The effect of light supply on microalgal growth, CO₂ uptake and nutrient removal from wastewater

A.L. Gonçalves, M. Simões, J.C.M. Pires*

LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.

*Corresponding author

Telephone: +351 22 508 2262

Fax: +351 22 508 1449

E-mail address: jcpires@fe.up.pt
Abstract

Microalgal based biofuels have been reported as an attractive alternative for fossil fuels, since they constitute a renewable energy source that reduces greenhouse gas emissions to the atmosphere. However, producing biofuels from microalgae is still not economically viable. Therefore, the integration of biofuel production with other microalgal applications, such as CO$_2$ capture and nutrient removal from wastewaters, would reduce the microalgal production costs (and the environmental impact of cultures), increasing the economic viability of the whole process. Additionally, producing biofuels from microalgae strongly depends on microalgal strain and culture conditions.

This study evaluates the effect of culture conditions, namely light irradiance (36, 60, 120 and 180 µE m$^{-2}$ s$^{-1}$) and light:dark ratio (10:14, 14:10 and 24:0), on microalgal growth, atmospheric CO$_2$ uptake and nutrient (nitrogen and phosphorous) removal from culture medium. Four different microalgal strains, *Chlorella vulgaris*, *Pseudokirchneriella subcapitata*, *Synechocystis salina* and *Microcystis aeruginosa*, were studied to ascertain the most advantageous regarding the referred applications.

This study has shown that higher light irradiance values and light periods resulted in higher specific growth rates and CO$_2$ uptake rates. *C. vulgaris* presented the highest specific growth rate and CO$_2$ uptake rate: 1.190 ± 0.041 d$^{-1}$ and 0.471 ± 0.047 g$_{\text{CO}_2}$ L$^{-1}$ d$^{-1}$, respectively. All the strains have shown high nitrogen removal efficiencies, reaching 100% removal percentages in cultures with higher light supply. Phosphorus removal increased with light irradiance and with light:dark ratio. The highest removal efficiency, 67.6 ± 7.1%, was achieved by the microalga *C. vulgaris*.

Keywords: Atmospheric CO$_2$ capture; light:dark ratio; light irradiance; microalgal based biofuels; nitrogen and phosphorus uptake.
1. Introduction

The increase of atmospheric CO$_2$ concentration (40% since the industrial revolution), mainly due to fossil fuel combustion, represents one of the most important concerns regarding worldwide sustainability [1-3]. This phenomenon has been associated to climate change, verified by the following observations: (i) atmosphere and ocean have warmed; (ii) the extents of snow and ice have decreased (Greenland and Antarctic ice sheets have been losing mass); and (iii) sea level has risen (an average of 0.19 m since the beginning of the twentieth century) [4, 5]. In addition, the ocean has absorbed about 30% of the CO$_2$ emissions, causing its acidification. Therefore, the world economies should reduce their carbon intensities. Energy and transportation sector represent the major fraction of CO$_2$ emissions [6]. Thus, the use of lower-carbon fuels may have a strong impact on carbon intensity of the economies. Biofuels are an example of clean energy (if produced in a sustainable manner) that can reduce transportation related emissions, promoting simultaneously economy and energy security by reducing the oil dependence of a country.

In this context, microalgae have attracted the attention of the scientific community due to the ability of CO$_2$ capture and biofuel production. These microorganisms can convert CO$_2$ into biomass through photosynthesis with an efficiency several times higher than terrestrial plants [7-11]. This biomass can be used to produce biodiesel, biohydrogen or biomethane. Thus, biofuel produced from microalgae can present net carbon emissions near zero or even negative [12-14]. Consequently, microalgal production may provide a solution for stabilizing the atmospheric CO$_2$ concentration. However, microalgal cultivation still presents high process costs. Moreover, it requires large amounts of water and nutrients, which is the reason to be considered a process with high environmental impact [15]. To overcome these disadvantages, microalgal production can be coupled
with wastewater treatment. In a study conducted by Lundquist [16], it was concluded that the production of microalgal biofuels is only economically viable when using wastewater as culture medium. The authors performed a techno-economic analysis of biofuel production by microalgae using five case-studies: two of them emphasized wastewater treatment and the others were focused on biofuel production. In this report, the overall production cost of oil and biogas was significantly reduced through the revenues generated from wastewater treatment: oil production cost decreased from $332 bbl\(^{-1}\) to $28 bbl\(^{-1}\), whereas biogas production costs decreased from $0.72 kWh\(^{-1}\) to $0.17 kWh\(^{-1}\).

