ESTUDO COMPARATIVO DA FISIOLOGIA E ULTRASTEUTURA DO

Geodermatophilus e Blastococcus

PORTO
1985
A. FREITAS DA FONSECA

ESTUDO COMPARATIVO DA FISIOLOGIA E ULTRASTRUTURA DO

Geodermatophilus e Blastococcus

PORTO
1985
ANTONIO AUGUSTO FREITAS DA FONSECA

ESTUDO COMPARATIVO DA FISIOLOGIA E ULTRASTRUTURA DO

GEODERMATOPHILUS E BIASTOCOCCUS

Dissertação de candidatura ao grau de Doutor apresentada à Faculdade de Medicina da Universidade do Porto.

PORTO 1985
Much can be learned from a study of these "unusual" organisms, "unusual" should here be understood as "exceptional to the rule". These exceptions, the unusual bacteria, may well hold explanation to secrets that cannot even be visualized from studying the well-known, "usual organisms". As knowledge of "odd bugs" increases, these become less odd, and they may be easier to handle, too!

Peter Hirsch
in "Budding bacteria"
À

MARIA DA LUZ
Artigo 48º § 3º - A Faculdade não responde pelas doutrinas expendidas na Dissertação.

(Regulamento da Faculdade de Medicina do Porto - Decreto nº 19337, de 29 de Janeiro de 1931).
De acordo com o parágrafo 8 do Decreto Lei nº 388/70 foram utilizados nesta dissertação dados apresentados nas seguintes comunicações:

A nossa contribuição pessoal traduziu-se na elaboração dos projectos de investigação que deram origem aos trabalhos utilizados, na realização das diversas experiências, na interpretação e discussão dos resultados obtidos e na elaboração dos vários textos. Nos trabalhos de colaboração, houve participação dos co-autores nas actividades acima indicadas.
AGRADECIMENTOS

Ao Senhor Professor Doutor J. Machado Vaz pela confiança em nós depo-sitada aquando do seu convite para fazermos parte do corpo docente da dis-ciplina de Bacteriologia e Parasitologia dos Estudos Gerais Universitários de Angola e bem assim por todo o apoio, compreensão e amizade sempre demons-tradas, especialmente nos momentos bem difíceis do nosso regresso à Facul-dade de Medicina do Porto.

Ao Senhor Doutor M. Teixeira da Silva, amigo desde a primeira hora, ilustre investigador e principal responsável pelo que temos vindo a fazer no domínio da microscopia electrónica, patenteamos a nossa profunda grati-dão. A sua preciosa ajuda e os seus valiosos ensinamentos foram decisivos para que este trabalho se tornasse uma realidade.

Ao Senhor Professor Doutor Joaquim Maia, pela sua grande ajuda na apreciação crítica do manuscrito.

Ao Senhor Professor Doutor Nuno Grande, então Director do Curso Médi-co-Cirúrgico da Universidade de Luanda, pelo convite para efectuarmos um estágio no estrangeiro.

Ao Senhor Dr. R. Vaz Osório, companheiro dos primeiros tempos de do-cência, por toda ajuda sempre prestada.

À Senhora Doutora M. R. Edwards do N. Y. State Department of Health, pelas facilidades concedidas no seu laboratório para a realização de parte do trabalho utilizado nesta dissertação.

Ao Senhor Doutor George Luedemann, pela sua simpatia e palavras ami-gas de incitamento que muito nos animaram nos primeiros passos da nossa inv-esigação.

Ao Senhor Doutor Morris Gordon, por todas as facilidades concedidas no seu laboratório de Micologia, cedência de diversas estirpes e bem assim
pelos seus conselhos e ensinamentos.

Estamos também muito gratos a todos aqueles e muitos foram, nomeada-mente os vários grupos técnicos, que de um ou outro modo nos ajudaram a levar a bom termo esta tarefa.
ABREVIATURAS

Abreviaturas usadas nas fotografias de microscopia electrónica de cor
tes ultrafinos.

CM - Camada mucóide
PC - Parede celular
MC - Membrana citoplasmática
C - Citoplasma
N - Nucleóide
M - Mesossomas
L - Inclusões lipídicas
CR - "Core"
P - Inclusões polissacarídeas
S - Septo
R - Ribossomas

Fixação:
RK completo - Fixação Ryter e Kellenberger incluindo pré-fixação, fi-
xação principal e pós-fixação.
RK s/pré-fixação - Fixação Ryter e Kellenberger sem pré-fixação mas com
fixação principal e pós-fixação.
RK s/ pós-fixação - Fixação Ryter e Kellenberger com pré-fixação e
fixação principal.
RK s/ pré-fixação e s/ pós-fixação - Fixação Ryter e Kellenberger sem
pré-fixação e sem pós-fixação, apenas com fixação principal.
RK c/ pré-fixação e s/ pós-fixação - Fixação Ryter e Kellenberger com
pré-fixação e sem pós-fixação.
GA/RK/AU - Fixação pelo glutaraldeído seguido de fixação pelo método
de Ryter e Kellenberger com acetato de urânio.
KMnO₄/AU - Fixação pelo permanganato de potássio, seguido de acetato de uranilo.

FA/GA/RK/AU - Fixação pelo formaldeído e glutaraldeído seguido de fixação Ryter e Kellenberger com acetato de uranilo.

Coloração:

