrical way. On one side, the direction of tool rotation has the 

opposite direction of the tool linear movement. This side is called retreating side. On the 

advancing side, the direction of the tool rotation and tool linear movement is the same, and 

here the probe drags the plasticized material to the front of tool against the tool movement, as 

demonstrated in Figure 14 [25]. 

 

  

 

 

 

 

 

 

 
Figure 14 – Material flow directions in FSW [25]. 

Figure 13 – Schematic of FSW process [24]. 
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Rotational speed, transverse speed, axial force, dwell time, probe geometry and tilt angle 

are the main welding parameters in this process. Choosing the optimum values of the welding 

parameters is crucial in order to achieve defect free welds since they affect the generated heat, 

mixing and weld penetration. 

The shoulder (Figure 15a) and the pin (Figure 15b) are the main components of a FSW 

tool. In a typical FSW tool, both shoulder and probe rotate and are responsible for generating 

heat in a swirling motion to ensure homogenization [26]. As a consequence, tool design has a 

great impact on the joint efficiency. For conventional FSW process, the shoulder generates 

most of the frictional heat, as the probe, which is usually smaller than the thickness of the 

base material. The probe penetrates the base material and “stirs” the nearly molten material. 

Tool design is a central factor in the FSW process, due to the importance and functions of the 

tool on the weld strength. The tool is responsible for heat generation, mixing, creating vertical 

pressure, breaking the joint line and containing the material within the weld bead. The 

properties of the parent material should be taken into account for an adequate tool design. 

Geometrical design of the probe is important for heat generation and for mixing the 

plasticized material. Conical and cylindrical shapes are generally used, but threads, spiral 

steps, floats or flutes can be added to improve stirring of the material [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three types of FSW tools: fixed, adjustable and self-reacting tools. In fixed tools, 

the probe and shoulder work as a single component. This type of tool is limited to a specific 

and constant thickness. Adjustable tools allow variation in the probe length, since the 

shoulder and probe are independent components [27]. 

A self-reaction tool is composed by three different components: top shoulder, bottom 

shoulder and a probe in between. The probe extends through the parent material and reaches 

the second shoulder on the back side that replaces the backing plate, which gives support to 

the parent material in this FSW process. The probe rotates as the tool enters the base material 

Figure 15 – Conventional FSW tool (a) shoulder (b) probe. 
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from the edge or a designated through hole, instead of plunging to the base material as 

demonstrated in Figure 16. This type of tool presents some advantages [27]: 
 

 Reduced size and complexity of the tool, since the backing plate and the clamps are not 

as sophisticated as the conventional one; 

 A more balanced axial force due to the symmetrical nature of the tool; 

 Avoidance of the root defects related to partial penetration. 

 

 

Figure 16 – Self-reacting tool schematic [24]. 

 

Up to this point, most of the previous studies are focused on the FSW of aluminum alloys, 

due to simple manufacturing process and the wide use of aluminum alloys in many major of 

industries. FSW process significantly reduces the defects in comparison with fusion welding 

methods due to the lower temperatures reached in the process [28]. 

This process is used to join other metallic materials such as magnesium and copper [29]. 

However, for joining materials with higher melting point or superior hardness, such as 

titanium and steel, tool wear is significantly higher during the process. Relatively higher 

temperature and force acting on the tool during FSW process require an extremely resistant 

tool material in order to avoid tool damage during the welding process [28]. 

FSW is applicable to a variety of joint configurations with typically no need of additional 

preparation. The most common configurations used in industrial applications are square butt-

joint and the lap-joint. Other joint types include corner welds, pipe welds, hemispherical 

welds, multiple lap welds, double T-joint welds and fillet welds, as shown in Figure 17. 

 

 

 

 

 

 

 

 

 

Figure 17 – Joint configurations for friction stir welding: (a) square butt, (b) edge butt, (c) T butt joint, (d) lap 

joint, (e) multiple lap joint, (f) T lap joint, and (g) fillet joint [28]. 
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FSW process has many advantages, not only in terms of quality of the final product but 

also in other areas such as the environmental impact and economical point of view  [28], [30]: 

 

 Low distortion, which eliminates post-weld operations (straightening and filling); 

 Good dimensional stability and repeatability; 

 No loss of alloying elements; 

 Excellent mechanical properties in the joint area; 

 Fine recrystallized microstructure; 

 Replace multiple parts joined by fasteners; 

 Post FSW formability; 

 It is applicable to components of a large range of thicknesses; 

 Traditional welding defects such as hot cracking and porosity are not an issue; 

 No filler material, toxic fumes or shielding gases are employed or generated; 

 Allows joining of dissimilar materials; 

 Improved cosmetic appearance; 

 Low residual stress;   

 Energy efficiency. 

Some drawbacks of the conventional FSW process are [28]: 

 

 Exit hole or keyhole left when the tool is removed; 

 Heavy-duty clamping necessary to hold the base material in position and large vertical 

forces are needed; 

 Critical dimensions; 

 Slow transverse speed rate for some materials.   

3.1 Industrial applications 

Since the development of FSW, the application of the process increased over the years due 

to its advantages mentioned above. Because of the low density of aluminum and ability to 

manufacture strong joints with good mechanical properties, transportation industries looked 

forward to use FSW in their production lines, which is demonstrated by the number of 

licenses sold by TWI, as illustrated in Figure 18.  

 

 

 

 

 

 

 

 

 

 
Figure 18 – FSW licenses sold between years 1995 and 2009 [31]. 
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The protection of the process patent and many of its variables constitute a considerable 

obstacle to an increased industrial application but it is possible that as the patents expire the 

process becomes more widely used [31]. 

The first commercial application of this welding technique was joining aluminum 

extrusions to large panels with minimum distortion for shipbuilding in 1995. The use of FSW 

for producing large prefabricated panels allowed a drastic reduction of costs and production 

time in comparison with fusion welding [22]. 

The fact that FSW is able to weld high resistance aluminum alloys, such as 2000 and 7000 

series, is one of the main reasons for the growing usage of this technique in aerospace 

industry, with its first implementation in 1998, when NASA developed the process for use on 

the space shuttle external tank [32].  

FSW has been used in the assembly of fuselage elements in several airplanes such as the 

Eclipse 500 jet, by Eclispe Aerospace (as seen in Figure 19), where 263 friction stir welds, in 

a total of 136 meters in length, replaced more than 7000 conventional fasteners [32]. Friction 

stir welding enabled a drastic reduction in aircraft assembly time and replaced more than 60 

percent of the rivets on major assemblies [33]. 

 

  . 

 

 

 

 

 

 

 

FSW is also becoming widely implemented in the automotive industry. This is an attractive 

technology to reduce car weight by integrating low weight alloys, especially aluminum, into 

their assemblies. Suspension, wheels, seats, crash boxes or engine cradles are some of the 

components in automotive industry using FSW. One example is the engine cradle of the 2013 

Honda Accord (as illustrated in Figure 20). This structure is composed of a dissimilar 

assembly of aluminum and steel joined with continuous FSW lap welds. The hybrid structure 

is 25% lighter when compared with a full steel subframe [32]. 

Other transport industries, such as railway and maritime, also increased the use of FSW as 

a joining technique to weld structures like long extruded panels. However, FSW is spreading 

in new areas such as electronics devices. An example is the use of the process to weld the 

iMac computer [34]. 

 

Figure 19 –  Skin, stringers and frames joined via friction stir welding in eclipse jet [33].   
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3.2 Friction Stir Welding in polymers 

Although FSW was originally developed for joining aluminum alloys, in recent years, due 

to its advantages, the process is currently applied and studied for welding non-metallic 

materials such as polymers and composite materials. The process maintains many of its 

advantages when applied to polymers.   

The investigation found in the literature on the application of FSW to join polymers is 

more limited than the ones for metallic materials. The most common plastics studied so far 

are polyethylene (PE), high density polyethylene (HDPE), polypropylene (PP), acrylonitrile-

butadiene styrene (ABS) and polyamide Nylon 6. Studies on joining dissimilar but compatible 

thermoplastics are also reported in the literature [35]. 

The welding concept in polymers does not differ from the one performed in metals. A non-

consumable rotating tool with a specially designed pin and shoulder is inserted into the 

abutting edges of the sheets or plates to be jointed and subsequently traversed along the joint 

line. In the end the tool is removed, leaving a characteristic keyhole [25], as demonstrated in 

Figure 21. Alternatively, instead of vertically remove the tool, this can run out until the end of 

the base material, producing a tear-out. The end of the weld is generally trimmed in order to 

eliminate the keyhole defect from the work piece.  

When compared to other joining methods such as mechanical fastening and adhesive 

bonding, FSW does not require an overlapping joint configuration. In comparison with 

mechanical fastening, FSW has less stress concentration and forces are dispersed through a 

larger area.   

One of the main conceptual differences, according to some authors, is that when applied to 

polymers, FSW process is no longer an absolute solid state process. Due to differences in 

molecular weights, shorter polymer chains have a lower melting temperature than longer 

polymer chains. This phenomenon can cause some polymer chains to melt, whereas other 

chains do not reach the melting temperature [36]. 

Figure 20 – Honda Accord engine cradle [32]. 
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Thermoplastic material has a low thermal conductivity and diffusion is not an efficient 

mechanism because of its molecular structure. Keep that in mind, that the low melting 

temperature and hardness of polymeric materials constitute the major physical and chemical 

differences when comparing to the conventional materials welded by this technique (such as 

aluminum and magnesium alloys). These differences lead to changes in terms of tool design 

and process parameters choice, in order to obtain an optimum weld temperature and 

subsequently a weald bead with good properties. Conventional tools are inadequate to weld 

polymeric materials, when it comes to maintain the soften materials inside the weld bead [36].  

  Stationary shoulder Friction Stir Welding 3.2.1

In order to avoid the main problem with conventional FSW tools, which is the squeezing of 

the melted polymer from the weld nugget (flash defect), some researchers developed modified 

tools using a stationary shoulder [35]. This material loss is responsible for poor bonding 

formation, leading to low tensile strength and poor mechanical properties of the produced 

joints. In the tool design concept [30], a ball bearing is used to allow independent rotational 

movement between the shoulder and the probe, as shown in Figure 22. 

 

 

 

 

 

 

 

Figure 21 – Schematic of FSW steps [29]. 

Figure 22 – Stationary tool schematics representation [30]. 
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Stationary Shoulder FSW (SSFSW) is a variant of the FSW process, originally developed 

at TWI [32]. With this concept, the probe rotates and protrudes through a hole in the static 

shoulder that can only have linear movement along the weld bead (it does not have a 

rotational movement). The stationary shoulder adds no frictional heat to the surface, so all of 

the heat is provided by the probe and the weld is made with an essentially linear heat input 

profile. This process was originally developed for high temperature, low conductive base 

materials like titanium [32]. Due to its advantages, this tool setup is also used for polymer 

FSW. This tool design concept used in this study as it mentions in the experimental procedure 

of this dissertation, the tool is illustrated in Figure 23. 