According to this report, an integrated system combining biomass production with CO\(_2\) capture and wastewater treatment, aiming to produce biofuels and bioenergy, through anaerobic digestion of resulting biomass seems to be a promising alternative to produce microalgal biofuels in a cost-effective way. Microalgae can then be cultivated in low quality water, such as agriculture runoff or municipal, industrial or agricultural wastewaters, decreasing the requirements for freshwater and nutrients (nitrogen, phosphorus and minor nutrients) and, at the end of the process, a clean effluent may be achieved to discharge in a watercourse [17, 18].

A critical factor to autotrophic growth of microalgae is related to light supply [19, 20]. It is known that in a photosynthetic system, the fixation of one molecule of carbon dioxide requires 8 photons of photosynthetically active radiation (approximately 48% of the incident solar light) [19]. However, high photon flux densities can cause photodamage, reducing photosynthetic efficiency. In this context, the selected light:dark ratio may have an important role in microalgal production, as microalgal cells are able to repair the photo-induced damage during the dark period [21]. Therefore, this study aims to evaluate the effect of light supply (irradiance and light:dark ratio) on the growth of *Chlorella vulgaris*, *Pseudokirchneriella subcapitata*, *Synechocystis salina* and *Microcystis aeruginosa*,...
taking into account: (i) specific growth rate; (ii) biomass productivities; (iii) CO₂ fixation rate; and (iv) nitrogen and phosphorus uptake.

2. Materials and methods

2.1. Microorganisms and culture medium

The microalgae *Chlorella vulgaris* CCAP 211/11B and *Pseudokirchneriella subcapitata* CCAP 278/4 were obtained from Culture Collection of Algae and Protozoa (United Kingdom), while the cyanobacteria *Synechocystis salina* LEGE 06079 and *Microcystis aeruginosa* LEGE 91344 were obtained from the Laboratory of Ecotoxicology, Genomic and Evolution – CIIMAR (Centre of Marine and Environmental Research of the University of Porto, Portugal). Stock solutions of these microorganisms were prepared in OECD (Organisation for Economic Co-operation and Development) test medium [22], with the following composition (per litre): 15 mg NaNO₃, 12 mg MgCl₂·6H₂O, 18 mg CaCl₂·2H₂O, 15 mg MgSO₄·7H₂O, 1.6 mg KH₂PO₄, 0.08 mg FeCl₃·6H₂O, 0.1 mg Na₂EDTA·2H₂O, 0.185 mg H₃BO₃, 0.415 mg MnCl₂·4H₂O, 3 µg ZnCl₂, 1.5 µg CoCl₂·6H₂O, 0.01 µg CuCl₂·2H₂O, 7 µg Na₂MoO₄·2H₂O, and 50 mg NaHCO₃. The cells were incubated in 500-mL flasks at room temperature, under continuous fluorescent light with an irradiance of 120 µE m⁻² s⁻¹ at the surface of the flasks. Agitation was obtained by bubbling atmospheric air (filtered through a 0.22-µm cellulose acetate membranes, Orange Scientific, Belgium) in the bottom of the flasks.

2.2. Experimental setup and cultivation conditions

Batch experiments were performed in 500-mL flasks (VWR, Portugal) with a working volume of 400 mL. As the growth medium described above presents a very low concentration of nitrogen and phosphorus, concentrations of these elements were...
increased to simulate the concentrations commonly present in a domestic effluent.
Therefore, cells were cultivated for 12 days in the culture medium described above, but with the following concentrations of NaNO$_3$ and KH$_2$PO$_4$, respectively: 250 mg L$^{-1}$ and 45 mg L$^{-1}$ [23]. In this study, nitrate was used as nitrogen source because this is the most thermodynamically stable form of inorganic nitrogen [24] and also to avoid nitrogen losses due to volatilisation, which is very common when using ammonia as nitrogen source [25]. The experimental conditions were the following: (i) initial biomass concentration of 0.05-0.08 g$_{dw}$ L$^{-1}$ (dry weight); (ii) initial pH was set at 7; (iii) room temperature (approximately 24.0 ± 1.0°C); and (iv) continuous aeration with the injection of atmospheric air (filtered through a 0.22-µm cellulose acetate membranes, Orange Scientific, Belgium) in the bottom of the flasks. The assays were carried out under different light irradiance values: 36, 60, 120 and 180 µE m$^{-2}$ s$^{-1}$. Several research studies have applied similar light irradiance values for microalgal growth [26-28]. For each irradiance value, different light cycles were evaluated: 10:14, 14:10, and 24:0 (light:dark ratio). The light:dark ratio of 24:0 was used because it promotes continuous photoautotrophic growth. To reduce production costs in terms of light requirements, the light:dark ratios of 10:14 and 14:10 were applied to simulate the number of light hours during winter and summer time, respectively. All the experiments were performed in duplicates.

