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Abstract 

Electrically conductive polymer composites (ECPCs) based on porous polymeric 

matrices of PEBA 4033 incorporating different types of graphene platelets were 

prepared and tested. PEBA 4033 polymer was mixed with different graphene 

platelets: grade H5, grade MX and grade C-750. Porous morphology was obtained 

for the ECPCs prepared with graphene platelets grade MX and H5, while for the grade 

C-750 only a dense ECPCs was obtained. The porous ECPC loaded with 15 vol.% of 

graphene M5 exhibited a linear piezoresistive response in a log-log plot. Some 

limitations were detected for this ECPC, namely hysteresis and drift due to the poor 

mechanical properties. The porous ECPC loaded with 15 vol.% M5 was further 

crosslinked, which improved its mechanical properties but the piezoresistive effect 

became negligible. The incorporation of carbon black in this ECPC formulation was 

shown to be much more efficient than crosslinking to improve mechanical 

properties, but the piezoresistive response became poor. 

 

1. Introduction 

In recent years, there has been an increasing interest in the use of carbon based 

materials in many applications as sensors and composites materials [1e2]. The 

discovery of graphene, the elementary structure of graphite, made a revolutionary 

change in scientific and technological applications and has earned Kostya S. 

Novoselov and Andre K. Geim the Physics Nobel Prize in 2010. Graphene is a single 
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layer of sp2 bonded carbon atoms patterned in a hexagonal lattice that has unique 

properties such as high electrical conductivity and mechanical strength that can be 

used in electrically conductive polymer composites (ECPCs) [2-4]. Graphene is 

classified by the number of stacked layers: single layer, few-layer (2-10 layers) and 

multi-layer (thin graphite); the number of layers needed for the properties of 

graphene to fully match those of bulk graphite is over 100 [4]. Recently, some studies 

reported the preparation of polymer-graphene/expanded graphite composites [3,5-

9]. Some authors studied different methods of preparation of the polymer matrix 

incorporating graphene platelets and their effects on the mechanical and electrical 

properties. They concluded that the graphene dispersion influences the electrical 

response of ECPCs [3,5-10]. Chandrasekaran et al. [3], for example, employed two 

mixing methods, three-roll milling and sonication combined with high speed shear 

mixing, and they concluded that the three-roll milling method improved electrical 

conductivity 5 orders of magnitude at 0.3 wt.%. On the other hand, polymer 

composites incorporating graphene platelets showed a low percolation threshold 

[3,9] and promote an improvement in the mechanical properties that increases the 

storage modulus (E') and stiffness of the material [3,7-8,10]. However, the diameter 

of graphene platelets influences mechanical properties. Kalaitzidou et al. [7], for 

example, fabricated polypropylene containing exfoliated graphite platelets, xGnP, 

(graphene sheets 10 nm thickness) by melt mixing and injection molding. The 

addition of xGnP - 1 (~1 m diameter) promotes greater improvement in the 

mechanical properties than adding carbon black. However, the addition of xGnP - 15 

(~15 m diameter) led to poor mechanical properties due to the difficulty of 

dispersing it, and resulted in a non-homogeneous composite. 

The present work targets for the first time the development and characterization of 

porous ECPCs prepared loaded with graphene platelets of different geometries 

(length, surface area and thickness). The piezoresistive response and mechanical 

properties were also evaluated. 

 

2. Experimental 

2.1. Materials 

PEBAX polymer (polyether block amide) was supplied by Atofina Chemicals. Ethanol, 

hexane, 2, 4 - toluyene dii-socyanate (TDI), n-methyl-2-pyrrolidone (NMP) and 

acetone were purchased from Sigma Aldrich. Distilled water was also used as non-

solvent. Carbon black powder (Vulcan® XC72R) was purchased from Cabot 

Corporation. Graphene platelets (GNP) grade C-750, M5, M15, M25 and H5, were 

purchased from XG Sciences. These materials have following characteristics: M type-

maximum length of 5 m, 15 m and 25 m, respectively M5, M15 and M25, average 



thickness of 6-8 nm and surface area between 120 m2 g-1 and 150 m2 g-1; H5-

maximum length 5 m, average thickness of 15 nm and surface area between 50 m2 

g-1 and 80 m2 g-1 and C-750 maximum length 1-2 m, average thickness of 2 nm and 

average surface area of 750 m2 g-1. 

