Livro de Resumos

http://xxiilgq.eventos.chemistry.pt
9 a 11 novembro 2016

Instituto Politécnico de Bragança
BRAGANÇA – PORTUGAL
TÍTULO
Livro de Resumos do XXII Encontro Luso-Galego de Química

EDITORES
Helder T. Gomes, Maria Olga A. S. Ferreira, João Barreira, Joana Amaral

EDIÇÃO
Sociedade Portuguesa de Química
Av. da República, 45 – 3º Esq
1050-187 Lisboa – Portugal

DATA
Novembro de 2016

EXECUÇÃO GRÁFICA
IPB, Soraia Maduro (design)
Sersilito – Maia (impressão)

FOTO DE CAPA
Rami Arafah

CATALOGAÇÃO RECOMENDADA
Livro de Resumos do XXII Encontro Luso-Galego de Química
Instituto Politécnico de Bragança, Bragança, Portugal, 2016, 336 páginas

ISBN
978-989-8124-17-3

TIRAGEM
350 exemplares

© Sociedade Portuguesa de Química
Direitos reservados. Proibida a reprodução deste livro por qualquer meio, total ou parcialmente, sem autorização expressa da Sociedade Portuguesa de Química.

Os Editores declaram que o conteúdo dos resumos científicos é de inteira responsabilidade dos respetivos autores.

ii
XXII ENCONTRO LUSO-GALEGO DE QUÍMICA
Organizado sob os auspícios de
Sociedade Portuguesa de Química
Colégio Oficial de Químicos de Galicia

COMISSION DIRETIVA
Baltazar Romão de Castro (FCUP)
José Luís Costa Lima (FFUP)
José Luís Figueiredo (FEUP)
Pelayo Rubido Muñiz (COLQUIGA)
Juan Mogn del Pozo (COLQUIGA)
Antonio Macho Senra (COLQUIGA)

COMISSION CIENTÍFICA
Joaquim Luis Faria (FEUP)
Artur Silva (UA)
Victor Fretas (FCUP)
Mario Ferruzzi (NCSU, USA)
Ignacio Pérez Juste (UVigo)
Moisés Canie López (UdC)
Pilar Bermejo Barrera (USC)

COMISSION ORGANIZADORA
Helder Gomes (IPB) - Presidente
Ana Isabel Pereira (IPB)
Ana Vera Machado (UM)
Baltazar Romão de Castro (FCUP)
Filomena Barreiro (IPB)
Isabel Ferreira (IPB)
Joana Amaral (IPB)
João Barreiro (IPB)
José Alcides Peres (UTAD)
José Luís Costa Lima (FFUP)
José Luís Figueiredo (FEUP)
Lillian Barros (IPB)
Manuel Coimbra (UA)
Olgna Ferreira (IPB)
APOIOS

INSTITUCIONAL

Sociedade Portuguesa de Química
Instituto Politécnico de Bragança
Colegio Oficial de Químicos de Galicia

OURO

Izasa Scientific
A WerfenLife Company
paralab
Fundação Luso-Americana

PRATA

Maldral S.A.
Waters
The Science of What's Possible
NORLEQ
NORLEQ - Equipamentos e Serviços
frilabo

BRONZE

Soquímica
Tecnocroma
Rotoquímica
Gravimeta
Bragança
Unicam

Crédito Agrícola
Sistemas Analíticos, Lda.
PROGRAMA CIENTÍFICO

9 de novembro (quarta-feira)

<table>
<thead>
<tr>
<th>Horário</th>
<th>Evento</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 11:30</td>
<td>Entrega de Documentação e Afixação de Painéis</td>
</tr>
<tr>
<td>11:30 – 12:00</td>
<td>Sessão de Abertura</td>
</tr>
<tr>
<td>12:00 – 13:00</td>
<td>Sala Bragança</td>
</tr>
<tr>
<td></td>
<td>Lição Plenária 1 - Mario G. Ferruzzi</td>
</tr>
<tr>
<td></td>
<td>Pausa para almoço (livre)</td>
</tr>
<tr>
<td>15:00 – 16:00</td>
<td>Sala Bragança</td>
</tr>
<tr>
<td></td>
<td>Lição Plenária 2 - Francisco Guitián</td>
</tr>
<tr>
<td>16:00 – 17:00</td>
<td>Comunicações Orais S1</td>
</tr>
<tr>
<td></td>
<td>Sala Bragança</td>
</tr>
<tr>
<td>QAMA1</td>
<td>BB1</td>
</tr>
<tr>
<td>QAMA2</td>
<td>QS1</td>
</tr>
<tr>
<td>QAMA3</td>
<td>BB2</td>
</tr>
<tr>
<td>QAMA4</td>
<td>QS2</td>
</tr>
<tr>
<td>17:00 – 17:45</td>
<td>Café e Discussão de Painéis S1 (QAMA)</td>
</tr>
<tr>
<td>17:45 – 19:00</td>
<td>Comunicações Orais S2</td>
</tr>
<tr>
<td></td>
<td>Sala Bragança</td>
</tr>
<tr>
<td>QAMB1</td>
<td>CAT1</td>
</tr>
<tr>
<td>QAMB2</td>
<td>CAT2</td>
</tr>
<tr>
<td>QAMB3</td>
<td>CAT3</td>
</tr>
<tr>
<td>QAMB4</td>
<td>CAT4</td>
</tr>
<tr>
<td>QAMB5</td>
<td>CAT5</td>
</tr>
<tr>
<td>19:30</td>
<td>Recepção de São Martinho</td>
</tr>
</tbody>
</table>