2.3. Growth monitoring

Duplicate samples were collected at 24-h intervals and biomass concentration was determined by measuring optical density at 750 nm, OD$_{750}$ [29], using a V-1200 spectrophotometer (VWR, Portugal). The relationship between OD$_{750}$ and cell dry weight (X, g$_{dw}$ L$^{-1}$) for all microorganisms was established by linear regression, as it is shown in Table 1.
2.4. Kinetic growth parameters

Cell concentration values were used to determine specific growth rate (\(\mu, \text{d}^{-1} \)), maximum biomass productivity (\(P_{\text{max}}, \text{g}_{\text{dw}} \text{L}^{-1} \text{d}^{-1} \)) and \(\text{CO}_2 \) fixation rate (\(R_C, \text{g}_{\text{CO}_2} \text{L}^{-1} \text{d}^{-1} \)). Specific growth rates were determined according to Equation 1 [30]:

\[
\mu = \frac{\ln X_f - \ln X_i}{t_f - t_i}
\]

(1)

where \(X_f \) and \(X_i \) correspond respectively to cell concentration in the end and in the beginning of exponential growth phase and \(t_f \) and \(t_i \) correspond to the end and beginning of the same growth phase. Biomass productivities were calculated from the variation in biomass concentration within a cultivation time, as shown in Equation 2 [30, 31]:

\[
P = \frac{X_1 - X_0}{t_1 - t_0}
\]

(2)

where \(X_1 \) and \(X_0 \) correspond to cell concentration in days \(t_1 \) and \(t_0 \), respectively. Finally, \(\text{CO}_2 \) fixation rates (\(R_C \)) were calculated based on the relationship between microalgal carbon content (\(C_C \)) and biomass productivities [31], as represented in Equation 3:

\[
R_C = C_C \cdot P \cdot \frac{M_{\text{CO}_2}}{M_C}
\]

(3)

Considering the typical molecular formula of microalgal biomass, \(\text{CO}_{0.48}\text{H}_{1.83}\text{N}_{0.11}\text{P}_{0.01} \), each gram of microalgal biomass is equivalent to about 1.88 g of captured \(\text{CO}_2 \) [8, 31, 32].

2.5. Nutrients removal
Nutrient removal was determined by quantification of nitrogen and phosphorus in the culture medium. For each analytical assay, one-millilitre samples from each culture were collected in the first and last day of culturing. Samples were centrifuged at 16500 g for 10 min and supernatants were stored at -20 °C until being analysed. Nitrate concentration was then determined through UV spectroscopy at 220 nm using a T80 UV/VIS Spectrophotometer (PG Instruments, UK), according to the method proposed by Collos et al. [33]. On the other hand, inorganic phosphate quantification was performed by measuring absorbance at 820 nm of a phosphomolybdate complex formed by reaction of inorganic phosphate with ammonium molybdate in a Synergy™ HT 96-well microplate reader (Biotek Instruments, Inc., USA), as proposed by Lee et al. [34].

2.6. Statistical analysis

For each parameter, the average and the standard deviation were calculated. The statistical significance of the results was evaluated using the Student’s paired t-test to investigate whether the differences between the different conditions studied could be considered significant. This analysis was performed using the statistical software SPSS 17.0 (SPSS Inc., Chicago, IL, USA). Additionally, the influence of algal stain, light:dark ratio and irradiance, as well as a combination of these factors, in the different parameters studied was evaluated through 3-way-ANOVA using Matlab R2013a. All statistical tests were carried out at a significance level of 0.05.