 

2.2. Preparation of porous ECPCs by immersion precipitation method based 

on PEBA 4033 

Different weight fractions of GNPs were dispersed in NMP by sonication for 15 

minutes. Polyether block amide (PEBA) 4033 was dissolved in NMP to form a polymer 

solution that was added to a previously prepared NMP suspension of conductive 

particles. When the polymer solution became homogeneous, it was poured onto a 

glass plate. ECPCs were prepared by the immersion precipitation method. Briefly, 

the film was then exposed to room temperature before immersion in the non-

solvent at room temperature. After that, the film was washed under running water 

and then kept overnight in a water bath. Finally, the film left to dry at room 

temperature for 2 days [11-12]. 

Fig. 1 shows the PEBA 4033 films obtained after using the immersion precipitation 

method. The initially cast PEBA 4033 films changed their colour from a transparent 

liquid film to a white porous film (high light dispersion originated from the occlusion 

of air bubbles) after immer-sion in the non-solvent. Shrinkage of the film was also 

observed that caused it to be easily separated from the glass plate after 5 minutes 

(left image). With incorporation of graphene, the change of colour due to the build-

up of the pores was not easily detected by visual inspection. How-ever, it was 

observed that PEBA 4033 formulations containing graphene changed their colour 

from dark grey (cast film) to a lighter grey with build-up of pores (right image). 

 

Fig. 1. PEBA 4033 films obtained after the immersion precipitation method (left 

image: porous plain PEBA 4033 film, right image: porous PEBA 4033 film 

incorporating graphene platelets). 



Table 1 lists the PEBA 4033 films prepared by the immersion precipitation method 

with different types of graphene platelets. 

Table 1. Porous ECPs based on PEBA 4033 incorporating graphene 

 

 

2.3. Crosslinking of porous ECPCs based on PEBA 4033 

ECPC based on PEBA 4033 loaded with graphene platelets was immersed in a 2 % 

(v/v) solution of TDI in hexane for 30 minutes. The ECPC was removed from the bath 

and washed with distilled water for an hour. Finally, the ECPC was dried in an oven 

at 60 �C followed by vacuum drying for 24 hours [13]. 

 

2.4. Scanning electron microscopy analysis (SEM) 

The cross-section morphologies of ECPCs based on PEBA 4033 were observed by 

scanning electron microscopy (SEM) using a JEOL JSM-6301F, Oxford INCA Energy 

350 instrument. Samples were fractured in liquid nitrogen and sputtered with 

gold/platinum using a K575X Sputter Coater by Quorum Technologies. 

 

 



2.5. Measurement of electrical resistance 

The electrical resistance of the prepared ECPCs based on PEBA 4033 was measured 

using a multimeter (Fluke 11) in an in-house made mechanical press. The effective 

area of the electrode was 1 cm2. The electrical contact between the ECPC film and 

the multimeter was obtained using a copper layer applied over a polymeric film 

(FlexPCB). Two layers of a polymeric film with similar composition to the ECPCS but 

having electric conductivity two orders of magnitude higher were applied on each 

side of the ECPC film to be characterized (Fig. 2). The elevated electrical conductivity 

of the electrode was obtained by adding a higher concentration of conductive 

particles (usually 25 vol.% of carbon black(CB)). 

 

Fig. 2. Experimental set-up for measuring of the electrical resistance of the ECPCs. 

 

2.6. Dynamic mechanical analysis (DMA) 

DMA experiments were performed using a DMA 242 E from Netzsch in film 

compression mode at a frequency of 1 Hz and 10 Hz. Nitrogen gas was used at a flow 

rate of 80 ml/min. Samples were tested at temperatures ranging from -20 oC to 100 
oC with a heating rate of 2 oC/min. 