A menos que haja indicação em contrário, todas as fotografias são de cortes corados pelo acetato de uranilo (AU) e citrato de chumbo (Pb).
ÍNDICE
<table>
<thead>
<tr>
<th>MATERIAL E MÉTODOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Estirpes Bacterianas</td>
<td>22</td>
</tr>
<tr>
<td>2 - Meios e condições gerais de cultura</td>
<td>23</td>
</tr>
<tr>
<td>3 - Curvas de crescimento</td>
<td>24</td>
</tr>
<tr>
<td>4 - Actividades biológicas</td>
<td>24</td>
</tr>
<tr>
<td>4.1 - Provas bioquímicas</td>
<td>24</td>
</tr>
<tr>
<td>4.1.1 - Utilização dos carbohidratos</td>
<td>24</td>
</tr>
<tr>
<td>4.1.2 - Hidrólise da gelatina e caseína</td>
<td>25</td>
</tr>
<tr>
<td>4.1.3 - Redução dos nitratos</td>
<td>25</td>
</tr>
<tr>
<td>4.2 - Acção hemolítica</td>
<td>25</td>
</tr>
<tr>
<td>5 - Preparação de amostras para microscopia óptica</td>
<td>26</td>
</tr>
<tr>
<td>6 - Preparação para microscopia electrónica</td>
<td>26</td>
</tr>
<tr>
<td>6.1 - Cortes ultrafinos</td>
<td>26</td>
</tr>
<tr>
<td>6.1.1 - Fixação pelo tetróxido de ósmio - acetato de uranilo</td>
<td>26</td>
</tr>
<tr>
<td>6.1.2 - Fixação pelo glutaraldeído-tetróxido de ósmio-acetato de uranilo</td>
<td>26</td>
</tr>
<tr>
<td>6.1.3 - Fixação pelo permanganato de potássio-acetato de uranilo</td>
<td>27</td>
</tr>
<tr>
<td>6.1.4 - Fixação em presença de vermelho de ruténio</td>
<td>27</td>
</tr>
<tr>
<td>6.1.4.1 - Fixação pelo glutaraldeído-vermelho de ruténio</td>
<td>27</td>
</tr>
<tr>
<td>6.1.4.2 - Fixação pelo tetróxido de ósmio-vermelho de ruténio</td>
<td>27</td>
</tr>
<tr>
<td>6.1.4.3 - Pré-fixação pelo vermelho de ruténio</td>
<td>27</td>
</tr>
<tr>
<td>6.1.5 - Fixação pelo formaldeído-glutaraldeído-tetróxido de ósmio-acetato de uranilo</td>
<td>28</td>
</tr>
<tr>
<td>6.1.6 - Doseamento do cálcio</td>
<td>28</td>
</tr>
<tr>
<td>6.1.7 - Inclusão em agar</td>
<td>28</td>
</tr>
<tr>
<td>6.1.8 - Desidratação e inclusão</td>
<td>28</td>
</tr>
<tr>
<td>6.1.9 - Ultramicrotomia e coloração</td>
<td>29</td>
</tr>
<tr>
<td>6.1.10 - Métodos citoquímicos</td>
<td>30</td>
</tr>
<tr>
<td>6.1.10.1 - Extração pela prónase</td>
<td>30</td>
</tr>
</tbody>
</table>
6.1.10.2 - Localização de polissacáridos .. 31
6.2 - Coloração negativa .. 31
6.3 - Crio-fractura ... 32
7 - Produção dos protoplastos e isolamento dos "cores" ... 32
8 - Observação ao microscópio electrónico .. 32
9 - Densitometria ... 33

RESULTADOS ... 34
1 - Aspectos macroscópicos das culturas .. 35
2 - Observações ao microscópio óptico ... 37
 2.1 - Morfologia celular ... 37
 2.2 - Ciclo de crescimento ... 39
3 - Curvas de crescimento ... 39
4 - Provas biológicas .. 43
5 - Observações ao microscópio electrónico .. 45
 5.1 - Cortes ultrafinos .. 45
 5.1.1 - Invólucros bacterianos ... 45
 5.1.1.1 - Camada mucóide ... 45
 5.1.1.2 - Parede celular .. 48
 5.1.1.3 - Membrana citoplasmática ... 53
 5.1.1.3.1 - Células intactas ... 53
 5.1.1.3.2 - Células em lise .. 64
 5.1.1.3.3 - Protoplastos .. 64
 5.1.1.4 - Mesossomas ... 65
 5.1.2 - Compartimento intracelular ... 67
 5.1.2.1 - Nucleóide .. 67
 5.1.2.2 - Citoplasma .. 67
 5.1.2.3 - Inclusões intracitoplasmáticas ... 69
 5.1.2.3.1 - Inclusões lipídicas .. 69
 5.1.2.3.2 - Inclusões de polissacarídeos .. 69
 5.1.2.3.3 - "Core" .. 73
 5.1.3 - Flagelos .. 82
 5.1.4 - Ciclo de crescimento ... 82
3 - Observações ao microscópio electrónico .. 45
 5.1 - Cortes ultrafinos .. 45
 5.1.1 - Invólucros bacterianos ... 45
 5.1.1.1 - Camada mucóide ... 45
 5.1.1.2 - Parede celular .. 48
 5.1.1.3 - Membrana citoplasmática ... 53
 5.1.1.3.1 - Células intactas ... 53
 5.1.1.3.2 - Células em lise .. 64
 5.1.1.3.3 - Protoplastos .. 64
 5.1.1.4 - Mesossomas ... 65
 5.1.2 - Compartimento intracelular ... 67
 5.1.2.1 - Nucleóide .. 67
 5.1.2.2 - Citoplasma .. 67
 5.1.2.3 - Inclusões intracitoplasmáticas ... 69
 5.1.2.3.1 - Inclusões lipídicas .. 69
 5.1.2.3.2 - Inclusões de polissacarídeos .. 69
 5.1.2.3.3 - "Core" .. 73
 5.1.3 - Flagelos .. 82
 5.1.4 - Ciclo de crescimento ... 82
4 - Provas biológicas .. 43
5 - Observações ao microscópio electrónico .. 45
 5.1 - Cortes ultrafinos .. 45
 5.1.1 - Invólucros bacterianos ... 45
 5.1.1.1 - Camada mucóide ... 45
 5.1.1.2 - Parede celular .. 48
 5.1.1.3 - Membrana citoplasmática ... 53
 5.1.1.3.1 - Células intactas ... 53
 5.1.1.3.2 - Células em lise .. 64
 5.1.1.3.3 - Protoplastos .. 64
 5.1.1.4 - Mesossomas ... 65
 5.1.2 - Compartimento intracelular ... 67
 5.1.2.1 - Nucleóide .. 67
 5.1.2.2 - Citoplasma .. 67
 5.1.2.3 - Inclusões intracitoplasmáticas ... 69
 5.1.2.3.1 - Inclusões lipídicas .. 69
 5.1.2.3.2 - Inclusões de polissacarídeos .. 69
 5.1.2.3.3 - "Core" .. 73
 5.1.3 - Flagelos .. 82
 5.1.4 - Ciclo de crescimento ... 82

DISCUSSÃO ... 101
1 - Aspecto macroscópico das culturas ... 102
2 - Aspectos ligados ao ciclo de crescimento .. 104
3 - Aspectos ligados às curvas de crescimento .. 107
4 - Aspectos ligados às actividades biológicas ... 108
 4.1 - Provas bioquímicas ... 108
 4.2 - Actividades hemolíticas ... 109
5 - Aspectos ligados à microscopia electrónica .. 110
 5.1 - Cortes ultrafinos ... 110
 5.1.1 - Invólucros bacterianos ... 110
 5.1.1.1 - Camada mucóide .. 110
 5.1.1.2 - Parede celular .. 112
 5.1.1.3 - Membrana citoplasmática e mesossomas 114
 5.1.1.3.1 - Fixação RK/AU ... 115
 5.1.1.3.2 - Fixação GA/RK/AU .. 116
 5.1.1.3.3 - Fixação KMnO₄/AU ... 116
 5.1.1.3.4 - Fixação FA/GA/RK/AU .. 117
 5.1.2 - Compartimento intracelular .. 117
 5.1.2.1 - Nucleóide .. 117
 5.1.2.2 - Ribossomas ... 118
 5.1.2.3 - Inclusões intracitoplasmáticas 118
 5.1.2.3.1 - Inclusões lipídicas ... 120
 5.1.2.3.2 - Inclusões polissacarídeas 121
 5.1.2.3.3 - "Core" .. 122
 5.1.3 - Flagelos .. 124
 5.2 - Coloração negativa .. 125
 5.3 - Crio-fractura ... 125
6 - Aspectos ligados à taxinomia ... 126
RESUMO E CONCLUSÕES .. 130
SUMMARY AND CONCLUSIONS ... 136
BIBLIOGRAFIA ... 139
Deve-se a Van Saceghem, em 1915, a primeira descrição (131) da doença que atingia o gado bovino na região do antigo Congo Belga e na qual foi respon-
sabilizado um microrganismo que apresentava o aspecto de filamentos ra-
mificados. O nome proposto por aquele autor, para esta bactéria, foi Derma-
tophilus congolensis, formado pelos vocábulos Dermatophilus (amigo da pele)
e congolensis (gentílico do local aonde havia sido isolada). O isolamento da
quele organismo em cultura foi possível mais tarde, tendo Van Saceghem (132)
verificado que a morfologia da bactéria "in vitro" e "in vivo" eram semel-
hantes. A sua multiplicação fazia-se por divisão transversal e longitudinal,
com posterior libertação de células arredondadas possuidoras de flagelos.