 

 

 

 

 

 

 

 

 

 

 

 

By using a stationary shoulder, the applied vertical force is constant during the operation, 

and if the tool is correctly designed the shoulder will prevent material loss from the welded 

nugget. One of the main challenges of using this type of tool consists of preventing the 

injection of the soft material inside the shoulder and bearing, avoiding  premature failure of 

the tool, especially in long runs [36].   

In this variant, the shoulder no longer generates heat, which combined with the low 

conductivity of polymeric materials makes it difficult to obtain suitable temperatures during 

the welding. This problem can be addressed with the rearrangement of the process parameters 

in order to generate more heat per length of weld bead. This can be achieved by increasing the 

rotational speed or by decreasing the transverse speed. Other solution is using an external 

heating source allowing good results without the need to decrease the welding time [36]. 

 Friction Stir Welding with external heating 3.2.2

Obtaining optimum temperature values during welding by altering the process parameters 

only (such as rotational speed and transverse speed), can be very difficult and can decrease 

the welding speed drastically. To avoid these problems, some researchers studied the use of a 

secondary heat source that assists the primary process heating source (frictional heat). 

Figure 23 – Schematic of stationary tool and its components [24]. 
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 One example of a secondary heat source is i-FSW (induction friction stir welding), where 

an induction coil encircles the FSW tool, heating it when an alternating electrical current is 

applied to the induction coil. A temperature sensor connects to a temperature controller which 

is synchronized with the induction power source, maintaining the desired temperature, as 

shown in the scheme of Figure 24 [37]. 

 

 

 

 

 

 

 

 

 

 

 

 

However, the most common approach to this variant consists of introducing an electrical 

resistance heating element on the tool. A stationary shoulder with a heat element is often used 

(hot shoe). This tool consists of a static shoulder made in aluminum and coated at the bottom 

with polytetrafluoroethylene in order to produce a smooth welding surface, Figure 25. With 

the purpose of measure and control the temperature, a thermocouple and a heater were placed 

inside the shoe. The extra heat provided can ensure optimal temperature levels even for low 

rotational speeds and high transverse speeds. Not only the weld is less prompt to defects but 

also the welding time is reduced [24]. 

 

 

 

 

 

 

 

 

Figure 25 – Schematic (a) and photograph (b) pictures of hot shoe tooling system[24]. 

Figure 24 – Scheme of the i-FSW process [37]. 
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Some authors tested the application of the FSW joining technique in previously heated 

tools and base materials. The results were similar to those obtained with the hot shoe tooling 

system, with improvements in weld quality even for low rotational speeds [35]. 

3.3 Friction Stir Spot Welding 

Friction stir spot welding (FSSW) is a recent application of the FSW process. Similar to 

FSW, a rotating tool pin is used to join the material, but the transverse speed of the tool is 

eliminated in favor of a series of discrete tool plunges. A rotating cylindrical shouldered tool 

with a pin plunges with a specific rate into the overlapping sheets to a predetermined depth 

[32]. 

As shown in Figure 26, the FSSW tool is positioned above the base material (Figure 26a) 

and then descents and plunges the base material (Figure 26b). The frictional heat generated 

between the material and the rotating tool softens the material and the rotating pin causes 

material flow in both the circumferential and axial directions. The forging pressure applied by 

the tool shoulder results in the formation of an annular, solid state bond around the pin. The 

tool is then retracted and the retraction of the pin leaves a characteristic keyhole ( Figure 26c) 

[38]. 

 

 

 

 

 

 

 

 

 

 

The FSSW process mimics the Resistance Spot Welding (RSW) process and can be used to 

replace it as weel riveting, clinching or any other single point joining processes in many 

applications [39]. 

In order to improve the quality of the resulting spot welds, several variations of the FSSW 

process have been developed. Refill FSSW was developed to address the artifact known as the 

keyhole. In this process the pin and shoulder can be moved independently along a common 

vertical axis such as that the keyhole is eliminated by using the shoulder to push the expelled 

weld flash back into the void created as the pin retracts. Stitch FSSW and Swing FSSW were 

developed to increase the strength of the weld by creating larger joint interfaces. In the Stitch 

FSSW method, the tool traverses a short linear distance. In the Swing FSSW method, the tool 

holder is allowed to rotate a small amount about an axis parallel to the weld surface, which 

results in arc-shaped weld path. A Rotating Anvil (RAFSSW) method was developed to help 

eliminate the keyhole, reduce cycle time, and improve joint strength. In this method the 

rotating anvil generates heat and produce stirring on the bottom side of the weld. [32] 

Figure 26 –  Friction stir spot welding stages [32]. 
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3.4  Temperature in Friction Stir Welding 

Previous studies have shown that an optimal temperature is the key to minimize defects in 

the weld bead. Temperature has a major influence in the weld strength. A full comprehension 

of this influence is crucial for the continuous development of this process. This development 

can be expressed in terms of new tool designs and optimal choice of the welding parameters 

[25]. 

Temperature distribution and material flow during welding have a major impact on the 

formation of defects and affects the microstructure development, which have a direct 

influence on the mechanical properties of the fabricated joints. 

A welding temperature lower than the optimum value results in the appearance of defects, 

such as voids (as shown in Figure 27), due to the lack of heat and insufficient stirring [40]. A 

temperature higher than the than desirable can lead to flash formation (as shown in Figure 28) 

or alterations in the microstructure that can reduce the joint strength. In both cases, the 

inadequate temperature leads to low mechanical properties of the fabricated joint. This means 

that temperature should remain within a certain temperature range to obtain defect-free joints 

[25].  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

The heat generated by plastic deformation is related to the base material resistance to 

deform, which creates internal forces. This phenomenon promotes not only heat generation 

but also allows heat distribution around the welded zone [25]. 

During welding, the generated heat in the welding zone is dissipated to the tool body, 

backing plate, surrounding parent material and the air, as shown in Figure 29. Due to the high 

Figure 27 – Cavity defect due to low heat input [40]. 

Figure 28 – Weld flash due to excessive heat input [40]. 
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temperature sensitivity of this process, material conductivity of the surrounding environment 

plays an influential role in the welding temperature. 

 

 

 

 

 

 

 

 

 

 

 

Axial force, tool rotational speed and linear movement through the base material are the 

main factors to generate frictional heat necessary to weld the base material, as represented in 

Figure 30. Rotational speed has a significant effect on the heat generation, being linearly 

proportional to the specific energy absorbed by length unit of the weld seam. Welding speed 

on other hand is inversely proportional to the specific energy absorbed by length unit of the 

weld bead [26]. This means that welding temperature can rise up by increasing the rotational 

speed or diminishing the transverse speed, or both. An excessive decrease of welding speed 

leads to undesirable welding times. The temperature also rises with the increase of the axial 

force and plunge depth. 

 

 

 

 

 

 

 

 

 

 

 
Figure 30 – FSW main parameters [25].  

Figure 29 – Heat dissipation during FSW process [25]. 
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Rotational speed and transverse speed are the most effective welding parameters in heat 

generation, and in order to obtain sound welds, the choice of one parameter must not be 

independent of the other. The incorrect combination of these parameters can lead to excess 

heat input, insufficient heat generation or abnormal stirring, as illustrated in Figure 31. 

 

 

 

 

 

 

 

 

 

 

 

Temperature measurement is fundamental to understand and predict the optimal 

temperature value which leads to a good weld. The use of standard methods, such as 

thermocouples, for acquiring peak temperature at the stirred zone is difficult due to the 

passage of the probe with rotational movement, which destroys the thermocouple before the 

peak temperature is reached [25]. This problem is even more severe in the case of polymer 

welding due to the low thermal conductivity of this type of material, and in order to measure 

values closer to the real welding temperature, thermocouples should be placed in the middle 

of the joint line. For this reason, standard temperature measurements technologies do not 

provide the desired repeatability, accuracy or speed to be used in industrial environments. 

Temperature measurement is also fundamental for temperature control. The use of 

temperature control allows to optimize the process to obtain defect free welds in process such 

as the FSW, were thermal variations occur [25]. 

  

Figure 31 – Range of appropriate FSW parameters [40]. 
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4 Experimental details 

In this chapter, the conducted experimental work is fully described. The used methodology 

and experimental setup are presented to give a good insight about how the results were 

obtained. This chapter is divided in multiple sections explaining the base material 

characterization, welding temperature and axial force measurements, FSW tool design as well 

as all the stages regarding the Design of Experiments (DOE) statistical approach.  

The first step was to characterize the material by means of tensile test results. For tensile 

testing, specimens were cut and tested according to the ASTM D638-2a Standard [41]. One of 

the main objectives of this study was to optimise the welding parameters regarding the joints 

Ultimate Tensile Strength (UTS). Initially, various tests were conducted in order to define the 

cutting method, welding parameters range, clamping system as well as temperature data 

acquisition system. 

The main FSW trials were conducted for different process parameters, and three different 

probe diameters were chosen for this study: 3, 4 and 5mm in diameter. These tests were 

repeated three times for averaging purposes, and in one of the repetitions, temperature was 

measured using four thermocouples along the weld line. Afterwards, the fabricated joints 

were cut and tested. Taguchi statistical approach was applied in order to reduce the number of 

tests and to understand which of the welding parameters have the main effect on the weld 

quality. 

4.1 Base Material  

  Polyethylene 4.1.1

Polyethylene is a polyolefin and one of the most used plastics in different sectors of 

industry. Polyolefin are high molecular weight hydrocarbons. Polyolefins include 

polyethylene, polypropylene copolymer, polypropylene and polymenthyl pentene. These are 

the only plastics that have a lower specific gravity than water. 

In its simplest form, a polyethylene molecule consists of a long backbone of an even 

number of covalently linked carbon atoms with a pair of hydrogen atoms attached to each 

carbon, Figure 32. Chain ends are terminated by methyl groups. There are different types of 

polyethylene, all having the same backbone of covalently linked carbon atoms with pendant 

hydrogen atoms. When ethylene is polymerized the result is relatively straight polymer 

chains. Variations arise chiefly from branches that modify the nature of the material [42].  
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Polyethylene is used more than any other thermoplastic polymer in industrial applications. 

There is a wide variety of grades and formulations available that have an equally wide range 

of properties. In general, the outstanding properties of polyethylene are [43]: 
 
 Low density; 

 Toughness; 

 Ease of processing; 

 Chemical and abrasion resistance; 

 Electrical properties; 

 Impact resistance; 

 Low coefficient of friction; 

 Near zero moisture absorption. 

 

4.1.1.1 Types of polyethylene 

 

High Density Polyethylene (HDPE) also referred to as PE 300, is chemically the closest in 

structure to pure polyethylene, because has minimal branching of its polymer chains. Being 

denser than the low density polyethylene is more rigid and less permeable. 