 

3. Results and discussion 

3.1. Incorporation of graphene platelets in PEBA 4033 ECPCs with different 

combinations of solvent/non-solvent pairs 

Some combinations of non-solvent/solvent (NMP) were tested in order to achieve 

the best procedure for obtaining porous ECPCs based on PEBA 4033 and 

incorporating M5 graphene platelets. Fig. 3 shows the effect of the non-solvent on 

the morphology of PEBA 4033 incorporating 5.5 vol.% of M5. When using water, the 

ECPC obtained is dense due to the hydrophilic nature of the non-solvent. On the 



other hand, the hexane/acetone mixture (95 wt.%/5 wt.%) and ethanol were the 

most promising non-solvent for preparing ECPCs based on graphene conductive 

particles. We found that the porous morphology was observed even after increasing 

graphene concentration to 15 vol.%, see below (Fig. 5). 

 

Fig. 3. Cross-section SEM images of the PEBA 4033 film (a) and the ECPCs (b-d) with 

5.5 vol.% M5 at different magnifications and different non-solvents: film (a) - non-

solvent: water, film (b) - non-solvent: water, film (c) - non-solvent: ethanol and film 

(d) - non-solvent: hexane/acetone. 
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3.2. Incorporation of different types of graphene platelets in ECPCs 

The different types of graphene were employed to pre-pare ECPCs based on PEBA 4033 and 

using hexane/acetone as non-solvent. As mentioned before, with incorporation of 5.5 vol.% M5, 

the ECPCs obtained were porous. Increasing graphene M5 concentration to 15 vol.%, the ECPC 

morphology kept it porosity (Figs. 4 and 5). A porous morphology was also observed for 

graphene types M15, M25 and H5 at a concentration of 15 vol.%, (Figs. 4 and 5). On the other 

hand, the ECPCs incorporating 15 vol.% of graphene C-750 showed a dense morphology (Fig. 

4d). 

It should be stressed that the morphology of the films obtained with graphene type H and type 

M (Figs. 4 and 5)is quite interesting, showing a regular cellular structure with a large range of 

interconnecting pores. This type of porous polymeric composite film can be used in applications 

such as thermal and mechanical insulators, packaging materials, drug carrier systems, medical 

devices and solid supports for catalysis [14], and for biosensors, chemical gas sensors, electronic 

devices and smart fabrics [15-18]. 

Fig. 6 shows a higher magnification (20 000 x) of the platelets that seem to be embedded in the 

polymeric matrix. 

 

Fig. 4.  Cross-section SEM images of the ECPCs (films d and e) incorporating 15 vol.% of 

graphene with different types: film (d) - C-750 and film (e) - H5. 
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Fig. 5.  Cross-section SEM images of the ECPCs (films f-h) incorporating 15 vol.% of graphene 

MX: film (f) - M5, film (g) - M15 and film (h) - M25. 

 

 

Fig. 6.  Cross-section in high magnification of ECPCs (film e and f) incorporating 15 vol.% of 

graphene with different types: (left) - M5 and (right) - H5 
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3.3. Piezoresistive response in the porous ECPCs based on PEBA 4033 loaded with 

graphene platelets 

The piezoresistive behaviour of the prepared porous ECPCs incorporating graphene platelets 

was evaluated. The electrical resistance of ECPCs incorporating 5.5 vol.% of graphene M5 was 

too high. 

Fig. 7 shows the electrical resistance as a function of the applied pressure for ECPCs loaded with 

15 vol.% graphene MX and H5. The H5-ECPC exhibited the lowest electrical resistance of all the 

ECPCs tested, while the others ECPCs showed similar electrical resistances. Moreover, H5-ECPC 

did not show any pressure sensitivity. On the other hand, the most promising piezoresistive 

response was obtained with the ECPC loaded with graphene M5, which exhibited an 

approximately linear response on a log-log plot. It can also be observed that the electrical 

resistance changes from 810 k to 340 k (approximately) from no pressure applied to ca. 2.5 

kg cm-2, Fig. 8. From approximately 2.5 kg cm-2 to 4.5 kg cm-2, M5-ECPC does not show pressure 

sensitivity, while M15-ECPC and M25-ECPCs did not stand pressures above of 0.6 kg cm-2 

(suffered mechanical damage). At pressures higher than 0.6 kg cm-2, the destruction of the 

conductive paths is higher than their formation and this decrease of conductive pathways 

number increases electrical resistance [19-21]. 