3. Results and Discussion

Although the production of biofuels from microalgae may be an alternative for non-renewable fossil fuel reserves, this process is still not viable due to the high associated production costs. Therefore, selection of an adequate algal strain and respective culture conditions is an important step towards the achievement of high density cultures.
Furthermore, to reduce biofuel production costs, this process should be coupled with other practices, such as CO$_2$ uptake and nutrient removal from wastewaters [35]. The use of CO$_2$ from flue gas emissions, as well as wastewaters will significantly decrease the costs associated to CO$_2$ supply and the requirements for freshwater. Additionally, bioremediation of wastewaters and CO$_2$ uptake will result in some income, increasing the cost-effectiveness of the process. Four different algal strains were studied in terms of biomass productivity, CO$_2$ uptake and nutrient removal (nitrogen and phosphorus) from culture medium. Different light irradiance values and different light:dark ratios were applied, aiming to infer about which strain and respective culture conditions promote higher biomass productivities, while contributing for high CO$_2$ uptake rates and nutrient removal.

3.1. Influence of light supply on microalgal growth

Phototrophic cultivation of microalgae strongly depends on light energy. The growth of different microalgal strains under different light irradiance values and with different light cycles has shown that these factors have a great influence on kinetic growth parameters. Figure 1 shows the evolution of specific growth rates (A) and biomass productivities (B) with increasing light irradiance values and with increasing light cycles for each of the studied strains.

[Figure 1]

Values obtained for specific growth rates have shown a minimum of 0.214 ± 0.030 d$^{-1}$ for *S. salina* grown under an irradiance of 36 µE m$^{-2}$ s$^{-1}$ and a light:dark ratio of 10:14, which was not statistically different ($p = 0.438$) from the microalga *P. subcapitata* grown in the same conditions. Maximum values of 1.190 ± 0.041 d$^{-1}$ were achieved by *C. vulgaris* grown under an irradiance of 180 µE m$^{-2}$ s$^{-1}$ and a 24-h light period, which was not
statistically different from the value obtained for the microalga \textit{P. subcapitata} ($p = 0.078$) and the cyanobacterium \textit{S. salina} ($p = 0.096$). Similar specific growth rate values between the microalgae \textit{C. vulgaris} and \textit{P. subcapitata} were previously reported in the study performed by Pires et al. [36]. Comparing the effect of light irradiance and light:dark ratio on specific growth rates, Figure 1 shows that an increase in light irradiance and in time of light exposure contributes to higher specific growth rates in all studied algal strains. Apart from a few exceptions, a statistically significant ($p < 0.05$) increase in specific growth rate was observed for higher light irradiance values and higher light periods. These results are consistent with previous studies that reported positive correlation between growth rates and light irradiance and period for different microalgae [37, 38].

Regarding biomass productivities (Figure 1, B), a similar behaviour was observed. In general, higher light irradiance levels and higher light periods led to an increase in maximum biomass productivities. The lowest maximum biomass productivity, $0.022 \pm 0.002 \text{ g}_{\text{dw}} \text{ L}^{-1} \text{ d}^{-1}$, was achieved for the microalga \textit{P. subcapitata} under the lowest light supply (both irradiance and light:dark ratio). On the other hand, the highest biomass productivity value, $0.133 \pm 0.013 \text{ g}_{\text{dw}} \text{ L}^{-1} \text{ d}^{-1}$, was achieved by the microalga \textit{C. vulgaris} grown with a light irradiance of 180 μE m$^{-2}$ s$^{-1}$ and a light:dark ratio of 24:0. The cyanobacteria \textit{S. salina} and \textit{M. aeruginosa} showed a similar behaviour in terms of biomass productivity. The highest values achieved were 0.108 ± 0.005 and $0.107 \pm 0.005 \text{ g}_{\text{dw}} \text{ L}^{-1} \text{ d}^{-1}$ for \textit{S. salina} and \textit{M. aeruginosa}, respectively, under the highest light irradiance value and with continuous light supply. These values were statistically higher than the highest biomass productivity achieved by the microalga \textit{P. subcapitata}: $0.075 \pm 0.003 \text{ g}_{\text{dw}} \text{ L}^{-1} \text{ d}^{-1}$ ($p < 0.05$). The increase in light irradiance and in light exposure time also favoured maximum biomass concentrations. The highest value of maximum biomass concentration, $1.346 \pm 0.132 \text{ g}_{\text{dw}} \text{ L}^{-1}$, was achieved for the microalga \textit{C. vulgaris} under
an irradiance value of 180 µE m$^{-2}$ s$^{-1}$ and a 24-h light period (data not shown). Statistically lower values, 0.798 ± 0.036 g$_{dw}$ L$^{-1}$ ($p = 0.002$), were obtained for the microalga P. subcapitata grown under the same conditions. Maximum biomass concentrations of 1.259 ± 0.057 and 1.174 ± 0.057 g$_{dw}$ L$^{-1}$ were achieved by the cyanobacteria S. salina and M. aeruginosa when grown in the same light conditions. However, these values were not statistically different from those achieved by the microalga C. vulgaris ($p > 0.05$).