Em 1929, em trabalhos efectuados na Austrália, Bull (11) descreveu
uma doença semelhante ocorrendo em caprinos, fez uma observação completa na
pelé doente daqueles animais, estudou ainda os aspectos bioquímicos e o
crescimento do microrganismo responsável, designando-o por Actinomyces der-
matonomus. Uma bactéria semelhante a esta foi descrita também na África do
Sul por Mason e Bekker em 1934 (66).

Alguns anos mais tarde Thompson e Bisset (129) em trabalhos realiza-
dos na Inglaterra, descreveram um outro microrganismo a que deram o nome de
Polysepta pedis, isolado de lesões nos ovinos.

Em 1958, Austwich (2) estudou em bloco estes três organismos e veri-
ficou que havia notáveis semelhanças entre eles, propondo deste modo que
fossem incluídos como espécies do género original—Dermatophilus. Este seria
o único género da nova família das Dermatophilaceae, ordem das Actinomyce-
tales.

As espécies incluídas no género Dermatophilus seriam o D. congolensis
(Van Saceghem) isolado dos bovinos, D. dermatonomus (Bull) dos casos encon-
trados em ovinos e D. pedis (Thompson e Bisset) das lesões observadas tam-
bém em ovinos. A classificação de Austwich (2) baseou-se nas diferenças
existentes entre este grupo de organismos e outros actinomicetos, mantendo-
-se o nome do género de acordo com a designação original proposta por Van
Saceghem.
Juntamente com estes trabalhos foram aparecendo na literatura outras publicações tendo em vista a explicação de possíveis mecanismos de infecção no animal: Bull, 1929 (11) e Austwich e Davies, 1958 (3) entre outras.

Mais tarde Roberts (86) retomando estudos realizados por Thompson (128), fez um trabalho completo sobre o ciclo de crescimento do *Dermatophilus dermatorum*, estudando os possíveis factores que interviam no ciclo da bactéria, não só nas culturas mas também ao nível das lesões.

Os Actinomicetos pertencentes ao gênero *Dermatophilus* não foram isolados nos E. U. senão a partir de 1961, ano em que surgiram três diferentes comunicações de Bridges e Romane (9), Bentinck-Smith e cols. (7), e finalmente Dean e cols. (20). Este último grupo de autores obtém culturas de lesões encontradas num veado e em dois homens que manipularam aquele animal, sendo este o primeiro caso publicado de estreptotricose humana.

Surge em 1964 o primeiro trabalho tendo em vista o estudo pormenorizado da diversos estirpes, que são comparadas do ponto de vista morfológico, fisiológico e bioquímico. Este trabalho realizado no New York State Department of Health em Albany, U. S. A., deve-se a Gordon (38) que analisou dezassest estirpes isoladas de diferentes hospedeiros incluindo o Homem e representando as três espécies de *Dermatophilus* que se consideraram naquela época. Aquele autor não viu diferenças apreciáveis entre as várias estirpes excepto no que diz respeito à pigmentação e poder proteolítico e concluiu que todas elas deveriam pertencer à mesma espécie. Esta é ainda a opinião expressa por Gordon (39) na última edição do Manual Bergey, isto é, o género *Dermatophilus* comportaria apenas uma única espécie, o *D. congolensis*.

A primeira publicação sobre ultraestrutura do *Dermatophilus congolensis* surgiu em 1963, por Gordon e Edwards (41), investigadores trabalhando no New York State Department of Health acima referido. Os estudos com o microscópio electrónico, usando a técnica dos cortes ultrafinos, vieram confirmar a existência de um ciclo de vida do *Dermatophilus congolensis* estabelecido já anteriormente pela observação em microscopia de luz, e revelou pormenores ultraestruturais importantes para a sua classificação. Mais tarde Richard e cols. (85) usam além da técnica dos cortes ultrafinos, o "negativo-staining" para a observação das células móveis.

Em 1966 Ishiguro e Fletcher (48) trabalhando em solos do Monte Everest isolaram várias estirpes de um microrganismo do qual estudaram a mor-
fologia e ciclo de crescimento, concluindo que estes Actinomicetos poderiam ser eventualmente considerados como espécies do género *Myxococcus* embora pensassem que a confirmar-se tal hipótese haveria necessidade de remodelar a descrição feita para aquele género.

Luedemann em 1968 (54) trabalhando em amostras de solos de várias regiões desérticas dos E. U. encontra um microrganismo que veio a estudar cuidadosamente não só do ponto de vista morfológico, utilizando o microscópio óptico, mas também bioquímico, considerando no princípio estas estirpes como formas saprófitas de *Dermatophilus congoensis* existentes nos solos, visto que este actinomiceto responsável por lesões em vários animais e também no Homem, não tinha até então sido encontrado no solo. Se há umas certas semelhanças morfológicas entre os ciclos de crescimento do *Dermatophilus congoensis* e estes isolados do solo, como afirma Luedemann, o facto é que as diferenças existentes são suficientes para a inclusão destes isolados num género distinto embora na mesma família das *Dermatophilaceae*. Daí Luedemann propor para o novo género, a designação *Geodermatophilus*, tendo à espécie tipo chamado *Geodermatophilus obscurus*.

Ishiguro e Wolfe (49) publicaram em 1970 o primeiro estudo ultrastructural sobre *Geodermatophilus*, seleccionando para o efeito a estirpe 22-68 que havia sido isolada do solo do Monte Everest por Ishiguro e Fletcher (48). Neste trabalho aqueles dois autores focam a sua atenção sobre aspectos ultraestruturais e morfogenéticos definindo a forma C, constituída por elementos cocóides em agregados e a forma R, bacilar e móvel. O controle da morfogénese da bactéria seria possível usando dois meios de cultura diferentes. Assim o meio com triptose teria um factor não identificado – M – que era necessário para manter o organismo na forma C e para a diferenciação da forma R em C. Na ausência do factor acima referido o crescimento fazia-se exclusivamente na forma R. Estudos posteriores de Ishiguro e Wolfe (50) com a finalidade de identificar o factor M existente nos meios da cultura TYA e TYB, vieram demonstrar que vários catiões inorgânicos e catiões orgânicos nitrogenados eram capazes igualmente de controlar a morfogénese do *Geodermatophilus*.