First to be developed, Low Density Polyethylene (LDPE) has the most excessive 

branching. This causes a less compact molecular structure which is what makes it less dense. 

It is a corrosion resistance and low density material that provides low moisture permeability. 

LDPE has a fairly low working temperature, soft surface and low tensile strength. It is an 

excellent material where corrosion resistance is an important factor, but stiffness and 

structural strength are not important. This material is used in many applications such as food 

storage containers, corrosion resistance surfaces, laboratory equipment  and among others 

[43]. 

UHMWPE (Ultra-High-Molecular-Weight polyethylene, sometimes shortened to UH) is a 

type of polyolefin. UHMWPE is synthesized from monomers of ethylene, which react 

together in the presence of a catalyst to form ultra-high-molecular-weight polyethylene. It has 

extremely long chains, with molecular weight numbering in the millions, usually between 2 

and 6 million [44]. This grade is also extensively used as plastic parts on conveyor belts, 

plastic components such as wear strips, wear plates, conveyor tracks and straights.  This 

plastic is approved for food contact making it the ideal material for bottling, canning and food 

processing plants. Ultra high molecular weight polyethylene is the toughest grade of the 

polyolefines which leads to a great wear resistance and abrasion resistance properties. The 

working temperature for this polymer is also relatively high [43]. 

Figure 32 – Chemical structure of pure polyethylene. 
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HMWPE is widely used as wear parts and abrasion resistant plastic components in the 

conveyor and materials handling industry. HMWPE (PE500) is slightly softer than UHMWPE 

[43]. Due to all the industrial applications of this material, HMWPE was chosen to be the 

subject of this study with 3mm thickness. 

 

 Base Material characterization  4.1.2

 

The main objective of this section is to characterize the base material mechanical 

properties used in this study. High-Molecular-Weight Polyethylene (HMWPE) specimens 

were prepared and subjected to tensile tests. Slightly softer than Ultra-High-Molecular-

Weight Polyethylene (UHWPE), HMWPE is widely used in wear parts and abrasion resistant 

plastic components. The general properties, provided by the supplier, of the HMWPE (PE-

500) are presented Table 2. 

 

Table 2 – General properties of the HMWPE provided by the supplier [45]. 

General 

properties 

Density 
Young’s 

Modulus  

Ultimate Tensile 

Strength  

Deformation 

at Rupture 

Melting 

Temperature  

0.96 1.2 GPa 27 MPa >50 % 120-130 ºC 

 

 

Tensile tests were carried out according to the ASM Standard D638-2a (Test Methods for 

Tensile Properties of Thin Plastic Sheeting) [41], in order to characterize the mechanical 

resistance of the base material. This test method is designed for the control and specification 

of plastic materials [41]. Due to the thickness of the supplied material and the nature of the 

polymer (rigid/semi-rigid), type 1 specimen geometry was selected from the ASTM Standard. 

The dimensions and shape of the specimen are shown in Figure 33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Five specimens were produced and tested for the characterization of the base material, as 

determined by ASTM Standard for isotropic materials. The specimens were cut by a vertical 

saw in a certain dimensions, and then the exact dimensions were machined using a 3-axis 

Computer Numerical Control Machine (CNC), Optimum® BF 20LVario. The machining 

Figure 33 – Type 1 specimen dimensions according with ASTM standard [41]. 
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operations were conducted in multiple polyethylene samples at the same time, which were 

strongly clamped to ensure adequate fixation during machining operations, as demonstrated in 

Figure 34. 

 

 

 

 

 

Tensile tests were performed with a speed of 5 mm/min in a MTS
®

 810 tensile testing 

machine. Regarding data aquisiton, a piezoelectric load cell with a maximum of 10kN and a 

MTS
®
 clip gage extensometer were used to measure strain, as shown in Figure 35a. The base 

material speciemens were mounted and aligned with the dedicated gripping system and tested 

until the maximum strain (50%) measured by the MTS
®
 clip gage extensometer, Figure 35b.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 – Tensile test apparatus: (a) tensile test configuration with extensometer; (b) gripping system. 

a) b) 

Figure 34 – Machining of HMWPE 3mm sheets into normalized specimen. 
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For each specimen the maximum loads were recorded and the maximum stress were 

calculated. Although the existence of a true elastic limit in plastics (as in many other organic 

materials and in many metals) is debatable [41], the Young Modulus of the plastic was 

determined by the tangent of the linear region at low forces, which presented in Table 3 and 

the tensile test curve of the base material (specimen 1) is demonstrated in Figure 36, and the 

engineering stress-strain curve is presented in Figure 37.  

 

Table 3 – Tensile properties of Polyethylene. 

Specimen Maximum load 

(N) 

Maximum Stress 

(MPa) 

Young´s Modulus 

(GPa) 

1 920.4 23.6 1.41 

2 923.3 23.7 1.37 

3 920.4 23.6 1.39 

4 

5 

921.5 

922.7 

23.6 

23.7 

1.36 

1.40 

Mean  921.7 23.6 1.39 

Standard 

deviation 
1.3 0.05 0.02 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 – Tensile test curve for specimen 1, Force-Displacement. 
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4.2  Friction stir welding tools 

The tool plays a fundamental role in the friction stir welding process. In this section the 

used tools and their components are described. All tools have a stationary shoulder 

configuration where a bearing is used to allow independent rotational movement between the 

shoulder and the rotating probe. 

The first tool used is composed by a shoulder (Figure 38a), a deep groove ball bearing 

(Figure 38b) and the tool body with a 3mm probe at the end (Figure 38c). This tool was used 

in preliminary tests to access information about process parameters and difficulties to produce 

welds in the butt-joint configuration. The tool was capable of producing good welds but only 

for high rotational speeds (>2000 rpm) and low transverse speeds (<15mm/min), which 

caused this welding process to be very slow. 

 

 

 

 

 

 

 

 

 

 

Figure 38 – Pre-test stationary shoulder tool: a) shoulder; b) bearing; c) tool body with 3mm probe. 

Figure 37 – Stress-strain curve of the specimen 1. 

(a) 
(b) 

(c) 
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The material user for the stationary shoulder is Teflon. This low conductivity material, 

capable of withstand temperatures of 260ºC, is able to create, with the correct parameter 

combination, a smooth surface quality on welds, as demonstrated in Figure 39, where with an 

increase in tool rotational speed, for the same weld, a better quality surface was achieved. The 

increment of tool rotational speed produces more heat, increasing the temperature of the 

bronze sleeve that creates a thin layer of molten material which is pushed down by the Teflon 

shoulder, generating a better surface on the weld. However, the main function of the 

stationary shoulder is to prevent the soft material to flow out of the weld bead and let it cool 

under pressure. Also, with the stationary shoulder the axial force is kept constant during the 

weld. 

 

Due to the absence of a rotating shoulder, the frictional heat is only generated by the probe. 

In order to counter act this fact, a bronze sleeve was used (Figure 40a) due to its high 

conductive nature, and the sleeve was fixed in the shoulder around the rotating probe, as 

shown in Figure 40. This tool design, not only provided a barrier between the rotating probe 

and the Teflon shoulder, but also caused preheating the parent material around the pin in 

advance.  

 

 

 

 

 

 

 

 

 

Figure 39 – Surface quality for different values of tool rotation. 

Figure 40 – Sleeve position on the Teflon shoulder. 

(a) 
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For welding 3mm PE materials, double grooved tools with 3, 4 and 5 mm probes with a 

flate surface geometry (as shown in Figure 41) were used in this study. They share the same 

concept as the tool described above and are composed by a stationary shoulder made of 

Teflon (1), a copper sleeve (2), a ball bearing (3), tool body (4), pin with flat surface (5), 

support pin (6), M3 screw  (7) and two locking shafts (8), as illustrated in Figure 42 for 3 mm 

tool. The assembly design of 4 and 5mm tools are the same as the 3mm as mentioned above. 

The locking shafts fix the copper sleeve in the shoulder to avoide any vertical movement 

during welding. This type of tool geometry stirs the soften materials properly at the maximum 

depth of tool penetration, and the two grooves prevent the sticking of material on the 

advancing side of the weld as well as pushing the material to the bottom of the weld bead, 

creating strong welds [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In comparison with the tool used in initial tests, the new tool design increases heat 

generation due to the larger contact area between the tool body and copper sleeve, which is 

associated with higher genarated frictional heat. Also, because the sleeve is considerably 

bigger, (as shown in Figure 43) a larger area is preheated around the pin in advance. The 

Figure 41 – A 5mm probe with two grooves flat surface geometry. 

Figure 42 – Section view of the 3 mm probe tool assembly. 
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combination of these two aspects allowed the new tool design to perform a faster welding 

with stronger weld quality as it will be explained in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this tool as illustrated in Figure 44, the probe length is ajdustable by moving the set 

screw (a) vertically inside the threaded hole, then the probe is locked by pressing the socket 

set screw (b) against the flat surface of the probe (c). The adjustable probe length allows the 

tool to perform welds in a certain range of  sheet thicknesses with optimum tool penetration.  

 

 

 

 

 

 

 

 

 

 

 

Figure 43 – Size comparison between the stationary shoulder components. 

Figure 44 – Adjustable probe length tool used in tests. 
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In order to avoid root defects, defined as the non-welded zone of the weld nugget due to 

lack of tool penetration (Figure 45), the probe was adjusted to the maximum length possible. 

The maximum length was determined by preliminar test welds where the probe length was 

gradually increased until the tool started to damage the backing plate. These pre-tests were 

performed with the maximum axial force allowed (1200N) to ensure that the tool does not 

damage the backing plate in any of the subsquent tests. The probe length was measured with a 

micrometer, as shown in Figure 46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 – Root defect due to lack of tool penetration. Pre-test weld with 2.8 mm probe length.  

Figure 46 – Probe length measuring with a micrometer.  
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4.3 Sensorized clamping system 

Axial force is one of the main parameters of the friction stir welding process, responsible 

for heat generation and forging pressure applied to the weld. Having such great impact on the 

weld quality, the monitoring of the axial force during the process is crucial to understand the 

importance and the optimum values for this parameter during welding.  

A force plate/sensorized clamping system was used in the present work for load acquisition 

during the weld. A force plate is designed to measure the forces and moments applied to its 

top surface. The sensorized clamping system was available in the laboratory and it is 

instrumented with four load cells for each axis that are connected to a data acquisition system. 