These results suggest that all the studied microorganisms behave similarly when light irradiance and time of exposure is increased. However, the lowest productivity values achieved for the microalga P. subcapitata, indicate that this algal strain may not be applied when the aim is to maximize the biomass productivity, under atmospheric CO$_2$ concentrations.

3.2. Carbon dioxide uptake rate

Information about the average composition of microalgal biomass, as well as biomass productivities can be used to determine carbon dioxide uptake rate, assuming that all the CO$_2$ assimilated was converted into biomass. Figure 2 shows CO$_2$ uptake rates determined through an average composition of microalgal biomass and the biomass productivities achieved in the different conditions studied, emphasizing the effect of light irradiance and light:dark ratio on this parameter.

[Figure 2]

For all microalgal strains, an increase in light irradiance resulted in an increase in CO$_2$ uptake rate. An increase in biomass productivities and in CO$_2$ uptake rates with increasing light irradiance has already been described [39, 40]. In fact, at light irradiance values below the light saturation point, photosynthetic rate is directly proportionally to light irradiance, resulting in an increase in biomass productivities and in CO$_2$ uptake. For
irradiance values above the light saturation point, a photooxidation process occurs, damaging the photosystems and inhibiting photosynthesis and microalgal growth [41, 42]. Likewise, an increase in time of exposure to light, resulted in an increase in CO$_2$ uptake rates. Similar results were observed in the studies performed by Jacob-Lopes et al. [31] and Pires et al. [36]. A maximum value of 0.471 ± 0.047 g$_{CO_2}$ L$^{-1}$ d$^{-1}$ was obtained for *C. vulgaris* grown with a light irradiance of 180 µE m$^{-2}$ s$^{-1}$ and with a light:dark ratio of 24:0. Similar CO$_2$ uptake rates are expected for both cyanobacteria studied in the same, considering that no statistically differences were observed on biomass productivities achieved by these microorganisms under the same light conditions. However, maximum CO$_2$ uptake rate observed for *P. subcapitata*, in the same culture conditions, was 0.264 ± 0.012 g$_{CO_2}$ L$^{-1}$ d$^{-1}$.

These results have shown that microalgal culturing can be effective in CO$_2$ capture from the atmosphere, which may reduce costs associated to CO$_2$ supply. Apart from the microalga *P. subcapitata*, all studied microalgal strains seem to be effective in CO$_2$ capture due to their high biomass productivities, being promising alternatives for large scale production.

3.3. Nutrient removal

EU legislation imposes limits for nutrient concentrations in discharged effluents and imposes minimum percentage load reductions [43, 44]. Taking into account the definition of population equivalent (PE), the limits for effluent discharge are: (i) 25 mg$_{O_2}$ L$^{-1}$ for BOD$_5$ with a minimum percentage of reduction of 70-90%; (ii) 15 mg L$^{-1}$ (10 to 100 thousand PE) or 10 mg L$^{-1}$ (more than 100 thousand PE) for total nitrogen with a minimum percentage of reduction of 70-80%; and (iii) 2 mg L$^{-1}$ (10 to 100 thousand PE) or 1 mg L$^{-1}$ (more than 100 thousand PE) for total phosphorus with a minimum percentage
of reduction of 80%. In this study, nitrogen and phosphorus concentrations were
determined for the first and last day of culturing, to evaluate the percentages of reduction
of these nutrients under the studied conditions. An average of nutrient removal rate, as
well as reduction percentages, are presented in Table 2. Microalgae are known for their
high nutrient removal efficiencies, since they require high amounts of nitrogen and
phosphorus for proteins, which account for 40-60% of cell dry weight, nucleic acids and
phospholipids synthesis [45].