Das águas do Mar Báltico foi isolada uma bactéria com características semelhantes ao *Geodermatophilus*, por Ahrens e Moll (1) em 1970. Estes autores estudaram a morfologia e fisiologia dessas bactérias (estirpe B-15), tendo no final considerações sobre a sua possível posição taxinómica mas des
conhecendo, aparentemente, os trabalhos anteriores de Luedemann (54) e Ishiguro e Wolfe (48). Com base nos resultados obtidos sobre a estirpe B-15, Ahrens e Moll sugeriram que deveria ser considerada como única espécie de um novo género - *Blastococcus* (Espécie - *B. aggregatus*).

Ao iniciarmos nos E. U. o nosso estágio no New York Department of Health secção de Micromorfologia, sob a orientação dos investigadores que anos atrás haviam sido responsáveis pelo primeiro trabalho sobre ultrastrutura do *Dermatophilus congoensis* (41), cedo surgiu a hipótese de estudarmos algumas das várias estirpes de *Geodermatophilus obscurus* isolados por Luedemann (G-4, G-5, G-7, G-9, G-17) e que ainda não haviam sido observados a nível ultrastrutural. Além daquelas estirpes incluímos nos nossos trabalhos a estirpe 22-68 (Ishiguro e Fletcher) que havia sido já classificada por Ishiguro e Wolfe como pertencentes ao género *Geodermatophilus* e a estirpe B-15 (Ahrens e Moll) sobre a qual Ishiguro e Wolfe (48) em nota final do seu artigo sobre *Geodermatophilus* afirmam: "Micrographs and description of morphogenesis of this isolate suggest that this organisms is a species of *Geodermatophilus*". Em 1971 Jean Schmidt (95) em artigo de revisão sobre bactérias prostecadas (124) (Prosthecate bacteria) faz uma referência aos trabalhos de Ahrens e Moll, Ishiguro e Wolfe, incluindo de igual maneira as estirpes 22-68 e B-15 no género *Geodermatophilus*.

Ainda no ano de 1971, Ensign (24) em outro artigo de revisão, chama a atenção para diversos grupos de bactérias com processos peculiares de reprodução e ao abordar o género *Geodermatophilus* afirma que a bactéria isolada do Mar Báltico (B-15) é provavelmente outra estirpe daquele género.

Gordon e Perrin (42) apontam analogias entre o *Geodermatophilus* e o *Blastococcus*. Hirsch (46) mais recentemente, em artigo de revisão sobre bactérias que se reproduzem por formação de gêmulas, inclui no mesmo capítulo os dois géneros bacterianos, atendendo às semelhanças entre os seus ciclos de vida.

Dado que várias estirpes isoladas por diferentes autores foram estudadas em condições experimentais bastante diversas é difícil tirar qualquer conclusão de conjunto.

A nossa investigação, com objectivos comparativos tem vindo a fazer-se submetendo todas as estirpes escolhidas para este estudo, às mesmas condições experimentais. Dado que o nosso estágio realizado no Centro de Micros-
copia Electrónica do Porto, sob a orientação de M. T. Silva nos permitiu tomar contacto com o problema referente à influência das condições de fixação química na imagem ultraestrutural das células bacterianas, esta problemática será também considerada no presente trabalho.

Com finalidade de avaliarmos as características deste grupo de estirpes consideramos na nossa investigação os seguintes pontos:

1 - Estudo das características culturais do Geodermatophilus (estirpes G-4, G-5, G-7, G-8, G-9, G-17, 22-68) e Blastococcus aggregatus (estirpe B-15).

2 - Estudo dos aspectos morfológicos daquelas bactérias com o microscópio óptico, incluindo os ciclos de vida das várias espécies.

3 - Estudo das curvas de crescimento das diversas estirpes.

4 - Estudo de algumas outras características biológicas.

5 - Estudo da ultraestrutura das estirpes G-4, G-5, G-7, G-8, G-9, G-17 do Geodermatophilus obscurus que haviam sido isoladas de solos dos Estados Unidos por Luedemann e ainda não observadas ao microscópio electrónico.

6 - Estudo da ultraestrutura da estirpe 22-68 isolada por Ishiguro e Fletcher de solos do Monte Everest e do Blastococcus aggregatus (estirpe B-15) isolada do Mar Báltico por Ahrens e Moll, nas mesmas condições experimentais das estirpes acima referidas, tendo em vista um estudo comparativo.

7 - Estudo da ultraestrutura das formas celulares que se distribuem ao longo do ciclo de crescimento deste actinomiceto, comparando o comportamento das várias estirpes.

8 - Estudo da ação de diversos fixadores sobre várias estruturas celulares, nomeadamente a parede celular, a membrana citoplasmática e mesosomas.

9 - Estudo ultraestrutural das várias inclusões citoplasmáticas (lípidicas e polissacarídficas) ainda não investigadas em trabalhos anteriores, e fazer a sua caracterização pela aplicação da técnica da crio-fractura e citoquímica ultraestrutural.

10 - Estudo da ultraestrutura de outra inclusão citoplasmática peculiar que denominamos "core", presente em várias estirpes, estabelecer a sua posição na célula bacteriana, a sua frequência e a sua natureza química.
Para esclarecer este último ponto usaram-se técnicas de citoquímica ultras-trutural e digestões enzimáticas praticadas nos cortes ultrafinos.

11 - Estudo da acção da lisozima, formação de protoplastos e isolamento do "core".
MATERIAL E MÉTODOS
1 - Estirpes Bacterianas

Usamos neste trabalho as seguintes estirpes bacterianas:

<table>
<thead>
<tr>
<th>QUADRO I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organismo</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>GRUPO 1</td>
</tr>
<tr>
<td>Geodermatophilus obscurus subesp. obscurus</td>
</tr>
<tr>
<td>Geodermatophilus obscurus subesp. utahensis</td>
</tr>
<tr>
<td>Geodermatophilus obscurus subesp. dictyosporus</td>
</tr>
<tr>
<td>Blastococcus aggregatus</td>
</tr>
<tr>
<td>GRUPO 2</td>
</tr>
<tr>
<td>Geodermatophilus obscurus</td>
</tr>
<tr>
<td>Geodermatophilus obscurus subesp. dictyosporus</td>
</tr>
<tr>
<td>Geodermatophilus obscurus</td>
</tr>
</tbody>
</table>

No grupo 1 incluímos todas as estirpes que foram objecto de estudo mais detalhado e no grupo 2 estão incluídas as estirpes que episódicamente serão consideradas neste trabalho.

(1) Estirpes cedidas pelo Dr. Morris Gordon, N. Y. State Department of Health, Albany, N. Y. EUA.

(2) Estirpe cedida pelo Dr. Edward Ishiguro, University of British Columbia, Vancouver, Canadá.