 

Fig. 7. Electrical resistance (log-log plot) as a function of the applied pres-sure of ECPCs based 

on PEBA 4033 loaded with 15 vol.% of graphene (type M5, M15, M25 and H5)  assembled with  

polymeric electrodes. 

 

3.4. Hysteresis and drift of M5-ECPC 

Since the most promising piezoresistive response observed was the M5-ECPC, hysteresis and 

drift were also assessed. Fig. 8 shows the electrical response as a function of the applied pressure 

for two load and two unload steps obtained for the M5-ECPC assembled with polymeric 

electrodes. The sample responded steadily after 5 s under load and 10 s after unload. During the 

first step, the electrical resistance changed from 810 k to 340 k and after the first unload 

step, the electrical resistance changed from 340 k to 460 k, indicating significant hysteresis. 

In the second load step, begun 30 s after the end of first unload step and after 5 s under load, 

the electrical resistance changed from 510 k to 180 k, and after 10 s of the second unload 

steps, the electrical resistance change 180 k to 350 k, again showing hysteresis. The poor 

mechanical properties of M5-ECPC could be responsible for the electrical hysteresis and drift 

[15]. The hysteresis of M5-ECPC is related to the plastic deformation occurring during the load 
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step, and this irreversible phenomenon is related to the ECPC high load of graphene particles 

[22]. 

 

Fig. 8. Electrical resistance as a function of the applied pressure (load and unload steps) of 

ECPC based on PEBA 4033 loaded with 15 vol.% of graphene M5  assembled  with polymeric 

electrodes. 

 

3.5. Dynamic mechanical properties 

The mechanical properties were evaluated by dynamic mechanical analysis (DMA). The storage 

modulus (E') and phase angle () of the prepared ECPC/graphene polymer films and pure dense 

and porous PEBA 4033 polymer films from -20 oC to 100oC are shown in Fig. 9 and Fig. 10, 

respectively. The storage modulus represents the elastic component of a material and is an 

indicator of the capability of a material to store energy reversibly. Pure dense PEBA 4033 film 

exhibits an E' higher than porous PEBA 4033 film, 149 MPa versus 13.45 MPa at 25 oC. On the 

other hand, porous M5-ECPC (incorporating 15 vol.% of graphene M5) showed an E' 22.9% 

higher compared to the pure porous PEBA 4033 film (13.45 MPa versus 16.53 MPa at 25 oC). The 

same behavior was observed by Tang et al. [10] who concluded that the storage modulus 

increased when introducing graphene (1.2 nm thick) in a polymeric film. However, with 

introduction of the larger graphene platelets (graphene M15), the storage modulus decreased 

30.3 %compared with the pure porous PEBA 4033 film (10.32 MPa versus 16.53 MPa at 25 oC). 

The good dispersion of graphene M5 in PEBA 4033, also related to the small size of the graphene 

M5 platelets (ca. 5 m length and 6-8 nm thick), could be the reason why the composite film 

display better mechanical properties [3,7-8,10]. In the case of porous M15-ECPC, it was more 

difficult to disperse the graphene particles. 

To further improve the mechanical properties, ECPCs were either crosslinked or carbon black 

was added to the PEBA 4033 polymer matrix. The crosslinked M5-ECPC showed a storage 

modulus of 22.0 MPa at 25 oC while the M5/carbon black-ECPC showed a storage modulus of 

51.0 MPa (an increase 63.6% versus an increase of 379%, compared with the pure porous PEBA 

4033 film). 