[Table 2]

Concerning nitrogen removal, when the lowest irradiance values and the lowest light
period were applied (36 and 60 µE m$^{-2}$ s$^{-1}$, 10:14), all microalgal strains showed reduction
percentages lower than the values established by EU legislation: reduction percentages in
these conditions were not higher than 66.4% (daily removal rate of approximately
11.25±0.08 mg N L$^{-1}$ d$^{-1}$). However, when higher light irradiance values and higher
light:dark ratios were applied, percentages of reduction higher than 70% were obtained
for all cultures except for the microalga *P. subcapitata* when cultured under the following
conditions: 180 µE m$^{-2}$ s$^{-1}$, 10:14 and 60 µE m$^{-2}$ s$^{-1}$, 14:10. Additionally, for the light:dark
ratio of 24:0, all microalgal strains showed a reduction percentage of about 100%. The
same result was observed for all microorganisms when grown under a 14:10 light:dark
ratio and light irradiances of 120 and 180 µE m$^{-2}$ s$^{-1}$. These results show that higher light
irradiance values and higher light periods favour nitrogen removal and that, in general,
all studied microalgal strains can be effectively applied in nitrogen removal. High
nitrogen removal percentages have been described in different studies. In the study
performed by Xin et al. [46], the microalga *Scenedesmus* sp. was able to remove 90.4%
of nitrate after 13 days of cultivation with an initial nitrate concentration of 10 mg L$^{-1}$, a
light irradiance of 25 µE m$^{-2}$ s$^{-1}$ and a light:dark ratio of 14:10. A nitrogen removal
efficiency of 82.70% was obtained for the microalga *Chlorella zofingiensis* when cultured in a piggery effluent (with a nitrogen concentration of 148 mg L\(^{-1}\)) under a constant light irradiance of 230 µE m\(^2\) s\(^{-1}\) [47]. Regarding phosphorus uptake, removal efficiencies were far from satisfactory, as the minimum percentage of reduction established by EU legislation, 80%, was not achieved. However, it is possible to state that increasing light irradiance values and increasing time of exposure to light results in higher phosphorus removal rates. In this study, all microalgal strains showed a similar behaviour in terms of phosphorus uptake. However, the highest phosphorus removal, 67.6 ± 7.1% (2.67±0.13 mg P L\(^{-1}\) d\(^{-1}\)), was achieved by the microalga *C. vulgaris* when cultured under continuous light supply with an irradiance of 180 µE m\(^2\) s\(^{-1}\). This value was statistically different (\(p < 0.05\)) from the highest removal efficiencies achieved by the other microalgal strains studied. Phosphorus removal efficiencies obtained in this study were lower than those referred in the literature. Phosphorus removal percentages close to 100% were obtained for the microalgae *Scenedesmus* sp. and *C. zofingiensis* in the studies performed by Xin et al. [46] and Zhu et al. [47], respectively. The effect of light irradiance on nitrogen and phosphorus removal was described by Silva-Benavides and Torzillo [45]: an increase in light irradiance from 20 to 60 µE m\(^2\) s\(^{-1}\) resulted in a more efficient removal of both nutrients in batch cultures of the microalga *C. vulgaris* and the cyanobacterium *Planktothrix isothrix*. These results are in accordance with the results obtained in this study.

The discrepancy between nitrogen and phosphorus removal efficiencies obtained in this study suggests a nitrogen-limitation to microalgal growth in the cases of higher reduction percentages. According to the study performed by Bhola et al. [48], *C. vulgaris* reached its maximum concentration for nitrogen concentrations of 5 g L\(^{-1}\). In this study, nitrogen was supplied at a concentration of 250 mg L\(^{-1}\). As this value is lower than the one used in...
the referred study, nitrogen-limitation can be confirmed. Furthermore, nitrogen
limitations in wastewaters are very common, since low ratios between nitrogen and
phosphorus, about 5:1, suggest a limitation of this nutrient to microalgal growth. On the
other hand, ratios of about 30:1 suggest phosphorus limitation [49]. As the ratio between
these nutrients in this study was very close to 5:1, it is possible to state that nitrogen was
supplied in concentrations that limit microalgal growth. To confirm the hypothesis of
nitrogen-limitation, higher nitrogen concentrations should be supplied to microalgal
cultures. Additionally, to achieve higher phosphorus removal efficiencies, one should
consider the use of a consortium between the studied microorganisms. To study this
effect, the microorganisms should be cultured in the conditions that enhance their growth
and metabolic efficiency for CO\textsubscript{2} uptake and nutrient removal.