The load cells used in the plate were from Vetek manufacturer (202WA) having a maximum 

capacity of 300kg each. The positions of the load cells and the force plate are shown in Figure 

47. The data is acquired and manipulated by a dedicated LabView
TM

 code that allows 

observation and registration of the loads for each axis during welding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sensorized clamping system measures the axial force (Fz), the transverse force (Fx) 

caused by the linear movement of the tool, and the side force (Fy) caused by the rotation of 

the welding tool. During the welding process, when the tool plunges the two plates and then 

moves across the interface between the two sheets an opening force can lead to a gap between 

the plates (usually only the weakly clamped sheet moves), causing a volumetric defect. That 

opening force could not be measured by the sensorized clamping system due to its 

symmetrical nature, and demands an improved clamping system, capable of preventing any 

type of movements of the sheets during the welding process. In pre-tests, the existent 

clamping system was not capable of counteract the mentioned force, and the gap between the 

plastic sheets caused massive weld defects. In some cases, the distance between the plates was 

large enough to hinder the bonding process. Figure 48 shows this problem: the lateral 

movement of the plate (b) generated massive weld defects.  

Figure 47 – Sensorized plate and clamping system: Top (a) and bottom (b) views. 
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In order to avoid this unwanted behavior, the original clamping system (Figure 49a) was 

improved with the addition of four clamps (b). The original clamping system is very efficient 

in preventing vertical movement of the sheets by compressing them against the backing plate. 

The other degree of freedom is prevented by the friction between the clamp bars (c) and the 

plastic sheets, which is not effective enough for larger forces or slippery material (most of the 

polymers). The newly-designed clamps provided a better resistance to the lateral movements 

by being forced against the lateral face of the sheets and fixed to the back plate, as shown in 

Figure 49.  However, even with the improvements made on the clamping system, for certain 

values of welding parameters (high plunge speeds, high axial force and low rotational speed) 

lateral movement occurred, especially during the plunging of the tool with high speed. In 

order to avoid this problem a low plunging speed was used in tests (20 mm/min).  

 

 

 

 

 

 

 

 

 

 

 

Weld Direction 

Figure 48 – Weld defects due to gap between the plates.  

Figure 49 – Clamping system used to grasp the two plates to be weld by FSW. 
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4.4 Experimental design 

In order to investigate the influence of FSW welding parameters, researchers usually 

follow the conventional experimental procedures, varying one parameter at a time while 

keeping the other parameters constant (full factorial design). This conventional parametric 

design of the experimental approach is time consuming and requires excessive resources. In 

order to solve this problem, there are different methods of achieving the desired output 

variables by developing new models. The Taguchi method is one of the techniques that could 

be applied to optimize the welding parameters [46].  

Taguchi is a statistical method developed by Taguchi and Konishi. The original objective 

of the method was to improve the quality of goods manufactured, but later its application 

expanded to many other fields, to optimize parameters and improve the quality of the final 

products [47]. 

The Taguchi method reduces the number of trials in an experimental design, through the 

use of an orthogonal array to study the entire parameter space, and still capable of making a 

good evaluation of the optimum values for the parameters in analysis. 

That is a great advantage, especially in complex experimental procedures, with several 

input factors, each with different levels that need to be evaluated. The study of all possibilities 

could be time consuming and very expensive. For instance, an experiment with 4 inputs with 

3 levels would take 81 trials to test all the possibilities. 

A loss function is used to measure the performance characteristics that are deviating from 

the desired target value. The value of the loss function is transformed into signal-to-noise 

(S/N) ratio and then, according to the objectives, there are several categories to analyze this 

ratio. From these categories, the most common are nominal-the-best, larger-the-better and 

smaller-the-better.  

The Taguchi method can be resumed on the following steps [47]: 

1. Identify the main function and its side effects; 

2. Identify the noise factors, testing condition and quality characteristics; 

3. Identify the objective function to be optimized; 

4. Identify the control factors and their levels; 

5. Select a suitable Orthogonal Array and construct the Matrix; 

6. Conduct the matrix experiment; 

7. Examine the data and then predict the optimum control factor levels and its 

performance; 

8. Conduct the verification experiment. 
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In this study, 3 mm-tick plates of  High Molecular Weigth Polyethylene were used in butt-

joint configuration. The plates were welded using a 3-axis milling machine using position 

control welding method. A three-level design with four parameters: tool diameter, rotational 

speed, transverse speed and axial force were analysed, as shown in Table 4. The interval of 

values tested for each parameter was defined in preliminary tests.  Fixed welding parameter 

were also defined in preliminary tests and presented in Table 5.  

 

Table 4 – Three level design parameter values. 

Welding 

Parameters 
Units Level 1 Level 2 Level 3 

Tool diameter mm 3 4 5 

Rotational 

speed 
rpm 1500 2000 2500 

Transverse 

speed 
mm/min 30 50 70 

Axial Force N 800 950 1100 

 

Table 5 – Fixed welding parameter values. 

Welding Parameters Units Fixed Values 

Plunge speed mm/min 20 

Dwell time sec 5 

Probe length mm 2.95 

 

Trial experiments were carried out according to the principles of the design of experiments 

and repeated three times in to determine the effect of the main process parameters. An L9 

orthogonal array with four parameter with three level design was applied. Since the L9 

orthogonal array has four columns, each welding parameter is assigned to a column. The 

experimental layout for the four welding parameters using the L9 orthogonal array is shown 

in Table 6. On the third repetition temperature was measured underneath the weld bead as 

explained before. In this study, which aims at the optimization of the joints ultimate tensile 

strength (UTS), the function proposed by Taguchi for signal-to-noise (S/N) ratio calculation 

was taken according to “larger the better”: 
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(4.1) 

where n represents the number of the tests and yi is the experimental value of the quality 

characteristics. The response of the S/N ratio for each level of the welding parameters was 

acquired using MINITAB statistical software. The combination of optimized parameters 

given by the statistical analysis was subsequently tested. 

 

Table 6 – Experimental layout using an L9 orthogonal array. 

Specimen 

number 

Friction stir welding process parameters 

Tool diameter 

(mm) 

Rotational speed 

(rpm) 

Transverse 

speed (mm/min) 

Axial force       

(N) 

S1 3 1500 30 800 

S2 3 2000 50 950 

S3 3 2500 70 1100 

S4 4 1500 50 1100 

S5 4 2000 70 800 

S6 4 2500 30 950 

S7 5 1500 70 950 

S8 5 2000 30 1100 

S9 5 2500 50 800 

 

A total of 27 welds were performed in this experimental procedure (9 tests × 3 repetitions). 

The 54 sheets of PE were cut using vertical electric saw (Figure 50a) from 500×500×3 mm
3
 

plates to the dimensions shown in Figure 50b.  In order to provide a perfect interface area 

between the two plates, the contacting faces were machined and straighten using a milling 

machine. 
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The assembly of the butt-joint configuration is one of the most important stages for a good 

welding condition. The two plates must be strongly clamped to avoid any type of movements 

during welding and the consequent defects associated. Also, the interfacial line of the two 

sheets has to be perfectly aligned with the line described by the tool linear movement. As 

demonstrated in Figure 51, to ensure this alignment, two guiding pins (a) were inserted on the 

backing plate and a metallic T-beam profile (b) (constant width) was laterally pressed against 

them. Then the machined face of one of the plate to be welded (c) was pressed laterally 

against the T-beam and clamped. Finally, the other plate was placed and clamped in the 

correct position and the tool moved to the middle of the interfaced line.  

 

 

Figure 51 – Alignment setup used in the experimental setup of HMWPE 3mm plates by FSW. 

Figure 50 – Saw cutting of the 3mm plates (a); Dimension of the plates (mm) (b). 
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The rotational speed and transverse speed are directly defined to the CNC machine with G 

codes. However, the force setup requires a few steps using the sensorized clamping system as 

a position control system. As illustrated in Figure 52, first the tool and shoulder are moved 

vertically down (a), compressing two 3-millimeter-thick metal bars (b) positioned on top of 

the clamped plates (c). Then the movement is stopped when the measured force equals to the 

force required in the test, and the position is recorded by the Mach3 software. The recorded 

position corresponds to the welding position with a positive 3 mm vertical offset. Then the 

tool is raised 2 mm above the plates, and the metal bars removed. On the last stage of the 

force setup, the tool is moved laterally to the plunge location, being 5 milimiters positioned 

above the pretended position during welding at the end of this stage. Without the metalic bars 

the probe would damage the polyethylene sheets before welding.  

The welding begins when the tool, animated with the pretended rotational speed, descents 

5 milimiters offset from the maximum plunge location with a fixed vertical velocity of 20 

mm/min. A constant dwell time of 5 seconds is made at the plunge location to heat up the tool 

and plasticize the parent material. After the dwell time, the tool is linearly moved 150 

milimiters along the weld line of the two plates, welding plates together under the axial force. 

At the final position, the tool is withdrawn.  The weld was allowed to cool down for 10 

minutes before the clamping system was removed to minimize the bending of the welded 

plates. Also the tool components were cooled down after each welding try out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four stripes with a width of 25 mm were cut with power saw from the original plates, as 

demonstrated in Figure 53. The stripes were machined into the specimen type 1 dimensions 

mentioned in section 4.1, and tensile tests were performed with the same conditions applied to 

the base material. The three best results from each weld were selected and used in the 

statistical study. In total, 108 specimens were tested (Figure 54). 

 

Figure 52 – Axial force pre-load determination setup. 
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Figure 53 – Division of the weld into 4 stripes.   

Figure 54 – Specimens tested during the experimental work. 
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4.5 Temperature measurement 

Welding temperature is a fundamental aspect in most of the welding processes. Friction stir 

welding is no exception and one of the main objectives of the presented work is to measure 

the welding temperature for different combinations of process parameters and analyze how it 

correlates with joint efficiency. 

Polymeric materials have low thermal conductivity which makes it more challenging to 

measure the temperature during welding. Consequently, conventional temperature sensors 

such as thermocouples and thermistors should be placed as close as possible, or even inside 

the weld bead, to measure the direct temperature. Thermographic camera, infrared device and 

remote temperature sensors cannot be used in this work because the weld bead is covered by 

the stationary shoulder, backing plate and clamping system. 

A thermocouple is a temperature sensor composed of two dissimilar metal wires, joined at 

one end. According to the temperature of the junction, a differential voltage can be measured 

in the open circuit at the other end of the wires. The differential voltage measured is a 

function of the temperature and the materials that make up the wires. Knowing the correlation 

it is possible to relate the temperature to the differential voltage [48]. In this study, low gage 

diameter  type K (chromel-alumel) thermocouples were chosen as temperature sensors due to 

the rapid response required, the possibility of measuring the temperature at various points of 

the weld, simplicity and low cost. This type of thermocouples have a working range from -

200ºC to 1100ºC and a sensitivity of 40,44µV/ºC. 

In preliminary tests, four thermocouples were placed between the two plates to be welded, 

in four different positions. Even though some results were unreliable, it was still possible to 

notice a temperature gradient across the depth of the sheets.  

Due to the difficulty in guaranteeing the positioning of the thermocouples at the same 

depth in the weld as well as the possible temperature gradient, the measurements could 

eventually lead to an incorrect correlation between temperature and weld strength. 