* As designações iniciais atribuídas às várias estirpes serão mantidas ao longo deste trabalho.
2 - Meios e condições gerais de cultura.

As várias estirpes foram cultivadas em diversos meios cuja composição a seguir descrevemos.

O meio líquido YDC-NZ (53) é constituído por 0,5% de extracto de levedura (Difco), 0,5% de amina NZ tipo A (Sheffield Chemical Norwich, New York), 1% de glicose (Difco), 2% de amido solúvel (J. T. Baker Chemical, Co., Philing, N. Y.) e 0,1% de carbonato de cálcio (Fisher). O meio sólido YDC-NZ tem a mesma composição, acrescida de 1,5% de agar (Difco), sendo nos dois casos o pH final ajustado a 6,5.

Os meios TYB, TYA e CB foram preparados de acordo com os trabalhos de Ishiguro e Wolfe (49). O meio líquido TYB é constituído por 2% de triptose (Difco), 0,2% de extracto de levedura (Difco), 0,2% de glicose e 0,5% de cloreto de sódio (Baker Analysed). O meio sólido TYA tem a mesma composição e ainda 1,5% de agar, sendo o pH destes dois meios ajustados a 7,0. O meio líquido CB é constituído por 0,2% de "casamino acids" (Difco), 0,2% de glicose (Difco), 0,1% de mistura de vitaminas e 1,0% de solução mineral. O pH final deste meio é ajustado a 7,0. Da composição da mistura de vitaminas e da solução mineral, (143) fazem parte os seguintes elementos:

Mistura de vitaminas em mg/litro: biotina 2mg, ácido fólico 2 mg, riboflavina 5 mg, cloreto de piridoxina 10 mg, tiamina 5 mg, ácido nicotínico 5 mg, ácido pantoténico 5 mg, vitamina B1 0,1 mg, ácido P-aminobenzoico 5mg, ácido tiótico 5 mg.

Solução mineral em g/litro: ácido nitrilotriacético 1, 5g, sulfato de magnésio 3,0g, sulfato de manganêsio 0,5g, cloreto de sódio 1,0g, sulfato de ferro 0,1g, cloreto de cálcio 0,1g, cloreto de cobalto 0,1g, sulfato de zinco 0,1g, sulfato de cobalto 0,01g, sulfato duplo de alumínio e potássio 0,01g, ácido bórico 0,01g e molibdato de sódio 0,01g.

As várias estirpes foram mantidas nos meios sólidos YDC-NZ e TYA, distribuídos em tubos (20x125mm), com rolha de tarracha, à temperatura ambiente (20-25°C) sendo transferidas duas vezes por mês.

A partir dos meios de cultura de manutenção foram inoculados novos meios sólidos e líquidos e incubados a 30°C. As culturas dos meios líqui-
dos foram continuamente agitadas, excepto quando pretendemos estudar determi-
minadas características culturais.

3 - Curvas de crescimento.

As curvas de crescimento de várias estirpes (G-4, G-7, G-8, G-17, 22-
68 e B-15) foram estabelecidas após leituras das absorbâncias durante 11
dias, no meio líquido YDC-NZ, inoculado com uma ansa calibrada de células
obtidas de culturas em meio sólido com 20 dias de incubação. As leituras
foram efectuadas a 660nm num espectrofotômetro (modelo Spectronic 20,
Bausch e Lomb, Inc., Rochester, N. Y.) usando como branco o mesmo meio de
cultura YDC-NZ não inoculado.

4 - Actividades biológicas.

4.1 - Provas bioquímicas

4.1.1 - Utilização dos carbohidratos.

O estudo da utilização dos carbohidratos e produção de ácido, foi fei-
to de acordo com Luedemann(54), pela utilização de um meio básico consti-
tuído por: 0,25% de extracto de levedura (Difco); 0,1% de carbonato de cálcio
(Merck); 1,5% de agar e 1% do indicador de Andrade.

A este meio foi adicionado 1% dos vários carbohidratos; o glicerol
foi adicionado na concentração de 2%. O indicador de Andrade acima referi-
do é constituído por 0,15g de fucsina ácida, 15ml de hidróxido de sódio 1N
e água destilada até perfazer o volume total de 100ml. O pH final do meio
de cultura foi ajustado a 7,4-7,5. A observação dos resultados foi feita ao
7º e 14º dias.

O estudo da hidrólise do amido foi feito com base nos trabalhos de
Gordon e Mihm (44). Usamos um meio de cultura de cuja composição fazem par-
te: peptona, 5g; extracto de carne, 3g; agar 15g; amido de batata 10g e á-
gua destilada 1.000ml, sendo o pH final do meio ajustado a 7,0. A sementeii-
ra foi executada em duas placas, incubadas a 28ºC e a observação fez-se ao
quinto e décimo dia. A hidrólise era apreciada pela presença de uma zona
clara e transparente em volta do crescimento bacteriano após serem lança-
dos sobre os meios semeados, cerca de 10ml de álcool a 95%.
4.1.2. - Hidrólise da gelatina e caseína.

O estudo da hidrólise da gelatina foi feito igualmente de acordo com a técnica de Gordon e Mihm (44). O meio de cultura utilizado tem a mesma composição que o meio de amido, havendo apenas a substituição do amido pela gelatina (4g/l). A sementeira, a incubação e a leitura dos resultados fez-se de modo semelhante ao indicado para a hidrólise do amido. O soluto destinado a evidenciar a hidrólise de gelatina é constituído por cloreto mercúrico, 15 g; ácido clorídrico concentrado 20ml e 100ml de água destilada.

O estudo da hidrólise da caseína fez-se segundo os trabalhos de Gordon e Smith (43), sendo o meio de cultura usado constituído por uma solução aquosa de leite desnatado a que foi adicionado igual quantidade de agar a 2%.

O meio de cultura foi semeado, incubado a 28ºC, e observado ao sétimo e décimo quarto dia para pesquisa de zonas clarificadas em volta do crescimento bacteriano.

4.1.3. - Redução dos nitratos.

Esta redução foi apreciada no meio de cultura constituído por: peptona 5g; extrato de carne, 3g; nitrato de potássio, 1g; água destilada, 1.000ml e pH ajustado a 7,0. Após 5, 10 e 14 dias de incubação a 28ºC, uma pequena porção de caldo (1ml) era retirada e sobre ela eram lançadas 3 gotas de cada um dos seguintes solutos:

a) Ácido sulfanílico 8g, em 1.000ml de ácido acético 5N (uma parte de ácido acético glacial para 2,5 partes de água);

b) Dimetilalfa-naftilamina 6ml em 1.000ml de ácido acético 5N.

A presença de nitritos é indicada pelo aparecimento de cor vermelha.

4.2 - Acção hemolítica.

A pesquisa de hemolisinas foi feita em meio de cultura adicionado de 5% de sangue humano. A incubação fez-se a 30ºC e a observação das placas correu até oito dias.
5 - Preparação de amostras para microscopia óptica.