V
<table>
<thead>
<tr>
<th></th>
<th>Sala Bragança</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 10:00</td>
<td>Lição Plenária 3</td>
<td>João F. Mano</td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S3</td>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
</tr>
<tr>
<td>QS3</td>
<td>QAMA5</td>
<td>QAMB6</td>
<td></td>
</tr>
<tr>
<td>QS4</td>
<td>QAMA6</td>
<td>QAMB7</td>
<td></td>
</tr>
<tr>
<td>QS5</td>
<td>QAMA7</td>
<td>QAMB8</td>
<td></td>
</tr>
<tr>
<td>QS6</td>
<td>QAMA8</td>
<td>QAMB9</td>
<td></td>
</tr>
<tr>
<td>10:00 – 11:00</td>
<td>Café e Discussão de Painéis S2</td>
<td>(EEQ, QP, QAMB, QS)</td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S4</td>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
</tr>
<tr>
<td>QF1</td>
<td>QAMA9</td>
<td>NN1</td>
<td></td>
</tr>
<tr>
<td>QIE1</td>
<td>QAMA10</td>
<td>NN2</td>
<td></td>
</tr>
<tr>
<td>QF2</td>
<td>QAMA11</td>
<td>NN3</td>
<td></td>
</tr>
<tr>
<td>QF3</td>
<td>QAMA12</td>
<td>NN4</td>
<td></td>
</tr>
<tr>
<td>QF4</td>
<td>QAMA13</td>
<td>NN5</td>
<td></td>
</tr>
<tr>
<td>QIE2</td>
<td>QAMA14</td>
<td>NN6</td>
<td></td>
</tr>
<tr>
<td>11:00 – 11:45</td>
<td>Pausa para almoço</td>
<td>(livre)</td>
<td></td>
</tr>
<tr>
<td>11:45 – 13:15</td>
<td>Sala Bragança</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lição Plenária 4</td>
<td>Diego Moldes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S5</td>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
</tr>
<tr>
<td>QV5</td>
<td>QO1</td>
<td>QAMA15</td>
<td></td>
</tr>
<tr>
<td>QV6</td>
<td>QO2</td>
<td>QAMA16</td>
<td></td>
</tr>
<tr>
<td>QV7</td>
<td>QO3</td>
<td>QAMA17</td>
<td></td>
</tr>
<tr>
<td>QA1</td>
<td>QO4</td>
<td>QAMA18</td>
<td></td>
</tr>
<tr>
<td>17:15 – 18:00</td>
<td>Café e Discussão de Painéis S3</td>
<td>(CAT, NN, QIE, Qi, QO, QV)</td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S6</td>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
</tr>
<tr>
<td>CAT6</td>
<td>QA2</td>
<td>Qi1</td>
<td></td>
</tr>
<tr>
<td>CAT7</td>
<td>QA3</td>
<td>QO5</td>
<td></td>
</tr>
<tr>
<td>CAT8</td>
<td>QA4</td>
<td>QO6</td>
<td></td>
</tr>
<tr>
<td>CAT9</td>
<td>QA5</td>
<td>Qi2</td>
<td></td>
</tr>
<tr>
<td>18:00 – 19:00</td>
<td>Jantar do Encontro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 de novembro (sexta-feira)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30 – 10:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sala Bragança</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lição Plenária 5 - João G. Crespo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
<td></td>
</tr>
<tr>
<td>QF5</td>
<td>QAMA19</td>
<td>QV8</td>
<td></td>
</tr>
<tr>
<td>QF6</td>
<td>QAMA20</td>
<td>QV9</td>
<td></td>
</tr>
<tr>
<td>QF7</td>
<td>QAMA21</td>
<td>QV10</td>
<td></td>
</tr>
<tr>
<td>QIE3</td>
<td>QAMA22</td>
<td>QV11</td>
<td></td>
</tr>
<tr>
<td>10:30 – 11:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café e Discussão de Painéis S4 (BB, QA, QF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
<td></td>
</tr>
<tr>
<td>QAM23</td>
<td>QAM810</td>
<td>BB3</td>
<td></td>
</tr>
<tr>
<td>QAM24</td>
<td>QAM811</td>
<td>Q7</td>
<td></td>
</tr>
<tr>
<td>QAM825</td>
<td>QAM812</td>
<td>BB4</td>
<td></td>
</tr>
<tr>
<td>QAM26</td>
<td>QAM813</td>
<td>BB5</td>
<td></td>
</tr>
<tr>
<td>11:30 – 12:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pausa para almoço (livre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
<td></td>
</tr>
<tr>
<td>QAM27</td>
<td>Q58</td>
<td>QF8</td>
<td></td>
</tr>
<tr>
<td>QAM28</td>
<td>BB6</td>
<td>QIE4</td>
<td></td>
</tr>
<tr>
<td>QAM29</td>
<td>Q9</td>
<td>QF9</td>
<td></td>
</tr>
<tr>
<td>QAM30</td>
<td>BB7</td>
<td>QIE5</td>
<td></td>
</tr>
<tr>
<td>15:15 – 16:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicações Orais S10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sala Bragança</td>
<td>Sala Porto</td>
<td>Sala Vigo</td>
<td></td>
</tr>
<tr>
<td>QAM31</td>
<td>QIE6</td>
<td>QA6</td>
<td></td>
</tr>
<tr>
<td>QAM32</td>
<td>QIE7</td>
<td>QA7</td>
<td></td>
</tr>
<tr>
<td>QAM33</td>
<td>QIE8</td>
<td>QA8</td>
<td></td>
</tr>
<tr>
<td>QAM34</td>
<td>QIE9</td>
<td>QA9</td>
<td></td>
</tr>
<tr>
<td>16:45 – 17:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sessão de Encerramento</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Development of amino resin with flexible performance