In order to avoid the mentioned problem, thermocouples were positioned underneath the 

weld bead in four different positions equally displaced (as seen in Figure 55) allowing the 

investigation of the required heat generation to produce a strong joint in the full depth of the 

sheets, which is crucial to the weld resistance. With this positioning, thermocouple readings 

were more reliable and stable. Also, the number of thermocouples destroyed by passing of the 

tool decreased significantly. Thermocouples were built and rebuilt by mercury-soldering 

using a capacitive-discharge technique to ensure uniformity, Figure 56. 

In the present work AD 595’s IC’s from Analog Devices® are used as complete 

instrumentation amplifiers for K type thermocouple with cold junction compensation and a 

gain of 247,3 (10mV/ºC divided by 40,44 μ V/ºC) for measuring and amplifying the 

thermocouple electromotive force [49]. 
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A circuit was developed to measure the temperature and thermocouples were connected to 

four conditioning circuits containing the AD 595’s. The circuit makes the interface between 

the thermocouples and a USB-6008 from National Instruments, which allows the connection 

to a PC for recording the measured data. The conditioning circuit was available in the 

laboratory (Figure 57) but a dual power supply was needed in order to measure negative and 

positive temperature.  

 

 

 

Figure 56 – Mercury-soldering by capacitive discharge of the thermocouple wires. 

Power 
supply 

Mercury 

Figure 55 – Thermocouples position underneath the weld bead. 
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Therefore, a dual power supply was built in the laboratory providing a symmetrical voltage 

of +12/-12 volts to the conditioning circuit, allowing to measure temperatures in all range of 

the type K thermocouples. The dual power supply circuit scheme is shown in Figure 58. In the 

circuit, a +14/-14 volts transformer is connected to diode bridge (DB1) for converting 

alternating current (AC) input into a direct current (DC) output. The positive polarity is then 

connected to a positive voltage regulator LM7812 and the negative polarity connected to a 

negative voltage regulator LM7912. The circuit is also constituted by two fuses (S1 and S2) in 

order to provide an overcurrent protection. Also, two LED (L1 and L2) were installed to show 

if the circuit is plugged to current or not. Four capacitors (C1, C2, C3 and C4) were used to 

guarantee a more stable voltage output from the diode bridge as well as the voltage regulators 

and four diodes (D1, D2, D3 and D4), which protect the voltage regulators against 

overvoltages and variations in the ground voltage. The ground for the circuit is given by the 

transformer. In Figure 59 both the dual power supply and the thermocouple conditioning 

circuit are displayed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58 – Dual power supply scheme developed for feeding thermocouple conditioning circuit. 

Figure 57 – Conditioning circuit for thermocouples. 

AD 595’s 
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Figure 59 – Dual power supply and thermocouple conditioning circuit setup. 
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5 Experimental results 

The experimental tests were performed following the Taguchi’s Design of Experiments 

(Table 6) with three repetitions. Firstly, all the 9 experimental tests were performed following 

the sequence of Table 6. That sequence was afterwards repeated two more times for averaging 

purposes. In order to facilitate the test/repetition identification, each test was identified using 

the following nomenclature: “experimental test S(i,j)” with i=1,2,3,4,5,6,7,8,9 and j=1,2,3. 

The “i” index corresponds to the sample number and “j” index represents the trial number, the 

nomenclature is presented in Table 7. The results from the experimental tests are presented in 

loading forces, ultimate tensile strength and joint efficiency (obtained by dividing the tensile 

strength of each weld by the tensile strength of the base material) that resulted from the tensile 

tests that explained in section 5.1. Also, the temperature measurements during welding are 

presented in section 5.2. 

Table 7 – Experimental nomenclature of the welds 

Test 

number 

Tool 

diameter 

(mm) 

Rotational 

speed 

(rpm) 

Transverse 

speed 

(mm/min) 

Axial 

force 

(N) 

Experimental nomenclature 

Trial 1 Trial 2 Trial 3  

S1 3 1500 30 800 S(1,1) S(1,2) S(1,3) 

S2 3 2000 50 950 S(2,1) S(2,2) S(2,3) 

S3 3 2500 70 1100 S(3,1) S(3,2) S(3,3) 

S4 4 1500 50 1100 S(4,1) S(4,2) S(4,3) 

S5 4 2000 70 800 S(5,1) S(5,2) S(5,3) 

S6 4 2500 30 950 S(6,1) S(6,2) S(6,3) 

S7 5 1500 70 950 S(7,1) S(7,2) S(7,3) 

S8 5 2000 30 1100 S(8,1) S(8,2) S(8,3) 

S9 5 2500 50 800 S(9,1) S(9,2) S(9,3) 

5.1 Tensile test results 

Table 8 and 9 show the mean of maximum load and the mean of ultimate tensile stress 

values of the tested specimens (each test with 3 repetitions) respectively.  



Temperature Measurement and Parameter Optimization of PE FSW Butt Joints 

 

54 

Table 8 – Maximum load results of the tensile tests. 

Test 

number 

Tool 

diameter 

(mm) 

Rotational 

speed 

(rpm) 

Transverse 

speed 

(mm/min) 

Axial 

force 

(N) 

Mean of the maximum load (N) 

Trial 1 Trial 2 Trial 3  

S1 3 1500 30 800 516.9 292.1 278.8 

S2 3 2000 50 950 566.8 870.0 816.3 

S3 3 2500 70 1100 836.9 873.8 892.8 

S4 4 1500 50 1100 555.3 492.8 234.8 

S5 4 2000 70 800 881.8 862.6 857.1 

S6 4 2500 30 950 834.1 798.7 816.2 

S7 5 1500 70 950 872.7 868.1 860.0 

S8 5 2000 30 1100 709.1 783.1 793.4 

S9 5 2500 50 800 891.3 896.6 832.7 

 

Table 9 – Ultimate tensile strength (UTS) results. 

Test 

number 

Tool 

diameter 

(mm) 

Rotational 

speed 

(rpm) 

Transverse 

speed 

(mm/min) 

Axial 

force 

(N) 

Mean of the UTS (MPa) 

Trial 1 Trial 2 Trial 3  

S1 3 1500 30 800 13.3 7.5 7.2 

S2 3 2000 50 950 14.5 22.3 21.0 

S3 3 2500 70 1100 21.5 22.4 22.9 

S4 4 1500 50 1100 14.2 12.6 6.1 

S5 4 2000 70 800 22.6 22.2 22.0 

S6 4 2500 30 950 21.4 20.5 20.9 

S7 5 1500 70 950 22.4 22.3 22.1 

S8 5 2000 30 1100 18.2 20.1 20.3 

S9 5 2500 50 800 22.9 23.0 21.4 

 

Table 10 shows the joint efficiency, which is a dimensionless numerical quantity to 

classify the quality of the weld. It is obtained by dividing the tensile strength of each weld by 

the tensile strength of the base material. 
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Table 10 – Mean of the joint efficiency for each set of welding parameter. 

Test 

number 

Tool 

diameter 

(mm) 

Rotational 

speed 

(rpm) 

Transverse 

speed 

(mm/min) 

Axial 

force 

(N) 

Mean of the joint efficiency (%) 

Trial 1 Trial 2 Trial 3  

S1 3 1500 30 800 56.1 31.7 30.3 

S2 3 2000 50 950 61.5 94.4 88.6 

S3 3 2500 70 1100 90.8 94.8 96.9 

S4 4 1500 50 1100 60.3 53.5 25.5 

S5 4 2000 70 800 95.7 93.6 93.0 

S6 4 2500 30 950 90.5 86.7 88.6 

S7 5 1500 70 950 94.7 94.2 93.3 

S8 5 2000 30 1100 76.9 85.0 86.1 

S9 5 2500 50 800 96.7 97.3 90.4 

 

The load-displacement (where displacement corresponds to the dislocation of the machine 

actuator) plots of the three strongest specimens (the selected specimens are labelled on the 

graphics) for each test of the trial number one are shown in Figures 60-68. Some of the 

specimens were removed before rupture from the tensile test machine and in those cases the 

force does not achieve zero.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 60 – Tensile test S(1,1). 
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Figure 62 – Tensile test S(3,1). 

Figure 61 – Tensile test S(2,1). 
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Figure 64 – Tensile test S(5,1). 

Figure 63 – Tensile Test S(4,1). 
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Figure 65 – Tensile test S(6,1). 

Figure 66 – Tensile test S(7,1). 
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Figure 67 – Tensile test S(8,1). 

Figure 68 – Tensile test S(9,1). 
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5.2 Measured temperature 

This section provides the measured temperatures of the third repetition of the Taguchi 

table, using four thermocouples (T1 to T4) for each weld. The thermocouples position at the 

bottom of the weld is illustrated in Figure 55 in section 4.2. Some of the thermocouple 

readings did not work properly and their values in the Table 11 are marked with "–". On the 

acquired temperature data, it is possible to notice that in some welds, a peek of temperature 

recorded with 2 or 3 times bigger than normal temperature. This behaviour can correspond to 

the temperature of the welding tool, measured in the instant that the tool passes above the 

thermocouple. The temperature of the tool can be much higher than the temperature of the 

weld nugget, due to the friction between the tool and the copper sleeve. For this study, the 

temperature which serves as the reference for welding is the one measured at the bottom of 

the weld, as shown in Figure 55. 

In some welds, where temperatures reached above 250 ºC, it was not possible to precisely 

distinguish whether the measured temperature is relative to the welding tool or the 

temperature at bottom of the weld nugget. In some cases, the failure of some thermocouples, 

due to the passing of the tool, made it difficult to analyse the temperature data acquired, 

introducing noise on the acquired measurements. The thermocouple failure occurred mainly 

on the samples with the highest axial force, where the tool consequently has more penetration 

and travels closer to the thermocouples. 

 

 

Table 11 – Temperature readings during the third welding trial. 

Test 

number 

Tool 

diameter 

(mm) 

Rotational 

speed 

(rpm) 

Transverse 

speed 

(mm/min) 

Axial 

force 

(N) 

Measured temperature (ºC) 

T1 T2 T3  T4 

S1 3 1500 30 800 90 90 – 160 

S2 3 2000 50 950 140 – – 160 

S3 3 2500 70 1100 90 – 150 160 

S4 4 1500 50 1100 – 110 115 115 

S5 4 2000 70 800 – 105 120 120 

S6 4 2500 30 950 170 250 >250 >250 

S7 5 1500 70 950 145 165 165 150 

S8 5 2000 30 1100 >250 >250 >250 >250 

S9 5 2500 50 800 250 – – >250 
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6 Experimental analysis 

The analysis of variance (ANOVA) and mean analysis of the experimental results are 

conducted in the first section of the presented chapter, where the influence of each parameter 

is studied and the theoretical optimum parameter combination is obtained and tested. 

On the second section, the influence of the FSW process parameters is further discussed 

regarding not only their effect on the weld strength, but also on the temperature, surface 

quality of the weld, fracture type of the specimen, limitations of the tool and limitations of 

clamping system. This discussion is based on visual inspection, recorded temperature, forces 

measurements and tensile strength of each set of parameters.  