Estudamos a morfologia e o ciclo de crescimento das várias estirpes observando preparações a fresco entre lâmina e lamela, usando o campo claro ou contraste de fase e preparações coradas pelo método de Gram. Algumas preparações foram coradas utilizando o método de sudão negro (13) tendo em vista a visualização de inclusões lipídicas.

Os microscópios ópticos que usamos foram um Leitz Ortolux e um Foto-microscópio Zeiss. O primeiro estava equipado com condensador Heine e objetivas apocromáticas a seco e imersão a óleo. O segundo estava equipado com um condensador universal e objetivas Neofluar para contraste de fase.

As microfotografias ópticas foram feitas utilizando filme Panatomic x (Kodak). A ampliação inicial foi de 400x, ampliando-se fotograficamente até às dimensões pretendidas.

6 - Preparação de amostras para microscopia electrónica.

O estudo ultraestrutural das várias estirpes foi realizado usando microscópio electrónico de transmissão, com técnicas de ultramicrotomia, coloração negativa (negative-staining) e crio-fractura (freeze-etching).

6.1 - Cortes ultrafinaos.

Após diferentes períodos de incubação nos meios de cultura atrás mencionados, ensaiamos nas diversas estirpes, vários esquemas de fixação.

Em algumas experiências a pós-fixação pelo acetato de uranilo da técnica RK foi omitida.

6.1.2 - Fixação pelo glutaraldeído-tetróxido de ósmio-acetato de uranilo (GA/RK/AU). O glutaraldeído (GA) foi utilizado quer para fixar bactérias separadas por centrifugação do meio líquido, quer para fixar as bactérias suspensas no meio de cultura.

O soluto fixador de glutaraldeído em tampão de cacodilato de sódio (pH 6,8-6,9) adicionado de cálcio apresenta-se em todos os casos com as seguintes concentrações finais: 3% de glutaraldeído, 0,1M de cacodilato de sódio e
0,01M de cloreto de cálcio. O tempo de fixação oscilou entre 1 e 2 horas à temperatura ambiente (−25°C). As células foram em seguida lavadas, primeiro em tampão de cacodilato de sódio (0,1M com pH 6,8 – 6,9) adicionado de 0,01M de cloreto de cálcio, e em seguida com tampão de acetato de veronal segundo RK (88). As bactérias foram em seguida fixadas pelo tetrotóxido de ósmio a 1% e acetato de uranilo segundo os moldes já apontados no método RK (6.1.1.).

6.1.3 - Fixação pelo permanganato de potássio e acetato de uranilo (KMnO₄/AU).

Recolhemos as células bacterianas por centrifugação e fizemos a sua fixação numa solução aquosa de permanganato de potássio a 0,6 e 5% durante 2 horas à temperatura ambiente. Após breve lavagem com acetato de uranilo a 0,5% deixamos aquela solução actuar durante uma hora à temperatura ambiente (27, 56 e 67).

6.1.4 - Fixação em presença de vermelho de ruténio.

A partir do meio líquido e após a habitual centrifugação as células foram ressuspensas em:

6.1.4.1 - Solução de glutaraldeído a 3% em tampão de cacodilato de sódio 0,1M contendo 0,01M de cloreto de cálcio e 1mg/ml de vermelho de ruténio (K&K Gurr’s) (10), durante 2-3 horas à temperatura ambiente (81). Fizeram-se duas lavagens com tampão acetato de veronal segundo RK (88) e em seguida as bactérias foram fixadas em tetrotóxido de ósmio a 1% no mesmo tampão adicionado de 1mg/ml de vermelho de ruténio, durante 4 horas à temperatura ambiente.

6.1.4.2 - Solução de tetrotóxido de ósmio a 1% em tampão de acetato de veronal (RK) com 1mg/ml de vermelho de ruténio, durante 4-6 horas à temperatura ambiente (54 e 55).

6.1.4.3 - Soluções a 0,15% de vermelho de ruténio em 0,1M cacodilato de sódio, durante 20 ou 60 minutos (14). Após a centrifugação, as bactérias foram fixadas de acordo com 6.1.4.1.

A partir do meio sólido, as bactérias foram retiradas com a ansa ou vareta de vidro e fixadas segundo os esquemas 6.1.4.1 e 6.1.4.2.

Em qualquer dos casos o vermelho de ruténio que utilizamos sofreu um processo de purificação segundo o método de Luft descrito por Brooks (10).
6.1.5 - Fixação pelo formaldeído-glutaraldeído-tetróxido de ósmio-acetato de uranilo (FA/GA/RK/AU).

Os protoplastos obtidos após a acção da lisozima, foram fixados numa solução a 4% de formaldeído e 1,25% de glutaraldeído adicionado de 10mM de cloreto de cálcio (112). O fixador actua durante duas a dezasseis horas à temperatura ambiente seguido do tetróxido de ósmio e acetato de uranilo, segundo a técnica de Ryter e Kellemberger (88).

6.1.6 - Doseamento do cálcio.

O íon cálcio foi doseado no meio de cultura YDC-NZ, logo após a sua preparação; após a adição de 1/10 de tampão RK com 1% de Ca²⁺; e após cerca de 52 horas de incubação do meio previamente inoculado com as várias estirpes em estudo.

O doseamento do cálcio foi realizado pelo método do azul de metiltimol, que se baseia no facto de, em meio alcalino, o cálcio formar com o azul de metiltimol, um complexo azul cuja intensidade é proporcional à concentração do íon. As leituras foram efectuadas num espectofotometro Bausch e Lomb, modelo 2100.

6.1.7 - Inclusão em agar.

Após todas as fixações utilizadas, as bactérias foram incluídas em agar segundo a técnica preconizada por Ryter e Kellemberger (88).

6.1.8 - Desidratação e inclusão.

As soluções de etanol destinadas à desidratação foram preparadas usando etanol (US. Industrial Chemical, Co) e água bidestilada e desionizada. Estas soluções nas concentrações de 50,70 e 90% quando não preparadas extemporaneamente foram conservadas a 4°C, embora por um período não superior a 2-3 dias.

O óxido de propileno (Polyscience, Inc. Rydal, Penna, 19046) e a acetona pura (J. T. Chemical Co, Phillipburg, N. Y.), foram, tal como as soluções de etanol, conservados a 4% sendo trazidos à temperatura ambiente apenas na altura da sua utilização.

Embora com algumas variações, o esquema base da desidratação que utilizamos foi o seguinte:

Breve lavagem com etanol a 50%; duas passagens em etanol a 70%, 10
minutos cada; duas passagens em etanol a 90%, 15 minutos cada; duas passagens em etanol absoluto, 20 minutos cada; uma passagem em mistura em partes iguais de etanol absoluto e óxido de propileno, 20 minutos.