Nitrogen and phosphorus removal rate values were then used to determine microalgal
biomass composition in terms of N and P. Assuming that all the nitrogen and phosphorus
consumed were incorporated in microalgal biomass, the mass fraction (% m/m) of both
N and P in microalgal biomass for all the studied conditions was estimated. Average mass
fractions of N and P were 5.3 ± 1.3% and 0.7 ± 0.2%, respectively. These values are not
statistically different from the mass fractions of N and P observed in the typical molecular
formula used in this study: 6.6 and 1.3% for N and P, respectively [8].

3.4. Influence of algal strain and culturing conditions in the overall process

The effect of algal strain, light irradiance and light:dark ratio and the combined effect of
these variables on kinetic growth parameters and nutrient removal was evaluated through
3-way-ANOVA, as it is shown in Table 2. From Table 2, it is possible to state that kinetic
growth parameters, CO\textsubscript{2} uptake rate and nitrogen removal depend on microalgal strain,
light irradiance value and on light:dark ratio (p < 0.05). On the other hand, phosphorus
removal rates depend on light irradiance value and on light:dark ratio (p < 0.05), but are
not influenced by the microalgal strains used ($p > 0.05$). In fact, a similar response to different light irradiance and light period was observed for all microalgal strains in terms of phosphorus removal. The combined effect of microalgal strain and light irradiance has not a great impact on the parameters studied ($p > 0.05$). Microalgal strain and light:dark ratio strongly affect the kinetic growth parameters and the CO$_2$ uptake rate ($p < 0.05$), but their influence is not statistically significant in nutrient removal ($p > 0.05$). Finally, all the studied parameters, except phosphorus removal, depend on the combined effect of light irradiance and light:dark ratio ($p < 0.05$). This analysis confirms the importance of the growth conditions and microalgal strain when the aim is to obtain a high density culture with great ability to uptake CO$_2$ and efficiently remove nutrients, such as nitrogen and phosphorus.

[Table 3]

4. Conclusions

The effect of light irradiance, light:dark ratio and microalgal strains on microalgal growth, CO$_2$ capture and nitrogen and phosphorus uptake was assessed in this study, in order to obtain an integrated and sustainable biofuel production system. Higher light irradiance values and light periods resulted in higher specific growth rates and CO$_2$ uptake rates. Furthermore, results have shown that *C. vulgaris, S. salina* and *M. aeruginosa* presented the highest specific growth rates and CO$_2$ uptake rates. Regarding nitrogen removal efficiencies, all microalgal strains showed high removal efficiencies, close to 100%, especially when cultured under higher light irradiance values and higher light:dark ratios. Phosphorus removal increased with light irradiance and with light:dark ratio. The highest removal efficiency, $67.6 \pm 7.1\%$ was achieved by the microalga *C. vulgaris*. Therefore, it is possible to conclude that higher light irradiance values and light periods contribute to
higher cell densities, higher CO$_2$ uptake rates and higher nutrient removal efficiencies.

To overcome the low phosphorus removal efficiencies obtained, a consortium between the studied strains must be evaluated. This consortium can also increase lipid productivities, improving biofuel production from microalgae.

Acknowledgements

Ana L. Gonçalves and José C.M. Pires are grateful to Foundation for Science and Technology (FCT), POPH-QREN and FSE for their fellowships SFRH/BD/88799/2012 and SFRH/BPD/66721/2009, respectively. The authors also acknowledge CIIMAR (Centre of Marine and Environmental Research of the University of Porto), for providing the cyanobacteria *Synechocystis salina* LEGE 06079 and *Microcystis aeruginosa* LEGE 91344.
References

Figure 1. Effect of light irradiance and light:dark ratios on specific growth rates, μ, d^{-1}, (A) and maximum biomass productivities, P_{max}, g_{dw} L^{-1} d^{-1}, (B) of Chlorella vulgaris, Pseudokirchneriella subcapitata, Synechocystis salina and Microcystis aeruginosa. Values are presented as the mean±standard deviation of two independent experiments.
Figure 2. Effect of light irradiance and light:dark ratios on carbon dioxide uptake rates, R_c, gCO_2 L$^{-1}$ d$^{-1}$, of *Chlorella vulgaris*, *Pseudokirchneriella subcapitata*, *Synechocystis salina* and *Microcystis aeruginosa*. Values are presented as the mean±standard deviation of two independent experiments.