6.1 Taguchi’s DOE analysis 

The analysis of the results obtained from Taguchi’s Design of Experiments is very 

important to understand the effect of the input welding parameters (factors) into the output 

results (dependent variables). The analysis of variance (ANOVA) permitted identifying the 

welding parameters (tool diameter, rotational speed, transverse speed and axial force) that 

have the most influence on the weld strength. The ANOVA was applied considering a level of 

significance of 5% (confidence level of 95%). 

Some of the most relevant information to extract from ANOVA is each input parameter 

contribution on the output of the process. Therefore, after performing the ANOVA, the 

percentage contribution of each parameter was calculated using the Equation (6.1) and data 

from Table 12. The percentage contributions are presented in Table 13. 

 

     (
                (                      )

                           
) 

 

 

(6.1) 

 

where, 

x is the input parameter/interaction of parameters; 

Px is the contribution percentage of each factor on the weld strength; 

dfx are the degrees of freedom associated to factor x. 
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Table 12 – Analysis of variance for weld strength. 

Source 
Degrees of 

freedom 

Sum of 

squares 

Mean 

square 
F-value P-value 

Tool diameter 

(mm) 
2 147030 73515 8.52 0.002 

Rotational speed 

(rpm) 
2 455001 227500 26.37 0.000 

Transverse speed 

(mm/min) 
2 250563 125281 14.52 0.000 

Axial force (N) 2 84606 42303 4.90 0.020 

Residual error 18 155306 8628 – – 

Total 26 1092506 – – – 

 

Table 13 – Contribution percentage of the welding parameters in the output results. 

Sources of variation 
Contribution percentage % in 

weld strength 

Tool diameter (mm) 11.9 

Rotational speed (rpm) 40.1 

Transverse speed (mm/min) 21.4 

Axial force (N) 6.2 

Residual error 20.4 

 

Statistical analysis of the weld strength indicates that the most effective welding 

parameters are rotational speed and transverse speed. However, all the chosen welding 

parameters have statistically significant effect on the weld strength (95% confidence interval; 

P-value<0.05). The F-value is obtained by dividing the mean square of each parameter by the 

mean square of the residual error. For the confidence interval and degrees of freedom used, a 

parameter has a statistically significant effect on the output if the F-value is greater than 3.55, 

which happens in all parameters.  

The residual error has a contribution of 20.4%, which is related with uncontrollable factors 

such as small uncertainties in the applied axial force, small misalignments between the 

interface of the two plates, effects of the thermocouples on the weld quality and the trajectory 

of the tool and lateral movement of the sheets during welding. 

The analysis of the mean effect (Figure 69) and S/N ratio (Figure 70), show that the 

strength of the weld increases for higher rotational speeds, higher transverse speeds and 



Temperature Measurement and Parameter Optimization of PE FSW Butt Joints 

 

63 

bigger tool dimensions. However, for the axial force there is an inflection on graph as it 

illustrated in Figure 69, being the middle value the one that ensures a better result. Those 

graphics indicate the process parameters combinations that can theoretically produce strongest 

welds without considering the parameters interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 70 – Main effects plot for SN ratios. 

Figure 69 – Main effects plot for mean. 

Load (N) 
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The combination of parameters recommended by the Taguchi’s analysis was tested 

(confirmation test), with the use of the 5 mm tool, animated with a rotational speed of 2500 

rpm, with a transverse speed of 70 mm/min and compressing the plates with axial force of 

950 N. The results of tensile test and temperature are demonstrated in Table 14. 

Table 14 – Results of the confirmation test. 

Confirmation 

test 

Specimen1 Specimen2 Specimen3 Specimen4 T1 ºC T2 ºC T3 ºC 

862.6 N 862.3 N 859.1 N 857.6 N 150 230 >250 

 

The optimization given by the Taguchi’s analysis did not conduct to the strongest weld 

(mean joint efficiency 4% lower than the test S(9,2) that reached 97%), although this results 

might have been affected by the shoulder wear and deformation as it is shown in Figure 71, 

where a gap between the Teflon and the cooper sleeve is noticeable, consequence of the 

numerous tests performed under high temperatures, which deformed the shoulder around the 

hot sleeve. This opened space allows the base material to raise and eject from the weld bead 

as well as creating not the best weld quality surface as observed at the beginning, affecting the 

weld quality. This problem is further addressed in section 6.2.3.  Even though, with shoulder 

deformation, the obtained results were strong and the joint was able to deform plastically, in a 

more compatible way with the base material.  

 

 

 

 

 

 

 

 

 

 

  

Figure 71 – Gap between the Teflon shoulder and the cooper sleeve. 
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6.2 Experimental work discussion  

 Visual aspect of the welds 6.2.1

The visual aspect of the welds is divided in three key aspects, which are: 1) deformation of 

the welded plates due to bending, 2) surface quality at the top of the weld and 3) surface 

quality at the bottom of the weld. 

The excessive heat generation and the large applied axial forces caused the plates to bend 

during welding, as illustrated in Figure 72. However, in order to minimize this bending 

behavior, the welded plates were allowed to cool down for 10 minutes at ambient temperature 

prior to removal of the clamping system. However, it was still not enough to avoid this 

deformation. This deformation is a negative aspect present in all welded plates. Its 

quantification was not made but differences between plates were not observable. The 

asymmetrical flexural strength of the welded sheets, where there is no total penetration of the 

tool, is known and aggravated by the mentioned deformation. 

 

 

The surface quality of the top and bottom part of the weld are not necessarily related as 

they depend on different factors. A good surface quality on top of the weld depends on the 

tool conjunct (sleeve and shoulder) and axial force, while a good quality surface on the 

bottom of the weld depends on the temperature and mixing situation at that location. That 

independence reinforces the idea of a temperature gradient along the depth of the weld bead, 

caused by the sleeve temperature. 

In order to achieve a good surface quality at the top of the weld, the sleeve must generate 

enough heat to create a layer of soft plastic at the top surface, which is subsequently pressed 

down by the Teflon shoulder. With the optimized set of welding  parameters, the weld surface 

is similar to the base material surface, as illustrated in Figure 73 (a) test S(6,3), which is 

difficult to distinguish from the parent materials. 

A good quality surface at bottom of weld beads is harder to achieve than on the top weld 

layer, due to the formation of the root defect, as it affects the weld quality. With this in mind, 

it is necessary that the tool is able to generate adequate heat at that location as well as proper 

stirring of the soften material. A good quality was achieved at the bottom of the weld bead 

using the set of welding parameters for test S(9,2), where almost no difference is noticed 

between the weld bead and the parent material, as shown in Figure 73 (b). The measured 

temperature for the same parameter combination but on a different trial S(9,3) surpassed 250 

ºC. 

 

 

Figure 72 – Example of flexural deformation caused by the welding process forces, test S(9,2).  
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  Types of fracture   6.2.2

Although the joint efficiency was high for some set of parameters (over 95% of the base 

material tensile strength), the welded zone could not be compared to the base material 

capacity to deform plastically. In fact, there is a massive reduction of this capacity for most of 

the tests, which is a major drawback, certainly indicates that further studies focused on the 

fatigue life and impact resistance of the joints are needed. 

Three types of fracture were observed and characterized as brittle, semi-brittle and ductile. 

On the first case, there is a sudden break of the specimen when the maximum load is achieved 

and no plasticity is observed on the fracture zone (Figure 74). This type of fracture is 

independent on the joint strength. As an example, the specimen with higher load tested S(3,3) 

exhibited this behavior, as illustrated in Figure 75, where it is compared to the base material.  

 

 

 

 

 

 

 

 

 

Figure 73 – Examples of good surface on top of the weld (a) and bottom (b). 

Figure 74 – Brittle fracture zone specimen 4 test S(3,3). 
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For the semi-brittle type of fracture (Figure 76), there is also a sudden break of the 

specimens on the weld nugget, but a small layer (caused by the passing of the hot sleeve that 

creates a film of molten plastic, named in  this work as sleeve layer) of material continues to 

deform plastically. This layer exhibits similar behavior to the base material characteristics. 

The thickness of this “sleeve layer” varies from weld to weld, and sometimes within the weld 

itself. That difference in thickness can be seen on the tensile test of the specimens, as shown 

in Figure 77, where the tensile test of two specimens with this type fo fracture are presented. 

It is possible to state that the specimen 4 from the test S(5,1) has a thicker layer than the 

specimen 3 from the test S(6,1), since the force necessary to deform that layer was higher 

(around 100N). This variance in thickness is further discussed in section 6.2.3. 

 

 

 

 

 

 

 

 

 

Figure 76 – Semi-brittle fracture of the specimen 2 of the test S(5,1). 

Figure 75 – Tensile test of the specimen 4 (brittle fracture) test S(3,3), and base material. 
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For the last type of fracture (ductile, Figure 78), the weld is able to deform plastically, not 

as much as the base material but with good compatibility nevertheless. This type of fracture 

was the least common ones and it is related to the welds where higher temperatures were 

achieved at the bottom of the weld bead. The higher temperatures prevent the formation of the 

root defects, which may be responsible for the abrupt failure of the majority of specimens. 

The best example for this type of failure was obtained in the confirmation test with optimized 

welding parameters suggested by Taguchi DOE, where temperatures surpass 250ºC at the 

bottom of the weld. The tensile test of this specimen is shown in Figure 79, where the tensile 

tests of the base material and the specimen with higher load (98% joint efficiency) were added 

for the sake of comparison. Due to the lack of time, the fatigue life of the specimens was not 

investigated, although it is expected that these specimens will have a better fatigue life and 

impact resistance than the specimens with fragile fracture. In fact, all the specimens from the 

confirmation test presented this behavior, in particular the specimen 3, on which it is possible 

to observe deformation on the parent material adjacent to the advancing side of the weld, 

which indicates a good diffusion of heat and stirring, as illustrated in Figure 80. 

 

 

 

 

 

 

Fracture of the weald bead 

Start of plastic deformation of 

the sleeve layer 

Figure 78 – Ductile fracture from the specimen 2 from the confirmation test. 

 

Figure 77 – Tensile test of two specimens with semi-brittle fracture, and base material. 
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Most of the specimens in the present work failed in the retreating side of the weld, as 

demonstrated in Figure 81. That can be explained due to the low thermal conductivity of 

polymeric materials. And as previously proved, the advancing side of the welds are hotter 

than retreating sides in FSW processes, and low thermal conductivity of polymers magnifies 

this issue. This insufficient heat generation at the retreating side of the weld, which causes 

improper joining between the retreating side of the weld in compared to the advancing side,  

caused the specimens to fail from retreating sides [50].  

 

 

 

Figure 80 – Deformation on the parent material in specimen 3 of the confirmation test. 