Nesta altura foi adicionada uma quantidade igual de mistura epoxi ao óxido de propileno e, após cuidadosa mistura, permaneceu em repouso à temperatura ambiente durante a noite, embora com eventuais períodos de agitação. As resinas epoxi empregues foram o Epon 812 para o método Luft (58) e o ERL-4206 (Dióxido de Vinil-Ciclohexano) para o método de Spurr (123). Na manhã seguinte o óxido de propileno ou acetona (em casos raros) foi evaporado com o auxílio de vácuo para o caso das preparações em que se utilizou o Epon 812.

Fizemos em seguida uma nova mudança em resina epoxi de preparação recente e distribuímos o material em cápsulas de gelatina (excepcionalmente em cápsulas BEEM).

A polimerização fez-se no caso do método de Luft (58) a 45°C durante 48 horas e no caso do método Spurr (123) a 80°C durante 12 horas.

A resina epoxi (Epon 812), os anidridos e o catalizador (DMP-30) usados para as várias inclusões foram obtidas da casa Ladd Research Industries, Inc., sendo a mistura final preparada de acordo com o método de Luft (58).

Usamos também, conforme atrás foi mencionado, a resina epoxi de baixa viscosidade descrita por Spurr (TAAB Laboratories, Emmer Green, Reading, Inglaterra) empregando sistematicamente a composição tipo apresentada por aquele autor (123).

A conservação dos vários componentes fez-se à temperatura ambiente; as misturas após a sua preparação foram mantidas a -10°C.

6.1.9 - Ultramicrotomia e coloração.

Fizemos cortes semifinos e cortes ultrafinos utilizando o ultramicrotomo III, LKB), usando para o efeito respectivamente facas de vidro e facas de diamante.

Os cortes semifinos foram recolhidos com ansa de platina para uma gota de água sobre uma lâmina de vidro e depois corados com uma solução a 1% de azul de toluidina. Estes cortes serviram-nos como orientação para os cortes ultrafinos.
Os cortes ultrafinos foram executados no mesmo ultramicrotomo no qual foi montada uma faca de diamante (E. I. Du PONT de NEMOURS, & Co. Inc. ou LKB). Os cortes cinzentos de vários tons (luz de interferência) foram recolhidos em grelhas de cobre de malha 200, 300 ou 400 (n° de cat. 4829A-24, 4829A-25 e 4829A-26 da LKB). Algumas dessas grelhas foram previamente cobertas de membranas "formvar", colôdio ou "zaponlack" preparadas segundo as técnicas convencionais e revestidas ou não de carbono.

Utilizamos grelhas de ouro de malha 300 (Ladd Research Industries, Inc.) para recolher os cortes ultrafinos que posteriormente foram preparados segundo a técnica de Thiéry.

As grelhas com os cortes foram em seguida coradas, para microscopia convencional, utilizando sucessivamente uma solução aquosa de acetato de uranilo durante 10-30 minutos (139) e uma solução de citrato de chumbo durante 2-5 minutos (133).

Utilizamos também cortes em série (60-70nm) que recolhemos em grelhas de buraco único (1x2nm, n° de catálogo 4829A-33 ou 1,0nm de diâmetro, n° de catálogo 4829A-32 da LKB) revestidos de colôdio e carbono; coramos estes cortes como se indica acima. Em várias circunstâncias usamos cortes ultrafinos recolhidos nas habituais grelhas de cobre para estudar os efeitos da oxidação. O peróxido de hidrogénio a 3% e o ácido periódico a 1% actuaram sobre os cortes durante períodos diferentes de tempo, sendo por último contrastados pelo citrato de chumbo (133).

6.1.10 - Métodos citocuímicos.

6.1.10.1 - Extracção pela prónase.

Alguns cortes ultrafinos de material incluindo em Epon 812 foram tratados com prónase (Protease repurificada tipo VI obtida a partir do Streptomycyes griseus, dos Laboratórios Sigma Chemical Corp., St. Louis, Missouri) (79) segundo o método de Monneron e Bernhard (70).

A concentração de prónase que utilizamos foi de 1% em água bidestilada e desionizada, neutralizada com hidróxido de sódio 0,01N, até pH 7,4 ou tampão acetato de veronal ajustado ao mesmo pH.

Os períodos de incubação com aquela enzima variaram de 30 a 120 minutos à temperatura de 40ºC. Após o tratamento enzimático lavamos os cortes
em água destilada. Incubamos os cortes de controle em soluções contendo a enzima inactivada pelo calor (aquecimento a 100°C durante 10-15 minutos) ou em água destilada com pH ajustado a 7,4, por períodos de tempo iguais aos que usamos para a prónase activa.

Antes do tratamento pela prónase fizemos a oxidação (Silva, 1976) (104) dos cortes ultrafinos com uma solução a 3% de peróxido de hidrogénio durante 30 minutos à temperatura ambiente.

Observamos estes cortes após a dupla coloração pelo acetato de urânio e citrato de chumbo.

6.1.10.2 - Localização de polissacáridos.

Os cortes ultrafinos de material incluído em resina epoxi, segundo Spurr (123), foram obtidos do modo habitual e recolhidos em grelhas de ouro, não revestidas, com malha 300 (Ladd Research Industries, Inc., Burlington, Vermont, EUA). Aquelas grelhas com cortes aderentes, flutuaram à superfície das várias soluções segundo a técnica de Thiéry (127).

Fizemos uma prévia oxidação dos cortes numa solução de ácido periódico a 1% em água bidestilada e desionizada, durante 35 minutos à temperatura ambiente seguida de uma lavagem cuidadosa com água bidestilada e desionizada. Os cortes foram tratados depois por uma solução a 0,2% de tiocarbohidrazida em 20% de ácido acético durante 40 minutos, também à temperatura ambiente. Fizemos em seguida lavagens cuidadosas em soluções de ácido acético a 10% e a 5% e finalmente em água bidestilada. Após o tratamento pelo proteinato de prata a 1% em água durante 30 minutos, à temperatura ambiente, fizemos novamente lavagens em água bidestilada e desionizada (82). Afin de avaliarmos a especificidade dos depósitos de prata, fizemos de acordo com Petitprez e Derieux(82) a observação de cortes tratados:

a) Só com ácido periódico a 1%.

b) Com ácido periódico seguido da acção do proteinato de prata.

6.2 - Coloração negativa (Negative-staining).

O uso desta técnica teve como finalidade a visualização dos flagelos. Para o efeito, as células bacterianas foram cultivadas em meio líquido YDC-NZ por períodos de incubação que variaram entre 6 e 24 horas a 30°C. O corante empregue foi uma solução de fosfotungstato de potássio com pH ajusta-
32
do a 7,0 e em concentrações que variaram entre 0,5-1%.

6.3 - Crio-fractura (Freeze-etching).

Para os estudos de crio-fractura escolhemos a estirpe G-7 que foi cultivada no meio líquido YDC-NZ. Após diferentes períodos de incubação a 30°C, as bactérias foram concentradas por centrifugação. Ao sedimento celular adicionamos glicerol a 20% e a mistura obtida foi congelada rapidamente a -150°C em Freon 22 e conservada em azoto líquido. As réplicas foram obtidas utilizando um aparelho Balzer's seguindo a técnica descrita por Moor e Mühlethaler (71), nos seus passos essenciais. Montamos as réplicas em grelhas de cobre com revestimento de "Parlódio" ou sem qualquer revestimento.