Tan  is the ratio between the amount of energy dissipated by viscous mechanisms and the 

energy stored in the elastic component, providing information about the viscoelastic properties 

of the material [8]. The maximum tan d as a function of temperature is related to the glass-

transition temperature (Tg). Table 2 shows the glass-transition temperature of the prepared 

polymers films. In the case of crosslinked porous M5-ECPC, the peak of tan  was not clear, 
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indicating that the glass-transition temperature was obtained at a lower temperature (maximum 

tan  was shifted to left) or the crosslinking reduced the mobility of polymer chains and 

decreased the height of the tan d peak [3]. On the other hand, the introduction of car-bon black 

on porous M5-ECPC raised the glass-transition temperature ca. 10 oC. 

 

Fig. 9. E' (log scale) as a function of temperature for: i) pure dense PEBA 4033 film, ii) pure 

porous PEBA 4033 film, iii) porous M5-ECPC (incorporating 15 vol.% of M5), iv) porous M15-

ECPC (incorporating 15 vol.% of M15), v) crosslinked porous M5-ECPC (incorporating 15 vol.% 

of M5) and vi) porous M5/carbon black-ECPC (incorporating 8 vol.% of M5 and 2 vol.% of 

carbon black). 

 

Fig. 10.  Tan d as a function of temperature for: i) pure dense PEBA 4033 film, ii) pure porous 

PEBA 4033 film, iii) porous M5-ECPC (incorporating 15 vol.% of M5), iv) porous M15-ECPC 

(incorporating 15 vol.% of M15), v) crosslinked porous M5-ECPC (incorporating 15 vol.% of M5) 

and vi) porous M5/carbon black ECPC (incorporating 8 vol.% of M5 and 2 vol.% of carbon black). 

 

Table 2. Mechanical properties of the prepared polymer films 
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Fig. 11. Electrical resistance (log-log plot) as a function of the applied pressure of unmodified 

and crosslinked M5-ECPC assembled with polymeric electrodes. 

 

3.6. Crosslinking of the porous M5-ECPC 

Porous M5-ECPC was crosslinked in order to reduce the hysteresis and drift by increasing 

mechanical properties. The crosslinked M5-ECPC assembled with the polymeric electrodes 

exhibited a higher electrical resistance when compared to the M5-ECPC without crosslinking 

(Fig. 11). In fact, there is a systematic increase in electrical resistance when the sample is 

crosslinked. Indeed, after crosslinking none of the ECPCs based on PEBA 4033 loaded with 

graphene M5 (loads of 15 vol.% and 18 vol.%) showed a piezoresistive response. 

 

3.7. Introduction of carbon black in porous M5-ECPCs 

Fig. 12 shows the electrical resistance of M5-ECPC and a M5/carbon black-ECPC as a function of 

the applied pressure. With introducing 2 vol.% of carbon black, the electrical resistance and 

porosity decreased. Fig. 13 shows SEM images of M5/carbon black-ECPC film where a decrease 

of the porosity can be seen. A higher porosity seems to be related to a smaller electrical 

conductivity and, to keep the electrical conductivity within the required bounds, the 

introduction of carbon black should be followed by decrease of graphene loading. However, the 

best piezoresistive response was obtained for the ECPC incorporating 15 vol.%of graphene M5 

and without carbon black, despite the potential improvement of the mechanical properties that 

this additive could bring.  
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Fig. 12. Electrical resistance (log-log plot) as a function of the applied pressure of M5/carbon 

black-ECPCs assembled with polymeric  electrodes. 

 

Fig. 13.  Cross-section SEM images of M5/carbon black-ECPC. 

 

4. Conclusions 

Porous ECPCs based on PEBA 4033 and incorporating different types of graphene (C, M and H) 

platelets were prepared. The immersion precipitation method allowed the preparation of 

porous composite films with a nodule structure and symmetric morphology when a mixture of 

hexane/acetone was used as the non-solvent. ECPCs based on PEBA 4033 loaded with 15 vol.% 

of graphene M5 exhibited a piezoresistive response more linear on a log-log plot than the other 

prepared ECPCs. Porous M5-ECPC (incorporating 15 vol.% of graphene M5) showed, however, 

some hysteresis and drift due to poor mechanical properties. Crosslinked PEBA 4033 and the 

incorporation of carbon black were considered to improve the mechanical properties but 

significantly worse piezoresistive responses were observed. 
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