Figure 79 – Tensile test of the specimen 3 (ductile) of the confirmation test and base material. 
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 Tool limitations 6.2.3

The new developed tools used to perform all the welds of the experimental design 

suffered gradual degradation from weld to weld due to the excessive amount of heat 

generation by the copper sleeve, as shown in Figure 82. This degradation was further 

aggravated in the tool with the bigger diameter (5mm) due to the higher temperatures 

achieved, with damage on the Teflon material in its interface with the copper sleeve. 

Deformation occurred at this location, which conducted to an interface Teflon-copper no 

longer tight, allowing molten polyethylene escaping from the weld bead to the interior of the 

shoulder, as well as affecting the surface quality of the welds. This problem not only reduced 

the strength of the welds but strongly affected other parts of the process, such as the thickness 

of the sleeve layer. The results of the confirmation test and even changing the impact of the 

transverse speed on the overall process could be explained by degradation of the Teflon 

stationary shoulder. 

 

 

 

 

 

 

 

 

 

 

 

 

To fully understand what was causing this damage during the confirmation test, a 

thermocouple was placed inside the copper sleeve, as illustrated in Figure 83. The 

confirmation test was ideal to perform this measurement, where the optimized welding 

parameters were used, to evaluate the temperature. Having the larger tool animated at the 

Figure 82 – Interface Teflon-copper wear after ten FSW tests.  

Figure 81 – Fracture on the retreating side. 
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highest rotational speed (2500 rpm), certainly led to one of the highest achieved temperatures 

inside the copper sleeve during all the tests performed. The sleeve temperature is mostly 

affected by tool rotation and tool dimension where larger contact area between the tool body 

and copper sleeve generates more friction. 

 

 

 

 

 

 

 

 

 

 

 

The values of temperature measured (Figure 84) during the confirmation test inside the 

sleeve were situated between 350ºC-400ºC, way above the Teflon maximum working 

temperature (260ºC) and above its melting temperature (327ºC). In fact, the temperature was 

so high that even more degradation could be expected on the Teflon shoulder. Moreover, 

differences in the thermal expansion between the two materials may be another cause of 

damage on the static shoulder. In order to avoid this degradation, the Teflon should be 

replaced for a material capable of withstand those temperatures. 

 

Figure 84 – Sleeve temperature readings during confirmation test. 

Figure 83 – Temperature Measurements on the copper sleeve. 
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The shoulder was damaged during the confirmation test, and consequently large amounts of 

molten polyethylene escaped from the weld bead to the inside of the shoulder. This 

volumetric loss of material has reduced the resistance of the weld, making it impossible to 

reach the theoretical maximum strength predicted by the Taguchi’s analysis. The amount of 

lost material that entered into the shoulder during welding of the confirmation test is shown in 

Figure 85.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The amount of material flowing into the shoulder is related to several factors: 

 

 The first one is due to the generated heat at the top of the weld, which depends on tool 

rotational speed, tool diameter and transverse speed).  

 Secondly, the material needs to be in a liquid state to enter the shoulder. Also the 

viscosity of the liquidized plastic decreases for higher temperatures, which facilitates 

the entry of polyethylene to the interior of the Teflon copper interface. The axial force 

has also an impact on the flow of material.  

 Finally, the axial force has an impact on the flow of material due to pushing out the 

materials at high axial forces. When the molten plastic is strongly compressed, it tends 

to move towards inside of the shoulder, escaping from the stressed zone.  

 

Transverse speed has a double effect on the volumetric loss in the weld bead. It not only 

affects the volume of plastic per unit of time that enters the shoulder, but also affects the 

welding time. This means that for slower transverse speeds there is more time for the soft 

material to enter the shoulder, accounting for a bigger overall loss of material from the weld. 

This fact reinforces the analysis of both the ANOVA and Taguchi’s analysis, that the 

transverse speed has a major impact on the weld strength and higher transverse speeds are 

recommended for obtaining stronger welds using the new tool concept. 

The entrance of material into the shoulder makes it harder to relate the process parameters 

with the thickness of the sleeve layer. In this case, the thickness of sleeve layer is dependent 

not only on the heat generated but also on the amount of material that leaves the weld bead. 

Figure 85 – Molten plastic that leaked the weld bead through the Teflon shoulder. 
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 Limitations on the clamping system 6.2.4

The clamping system was appropriate for the vast majority of parameter combinations used 

in this study. However, in some cases it did not prevent lateral movement of plates for some 

of the welding parameters, which conducted to a low weld resistance for some of the obtained 

results. Different amount of lateral displacements on the plates were observed, which in some 

cases did not influence weld strength, although in some other cases affected the weld quality 

greatly. That was one of the reasons why every set of welding parameters was repeated three 

times, minimizing the uncontrolled factors during the process. In order to understand the 

relation between lateral displacement of the plates and the process parameters used, it is 

important to analyze the forces recorded during welding. In Figure 86, the measured forces 

during test S(2,1) are shown: axial force (Fz), transverse force (Fx), caused by the linear 

movement of the tool, and the side force (Fy) caused by the rotation of the tool. 

 In the first stage of the process, the tool plunges into the polyethylene sheets, and due to 

the compression of the plastics by the probe followed by the shoulder, a peak in axial force is 

recorded, and is the highest axial force value of the test. That force is mainly dependent on the 

presented axial force but also on the tool diameter as observed during experimental tests, 

which is related to the larger area of the probe inserting the plates. This behavior is shown in 

Figure 87, where the test S(6,1) is presented. Even though the pre-load force applied to the 

plates were the same (950N), a higher plunge force value recorded (Fz) than in S(2,1) 

specimen. 

Along the process elapse, the axial force decreases due to the thermal softening (heat) and 

flow (rotation) of the material from below the probe during the dwell time. The start of the 

linear movement can be seen in the Figure 86, with the increase of Fx force.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86 – Force measurements test S(2,1). 

Welding 

Plunging and dwell time 
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The axial force slowly decreases and tends to stabilize during welding, due to a stable heat 

temperature. For tests with higher temperature inputs, the plastic tends to liquidizes faster, 

which resulted in a decrease of the axial force. That can also be seen in Figure 87, where the 

test S(6,1) with the same predetermined axial force, but with higher heat input conducts to 

lower axial forces. Higher heat input tests also tend to have smaller values of force in X 

direction, also shown in Figure 87. 

In the remaining weld length the axial force increases slightly until the end of the weld. 

This behavior is visible in most of the recorded force measurements and it can be related to 

the back plate elastic deformation during welding, which is higher at the middle of the back 

plate (highest distance from the supports). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On tests S (2,1) and S (6,1) the plates did not have any lateral movements, therefore, there 

were no abrupt variations on the recorded axial force, so there are no abrupt variations in axial 

force. In tests S (4,1), S (4,2) and S (4,3) the clamping system was unable to prevent lateral 

movements of the plates. The open space between the two plates was responsible for the 

appearance of serious defects as shown in Figure 88  that had repercussions on the resistance 

of the weld. 

 

 

 

 

 
Figure 88 – Volumetric defect on the test S(4,3) 

Figure 87 – Force measurements test S(6,1). 
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Figure 89 exhibits the force measuring during the test S(4,1), and it is possible to identify 

two zones where lateral displacement occurred. First during plunging, the opening of a space 

causes a decrease on the axial force due to the material that was counter acting the vertical 

movement of the tool, which moved away from that welding zone. And secondly, in the linear 

movement of the tool, which moved the two plastic plates, with another consequent decrease 

on the axial force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lateral displacement of the plates was particularly severe for the parameter combination 

S(4,j), which were the tests with highest axial force and lowest rotational speed (highest force 

and highest torque). High axial forces may be related to lateral movement at the interface of 

the plates. Also, high rotational speed can help to prevent the lateral movement of the plates 

by softening (generated heat) and removing (rotational movement) the material that is being 

compressed by the flat surface of the probe.  

Previously, it was observed that a greater axial force has an impact on the injection of 

molten plastics into the shoulder. These two facts combined are the reasons for the worst 

results in Taguchi’s analysis of highest axial force (1100 N). The optimal force given by this 

statistical analysis is the middle force (950 N), the one that combines a better ratio between 

the desirable higher tool penetration and avoiding the problems described above.   

The major impact of the tool rotation can be observed in the sum of all these details, 

besides having the highest impact in heat generation and mixing, it also has impact on the 

lateral movement of the tools and influences the entrance of material into the shoulder. 

Using position controlled welding method, analyzing the axial force curves made it 

possible to analyze the effect of applied force even for position control welding. Predictably, 

it was concluded that it is not granted that the pre-determined axial force is equal to the one 

that presses the plastic during welding, which can be considered a source of error in the 

Figure 89 – Force measurements in test S(4,1). 
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analysis of variance. The only parameter that was granted to be constant by the preset axial 

force is the plunge depth. However, studying the recorded forces gave a good insight 

regarding formation of the defects during welding. 

 Temperature readings 6.2.5

Measuring the weld bead temperature is fundamental for a better understanding of the 

welding process. Despite some noise in the acquired data as explained in the previous chapter, 

a correlation between the temperature and resistance of the weld can be applicable. Some 

interesting temperature measurements were acquired and relations between that temperature 

and other properties of the weld were observed. The majority of temperature measurements 

were stable and reliable, as an example the temperature reading of the thermocouple 4 of the 

test S(1,3) showed in Figure 90. 

 

 

 

 

In some readings, it is possible to clearly distinguish two different temperatures measured 

during welding. One of those corresponds to the base material welding temperature while the 

other corresponds, to the tool temperature when it passes above the thermocouples. This 

phenomenon was noticed in combination of parameters that caused a big difference between 

the temperatures of the base material and welding tool. On the temperature measurements of 

test S(7,3), that was easily to observe as the welding temperature of was low, due to the 

welding parameters (combination of the lowest rotational speed with highest transverse 

speed), while the temperature of the tool is higher due to frictional heat between the tool and 

sleeve. Also, the low heat conductivity of the polymers and also the reduced heat transfer for 

this configuration (high transverse speed) contributes to this difference in temperature. The 

temperature readings of thermocouple 2 (Figure 91) and thermocouple 3 (Figure 92) of the 

test S(7,3) illustrate that difference, where similar values of tool temperature were measured 

(300ºC - 350 ºC). 

 

Figure 90 – Temperature readings thermocouple 4 test S(1,3). 
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In some other temperature measurements, tool temperature could not be as easily 

differentiated from the temperature of the weld nugget. This may happen due to the low linear 

speed of the tool that gives time for the plastic to heat up, which may be noticed in the test 

S(6,3) where the lowest transverse speed of the tests used (30 mm/min) allowed a larger time 

for the heat transfer (as seen in figure 93). The measured tool temperature peak was 

approximately 400 ºC-450 ºC, which is higher than the ones measured in the test S(7,3). The 

reason for this behavior is related to the increase of tool rotational speed from 1500 to 2500 s 

from one test to another. 

Figure 91 – Temperature readings thermocouple 2 test S(7,3). 