A. Antunes¹, J. Pereira², N. T. Paiva¹, J. M. Ferra¹, J. Martins³,⁵, L. Carvalho³,⁵, A. Barros-Timmons⁴, F. D. Magalhães⁵

¹EuroResinas – Indústrias Químicas, 7520-195, Sines, Portugal
²Associação Rede de Competências em Polímeros, Rua Dr. Júlio de Matos 828/829, Porto, Portugal
³DEMAd-Departamento da Engenharia de Madeiras, Campus Politécnico de Repeses 3504-510, Viseu, Portugal
⁴CICECO- Aveiro Institute of Materials and Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
⁵LEPABE-Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465, Porto, Portugal

*ana.antunes@santearauco.com

Amino-formaldehyde resins are thermosetting polymers. They are divided into three main types: urea formaldehyde (UF), melamine formaldehyde (MF) and melamine urea formaldehyde (MUF). These resins are characterized, after cure, by high crosslink density, high stiffness and high tensile strength [1]. However, this stiffness may be undesirable when a final product with some flexibility is desired.

Cork agglomerates are cork-based products that can be used for surfacing, flooring and insulation purposes. They are composed of cork granules with variable dimensions, bound together by rubber, polyurethane adhesive or MUF resin [2]. Cork agglomerates can be sold as flat panels or as a rolled panels (so called “cork roll”). MUF resins cannot be used for the latter form, since its stiffness causes the material to crack when flexed.

The aim of this work is to develop an amino resin with high flexibility, enough to allow its use in cork roll production. Good adhesive properties, hydrolysis resistance and low formaldehyde emissions are also key features. The strategy adopted to address this challenge consists in the modification of the MUF resin with the incorporation of long linear chain compounds that act as flexible segments in the MUF structure. Glycols with different molecular weights were used for this purpose.

The results show different performance for glycols with different molecular weights. Namely, the adhesive properties decrease with increasing molecular weight. The glycol with molecular weight of 200 g/mol yielded a promising formaldehyde-based flexible adhesive polymer.

Acknowledgements

The author thanks to: ENGIQ – Doctoral Programme in Refining, Petrochemical and Chemical Engineering (PDERPC); FCT and EuroResinas – Indústrias Químicas for the PhD grant PD/BD/113544/2015. This work was financially supported by: Project POCI-01-0145-FEDER-020596 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI)) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia; the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement and 2GAR project under PT2020.