<table>
<thead>
<tr>
<th>Microalgal strain</th>
<th>$OD_{750} = mX$ (g$_{dw}$ L$^{-1}$)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorella vulgaris</td>
<td>$y = 1.796x + 0.043$</td>
<td>0.938</td>
</tr>
<tr>
<td>Pseudokirchneriella subcapitata</td>
<td>$y = 2.614x + 0.069$</td>
<td>0.955</td>
</tr>
<tr>
<td>Synechocystis salina</td>
<td>$y = 2.316x + 0.174$</td>
<td>0.968</td>
</tr>
<tr>
<td>Microcystis aeruginosa</td>
<td>$y = 2.083x + 0.025$</td>
<td>0.962</td>
</tr>
</tbody>
</table>
Table 2
Effect of light irradiance and light:dark ratios on nitrogen and phosphorus removal rates, in mg L⁻¹ d⁻¹ of Chlorella vulgaris, Pseudokirchneriella subcapitata, Synanochloris salina and Microcystis aeruginosa.

<table>
<thead>
<tr>
<th>Light:dark ratio</th>
<th>Light irradiance (µE m⁻² s⁻¹)</th>
<th>C. vulgaris</th>
<th>P. subcapitata</th>
<th>S. salina</th>
<th>M. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 10:14</td>
<td>36</td>
<td>6.79 ± 0.20</td>
<td>6.79 ± 1.57</td>
<td>7.94 ± 0.10</td>
<td>8.65 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>9.39 ± 0.20</td>
<td>8.97 ± 0.30</td>
<td>8.33 ± 0.51</td>
<td>46.93 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>12.73 ± 0.69</td>
<td>12.73 ± 0.10</td>
<td>14.04 ± 0.98</td>
<td>87.1 ± 0.49</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>15.07 ± 0.38</td>
<td>12.35 ± 0.16</td>
<td>15.35 ± 0.15</td>
<td>86.1 ± 0.06</td>
</tr>
<tr>
<td>14:10</td>
<td>36</td>
<td>10.58 ± 0.12</td>
<td>7.72 ± 0.31</td>
<td>11.51 ± 0.36</td>
<td>96.1 ± 0.99</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>14.64 ± 0.03</td>
<td>10.18 ± 0.72</td>
<td>15.75 ± 1.69</td>
<td>97.1 ± 1.42</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>12.30 ± 0.13</td>
<td>11.57 ± 0.04</td>
<td>13.00 ± 0.01</td>
<td>100.2 ± 1.00</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>17.31 ± 0.38</td>
<td>16.40 ± 1.07</td>
<td>16.97 ± 0.15</td>
<td>100.2 ± 0.01</td>
</tr>
<tr>
<td>24:0</td>
<td>36</td>
<td>16.56 ± 1.00</td>
<td>16.43 ± 0.51</td>
<td>18.80 ± 0.27</td>
<td>122.5 ± 1.03</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>18.14 ± 0.09</td>
<td>12.53 ± 3.00</td>
<td>22.86 ± 4.90</td>
<td>198.4 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>16.35 ± 0.11</td>
<td>17.82 ± 0.40</td>
<td>18.44 ± 0.27</td>
<td>95.5 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>16.24 ± 1.23</td>
<td>19.00 ± 0.39</td>
<td>13.34 ± 0.28</td>
<td>99.1 ± 0.77</td>
</tr>
</tbody>
</table>

Values are presented as the mean ± standard deviation of two independent experiments. Values in brackets represent nutrient removal efficiencies achieved in percentage.

Table 3
Effect of the different variables studied in the different kinetic and analytical parameters. Results are shown as the p value obtained through the statistical test 3-way-ANOVA (significance level was set at 0.05).

<table>
<thead>
<tr>
<th>Variables in study</th>
<th>p Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µ</td>
</tr>
<tr>
<td>Strains</td>
<td>0.000</td>
</tr>
<tr>
<td>Li</td>
<td>0.000</td>
</tr>
<tr>
<td>LP</td>
<td>0.000</td>
</tr>
<tr>
<td>Strains × Li</td>
<td>0.860</td>
</tr>
<tr>
<td>Strains × LP</td>
<td>0.018</td>
</tr>
<tr>
<td>Li × LP</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Li – light irradiance; LP – light period; P_{max} – maximum biomass productivity; R_C – carbon dioxide uptake rate; µ – specific growth rate; R_N – nitrogen removal rate; R_P – phosphorus removal rate.