Figure 92 – Temperature readings thermocouple 3 test S(7,3). 
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Even though the measured temperature on the tool seemed too high, it was confirmed to be 

accurate by the temperature measurements made on the copper sleeve during the confirmation 

test. Also, it was possible to detect a change in the color (purplish color) of copper sleeve due 

to the excessive heat generated by the sleeve, which cause the copper to oxidize, as shown in 

Figure 94. 

 

 

 

 

 

 

 

 

 

 

 

 

The measured temperature values for the tests conducted with the 3 mm tool were similar, 

which makes sense due to the similar heat input given by the parameters of the tests   

(identical value in rotations per unit length of weld bead). However, it is expected that using 

bigger dwell time for this tool can heat up the sleeve and reach the desired temperature. In 

some of the tests the temperature almost duplicates from the measurement in the first 

Figure 94 – Oxidation coloration of the copper sleeve due to temperature. 

 

Figure 93 – Temperature readings thermocouple 2 test S(6,3). 
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thermocouple to the last one, causing a significant impact on the weld appearance from the 

first specimen to the last one (in terms of resistance no significant impact was recorded). 

Figure 95 shows that difference in surface quality of the weld in the bottom view. The first 

specimen (Figure 95a) of the test S(3,3) had the  poorest weld quality than the last specimen 

of the same test (Figure 95b). The values of tensile strength for 3 mm tool were more 

inconsistent than the 4 and 5 mm tools, not only poor repeatability was detected, but also 

different weld strength among different specimens of the same weld along the weald bead 

were recorded. The small diameter of the probe makes the resistance of the weld seam more 

vulnerable by other factors, such as defects in the plates interface, misalignments between the 

interface of the two plates and the trajectory of the tool, and lateral movement of the sheets 

during welding. 

 

 

 

 

 

 

 

 

 

 

 

In the welds fabricated using the 4 mm diameter probe, the differences among temperature 

values were much more noticeable. In test S(6,3), with combination of the highest rotational 

speed (2500 rpm) with  lowest transverse speed (30 mm/min), resulted the maximum 

temperature measured using this tool. The minimum temperature for this tool was measured 

in test S(4,3), the one where lateral movement of the plates occurred, which aggravated even 

more on the weld strength and appearance (Figure 96). 

 

 

 

 

 

 

 

 

Figure 95 – Comparison of the surface quality of the weld between two specimens of the same test. 

Figure 96 – Visual aspect of the weakest weld tested, S(4,3).   
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Using 5 mm diameter tool diameter, the tool was capable of generating excessive amounts 

of frictional heat, even for the combination of the lowest rotational speed with highest 

transverse speed. This tool conducted to have good repeatability with consistent results. The 

capability of generating heat is much higher using 5 mm probe, and consequently, higher 

temperatures during the welds were achieved, being the recommended probe diameter by the 

Taguchi’s statistical analysis. The ANOVA indicated that the tool parameter is the third 

effective parameter on this process and it is statistically significant. That importance is due to 

the fact that this tool generates more frictional heart as well as proper stirring. A larger tool 

will deform and stir a larger volume of material per tool rotational movement. In this study, 

with using the new tool design concept without external heating, where heat is generated by 

friction between the tool and copper sleeve, the importance of this parameter has increased. 

The difference in heat generation between the 3 mm and 5 mm tool is so pronounced that the 

sleeve on the test S(7,1) (5 mm tool with lowest rotational speed) was capable of producing a 

good surface from the beginning of the weld, whereas the sleeve in the test S(3,1) (3 mm tool 

with the highest rotational speed) needed more time to heat up and produce a good surface. 

The beginning of the two welds mentioned above is displayed in Figure 97. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 97 – Differences in surface quality between test S(7,1) and test S(3,3). 
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7 Conclusions and Future Work 

7.1 Conclusions  

This chapter summarizes the main conclusions drawn from the experimental work 

carried out and from the statistical analyzes performed on the weld strength results. The 

effect of friction stir welding parameters on the weld strength was evaluated with the 

support of Taguchi Design of Experiments and ANOVA methods. The force and 

temperature measurements also gave a good insight regarding the effect of the welding 

parameters on the heat generation. The following conclusions can be drawn: 

 The L9 Taguchi orthogonal design of experiments of friction stir welding was 

successfully applied. 

 The maximum joint efficiency of over 97% was achieved compared with the base 

material without external heating source. 

 All parameters used as input factors have statistically significance on the weld 

strength. 

 Tool rotation has the higher percentage contribution (40%) followed by the 

transverse speed (21%), tool diameter (12%) and axial force (6%). 

 Tool rotation is responsible for a great percentage of the heat generation and mixing 

of the soft material under the axial force, making it the principal parameter of the 

experimental study. Higher rotational speed is desirable to achieve better results. 

 The FSW tool has a significant effect on the weld strength and appearance. 

 Using this tool, higher strength of the welds are associated with higher transverse 

speeds. Although higher transverse speeds diminish the time of the heat transfer, it 

also diminishes the time for the base material to enter the shoulder. 

 Larger probe diameter generates more frictional heat and lead to very strong joints. 

The 5 mm tool produced the strongest and more consistent welds. 

 The predetermined axial force served only as position system for the tool. The 

softening of the material and in some cases the lateral movement of the plates 

diminished the measured force. 

 Higher axial forces increase the tool penetration but also increase the amount of 

material that enters the Teflon shoulder. The mean axial force (950 N) increased the 

weld strength by offering a better ratio between tool penetration and material flash 

from the weld bead. 
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 The asymmetrical loads and heat distribution during the welding process caused 

residual bending on the plates. 

 The majority of fractures occurred on the retreating side of the weld due to the 

parent materials’ characteristics. 

 Three types of fracture occurred: fragile, semi-fragile and ductile. 

 The temperature reached in some of welds was too high for the Teflon shoulder, 

damaging it and allowing the material to escape from the weld bead. 

 As claimed before and concluded in this study, the friction stir welding process of 

polymeric materials is not an absolute solid-state welding process. 

 The stationary shoulder was capable of producing strong welds with good surface. 

 Clamping system is crucial in this type of joint configuration to avoid movement of 

the plates. 

 Movement of the plates during welding cause the appearance of massive defects 

with serious repercussions on weld strength and surface quality. 

7.2 Further developments 

One of the main defects in every FSW process is the formation of “keyhole”, which 

refers to a hole that the FSW tool leaves behind, as illustrated in Figure 98. During the time 

period which the experimental work was carried out, several attempts to find a solution to 

eliminate the keyhole were carried out. In some cases some improvements were achieved 

but not consistent enough to be considered a legit solution for this defect. For research 

studies, usually the keyhole section will be removed to not affect the weld quality results 

due to the poor appearance and stress concentration in that region. However, in industry a 

third part plate will be introduced in order to push this defect outside of the final product. A 

new solution not only would eliminate this defect, but also will eliminate the post-

processing stage, consequently reduction on the production time and the wasted material. 

 

 

Figure 98 – Keyhole at the end of the weld bead. 

 

The solution that was proposed and manufactured in this study involved the stationary 

shoulder used to go over the keyhole zone after removal of the probe, and push the expelled 
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weld flash back into the hole. In order to be able to implement this idea, the Teflon shoulder 

should be under the axial force even when the probe is retrieved from the plates, in order to 

always push the material down when passing over the hole. With the tool concept used in 

this study and as it explained before, the tool does not remain under the axial force when the 

tool is removed. 

In order to solve this issue, a third part assembly was introduced and 3D printed in the 

laboratory with an available Cube X 3D printer. This new mechanism was developed to 

retain the axial force on the shoulder, after the tool stand was removed. In order to do that a 

set of springs were used to keep the shoulder under pressure. 

In this mechanism, a top part (Figure 99a) fits around the stationary head of the CNC 

spindle (Figure 99b), which is capable of transmitting the movements vertically and 

horizontally. A down part (Figure 100a) fits around the Teflon shoulder (Figure 100b) to 

always be under axial force. Four pins (Figure 101a) are used to transmit movement 

between the two parts, also those pins serve as guidance for the four springs (Figure 101b) 

that are located and compressed inside the two parts. Those springs are responsible for 

maintaining the shoulder under pressure after the removal of the tool. Depending on the 

strength of the springs, different axial forces have successfully employed to the shoulder, 

even after the tool has retrieved. 

 

 

 

Figure 99 – Top part (a) assembly on the stationary head of the machine (b).  
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Figure 100 – Down part (a) assembly with the stationary Teflon shoulder (b). 

 

 

 

Figure 101 – Assembly components of the mechanism. 

 

During the process, as the tool descents and plunges into the base materials, the 

springs get compressed and stay like this during the welding process. At the end, when the 

tool was lifted up just enough for the pin to no longer be inside the plastic (minimum 3 mm 

as the plate’s thickness). Then the tool is moved laterally with all the components and the 

shoulder passes over that keyhole zone under pressure, trying to fill the hole with the soft 

materials. 

Although the springs were capable of maintaining a force over 600 N on the shoulder, 

the solution did not work properly all the times. The ejected material was not enough to fill 

that space as some of the materials got lost due to deformation of the shoulder during 

welding. Even though this method didn’t propose any systematic solution for eliminating 



Temperature Measurement and Parameter Optimization of PE FSW Butt Joints 

 

85 

the keyhole defect, this tool concept worked perfectly in order to make the static shoulder 

under the axial force all the time. In Figure 102 is shown the mechanism assembly in the 

work position on the machine. Furthermore, further tests, designs and improvements are 

needed to achieve the presented objective.  

 

 

 

Figure 102 – Mechanism assembly in the work position. 

 

7.3 Future work 

In order to fully understand the relation between temperatures and weld resistance as 

well temperature with welding parameters, more tests and studies are needed. Temperature 

measurements with other type of sensors can also be interesting. 

In future work it is necessary to fabricate the shoulder with another material that is able 

to withstand the temperatures measured during welding. That material should have similar 

properties (conductivity and good surface quality) to the Teflon but have higher melting 

point. The only type of materials that fit into the demands is ceramic materials. The ceramic 

shoulder certainly has a higher service temperature and no deformation will occur at the 

shoulder sleeve interface, reducing the entrance of melted material to the interior of the 

shoulder. That could lead to stronger welds and to improved shoulder life.  
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Other tool concept to develop is a tool with two shoulders. That configuration applies a 

symmetrical vertical force to the plates preventing the residual bending of the welded plates. 

Also this type of tool configuration does not have defects related with lack of tool 

penetration. 

The types of fracture indicate that the specimens may have a significantly difference in 

fatigue life and impact resistance. The study of these parameters would be very interesting 

to study if the welded plates, would be appropriate in applications where fatigue resistance 

or impact resistance are needed. 

Performing a Non-Destructive Test (NDT), such as ultrasonic or thermography camera 

to the welded plates will give good information about the formation of the produced defects 

during welding. 
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