References

Preparation of amino resins and their impact on the production of wood-based panels

C. Gonçalves¹, J. Pereira¹, N. T. Paiva³, J. M. Ferra³, J. Martins¹, F. Magalhães¹, A. Barros-Timmons⁵, L. Carvalho¹,⁴
¹LEPABE - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
²Associação Rede de Competência em Polímeros, Rua Dr. Júlio de Matos 828/882, Porto, Portugal
³EuroResinas – Indústrias Químicas SA, 7520-195, Sines, Portugal
⁴DEMAD - Departamento da Engenharia de Madeiras, Campus Politécnico de Repeses, 3504-510 Viseu, Portugal
⁵CICECO - Aveiro Institute of Materials and Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
*carolina.goncalves@sonaearuco.com

In the last decades, the industry of wood products is going through a great evolution thanks to companies like Sonae Arauco, which focus has been on developing more and better wood-based products. In 2015 Portugal produced 1 million and three hundred thousand m³ and exported 278 million euros of wood-based panels [1]. Among these products, the best known are the commercially available particleboard (PB), medium density fibreboard (MDF), oriented strand board (OSB) and plywood (PW). For all these types of panels the use of a synthetic adhesive is required. Among the wide range of adhesives/resins employed in the wood industry, the most important are the amino resins which include urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins and melamine-urea-formaldehyde (MUF) resins.

The aim of this work is to optimize the amino resins (UF and MUF) synthesis process by assessing the impact on the final characteristics of wood-based panels (PB and MDF). To understand how the operating conditions influence the final product properties, different tests will be performed. Tools for design of experiments (DoE) will be used for planning experiments and data processing. The purpose is to correlate the conditions of the laboratorial reactor and the main properties of resins (molecular weight distribution, degree of branching, condensing structures and reactivity) and thereafter with some of the final product properties (physical-mechanical performance and formaldehyde emissions). In a second step, using the most promising formulations, other factors related to the sizing process (wood moisture content, resin content) and pressing (temperature, pressing cycle) will also be considered.

At an early stage, different variables related to resins synthesis were studied, trying to better understand their impact on wood-based panels properties, in particular particleboards. In an initial approach, an industrial UF resin was synthesized at different values of pH, temperature, and final viscosity. The resins were characterized using empirical quality control methods and advanced physicochemical characterization techniques. The panels produced were characterized using standard tests. The results are being analysed using the JMP Statistical Software.

Acknowledgements
The author thanks to: ENCIG – Doctoral Programme in Refining, Petrochemical and Chemical Engineering (PDERPQ); FCT and EuroResinas – Indústrias Químicas for the PhD grant PDRPQ/174352/2016. This work was financially supported by: Project POCI-01-0145-FEDER-006936 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI)) – and by national funds through FCT – Fundação para a Ciência e a Tecnologia; the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/ICTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement and 2GAR project under PT2020.

References
Greener urea-formaldehyde resins for the production of particleboards

A. M. Ferreira1,*, F. D. Magalhães1, J. Ferra2, J. Martins1,3, L. H. Carvalho1,3, N. Paiva2
1Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2Euroresinas – Industrias Quimicas S.A., Plataforma Industrial De Sines, 7520-064 Sines, Portugal
3DEMAd- Departamento de Engenharia de Madeiras, Instituto Politécnico de Viseu, Campo Politécnico de Repeses, 3504-510 Viseu, Portugal
*am@fe.up.pt

Urea-formaldehyde resins (UF) are the most used adhesives for the production of wood based panels [1]. Their high reactivity, good binding strength and low cost are the main reasons for their heavy use [2]. However, this type of resin presents some problems due to the emissions of formaldehyde, as it is a chemical compound classified as a human carcinogen [3] and also, because it is obtained from fossil fuels.

There are increasing concerns about the environment, and the populations health, which creates a strong demand for eco-friendly products, such as natural wood adhesives.

The goals of the research project, is to develop a greener urea-formaldehyde resin for the production of particleboards, with the incorporation of at least 30% of a natural compound. In a first approach to accomplish this goal, the incorporation of lignin in the UF resin was envisaged. Lignin is the principal byproduct of the pulp industry. In order to increase lignin reactivity, it was first hydroxymethylated. It is expected that the added reactive hydroxyl groups allow its incorporation in the urea-formaldehyde polymer.

So far, it was possible to incorporate 20% of hydroxymethylated lignin, percentage by mass, in the urea-formaldehyde adhesive.

Three-layer particleboards, 16 mm thick, were manufactured with this adhesive (amount of solid resin 6.5, in the face, and 6.1, in the core layers, based on the weight of the oven-dried particles). Boards were pressed in a laboratory hot-press controlled by computer at 190 °C and at several pressing times, from 3 to 6 min, and then tested for several physical-mechanical properties. They presented an internal bond strength in the range of 0.44-0.50 N.mm⁻² which are above the requirements of the standard EN 312 for standard particleboards type P2 (0.35 N.mm⁻²).

Finally, the future work will focus on a stepwise increase of the lignin content in the UF resin; optimization of the hydroxymethylation process; and reconsider lignin, on its own, as an adhesive for particleboards.

References