7 - Produção dos protoplastos e isolamento dos "cores."

Para a formação de protoplastos, as células bacterianas foram recolhidas na fase logarítmica (fase com apreciável quantidade de células cocóides) e de seguida suspensas em tampão fosfato 0,1M pH 7,0 adicionado de lisozima (0,4mg/ml), sacarose (34%) e magnésio (10mM). A incubação foi feita à 37°C durante várias horas. A formação de protoplastos foi observada por exame sucessivo de preparações entre lâmina e lamela.

O isolamento da inclusão citoplasmática "core" foi processado em várias fases: lição osmótica dos protoplastos por ressuspensão destes em tampão fosfato 0,05M (pH7,0) e agitação mecânica; tratamento do lisado com DNase, e ião Mg e dissolução das estruturas membranosas com 1,0% de Triton X-100 em tampão fosfato 0,05M, pH7,0. A recuperação final dos "cores" foi feita por centrifugação a alta velocidade (Centrifuga Refrigerada Sorval RC-5 a 25.000 G durante 45 minutos).

8 - Observação ao microscópio electrónico.

Observamos e fotografamos os cortes ultrafinos em três diferentes microscópios:

8.1 - Microscópio electrónico Siemens I trabalhando a 60kv com um único condensador e com diaframas do condensador 400µ e de objectiva de 50µ.

8.2 - Microscópio electrónico Siemens Elmiskop IIA trabalhando a 80Kv, com um sistema de duplo condensador e com diafraagma de objectiva de 50µ.

8.3 - Microscópio Zeiss EM 9A trabalhando a 60Kv com um único condensador. O diafraagma do condensador era de 150µ, os diaframas da objectiva
de 100μ, 50μ, 25μ e os diaframas intermédios de 250, 200 e 150μ.

Fizemos as fotografias com ampliação de 10.000x a 20.000x no microscópio Siemens I, 10.000x a 40.000x no microscópio Siemens IA e 1.700x no microscópio Zeiss EM 9A.

Nos microscópios Siemens usamos placas fotográficas Kodak Electronic Image Plates ou películas Scientia film 23D56, que foram reveladas para velocidade e grão médio em revelador Kodak HRP ou G5P respectivamente.

No microscópio Zeiss EM 9A usamos películas fotográficas Scientia sheet film (Agfa-Gevaert Inc.) que foram reveladas em Du Pont 53 D.

Os positivos foram feitos em papel Agfa-Brovira de dureza 2 a 6, utilizando os ampliadores Simmons-Omega e Durst. Para a determinação das dimensões de várias estruturas nas ultramicrografias usamos a lupa Mitutoyo (série nº 183).

9 - Densitometria.

Fizemos a densitometria directamente dos negativos usando um aparelho "Double beam recording Microdensitometer MKIIICS" (Joyce, Loebl e Co. Lda, Inglaterra), com uma fenda de 1nm e relação de braço de 1/50.
RESULTADOS
1 - Aspectos macroscópicos das culturas

As estirpes G-4, G-5, G-7, G-8, G-9, G-17, 22-68 e B-15, foram inoculadas em diversos meios de cultura, nomeadamente YDC-NZ sólido e líquido, meio TYA, TYB, CB, e incubadas entre os 25-35°C em aerobiose.

No meio sólido YDC-NZ todas as estirpes cresceram bem nas condições acima referidas, embora a morfologia e pigmentação das suas colónias fossem diferentes. As figs. 1 e 2 mostram o aspecto geral do crescimento de algumas daquelas estirpes naquele meio e a evolução da cor das suas colónias. A estirpe G-17 (Fig. 1a e 2a) formou colónias lisas e mucóides, de cor inicial verde escuro que se torna progressivamente mais escuro. A estirpe G-9 (Fig. 1b e 2b) apresentou crescimento de aspecto liso de cor rosea que se acentua com a idade das culturas. A estirpe G-7 (Fig. 1c e 2c) desenvolveu crescimento de aspecto liso com uma cor inicial rosa pálido mas que se torna progressivamente verde escuro, acabando por atingir quase o negro. A estirpe 22-68 (Fig. 1d e 2d) e o B-15 (Fig. 1e e 2e) formaram colónias lisas cor de laranja. As colónias da estirpe B-15 distinguem-se das 22-68 por se apresentarem mais baças. A estirpe G-4 tem um comportamento semelhante à G-7 no que diz respeito à evolução da cor das colónias. As culturas em meio líquido YDC-NZ, distribuído em tubos de ensaio e incubadas sem agitação, mostraram ao fim de 5 dias aspectos diferentes nas várias estirpes e que podemos agrupar do modo seguinte: as estirpes G-7 e 22-68 produziram franco sedimento e abundante turvação difusa do sobrenadante; a estirpe B-15 mostrou sedimento e turvação granular; a estirpe G-9 mostrou sedimento sem qualquer turvação do sobrenadante e a estirpe G-17 formou menos sedimento com ausência total de turvação no sobrenadante.

No meio sólido TYA, que usamos como cultura de manutenção e apenas em algumas experiências, as estirpes mostraram um crescimento relativamente menos abundante que no meio sólido YDC-NZ e com o aspecto que a seguir
Figuras 1 e 2 - Aspecto geral do crescimento das várias estirpes no meio sólido YDC-NZ: a) G-17; b) G-9; c) G-7; d) 22-68; e) B-15.

Figura 1 - Culturas com incubação a 30º C durante 4 dias.

Figura 2 - Mesmas culturas referidas na Fig. 1 com incubação durante 7 dias. De notar as diferenças depigmentação entre as várias estirpes, bem como as suas modificações com o prolongamento do período de incubação.
descrevemos: a estirpe G-17 formou colônias de aspecto liso e pigmentação negra; a estirpe G-9 mostrou colônias lisas pouco brilhantes de cor rosada; as estirpes 22-68 e B-15 apresentaram colônias lisa, brilhantes, cor de laranja, sendo a cor da primeira menos intensa.

2 - Observações ao microscópio óptico.

2.1 - Morfologia celular.

As diversas estirpes foram cultivadas nos meios de cultura atrás mencionados e as suas células foram retiradas após períodos variáveis de incubação (3 horas a 10 dias), para observação ao microscópio óptico.

Em qualquer uma das estirpes, incluindo a B-15, notamos uma variedade de formas e tamanhos celulares que podemos agrupar do seguinte modo:

1 - Formas cocóides
2 - Formas elípticas ou lanceoladas, móveis
3 - Formas filamentosas
4 - Formas intermediárias

As formas cocóides são grosseiramente esféricas, cubóides ou triangulares, isoladas (fig. 3c) ou associadas em agregados (fig. 5c, 6c, 7c). Estes tornam-se progressivamente mais abundantes à medida que aumenta o tempo de incubação.

A estirpe G-9 é a que de um modo geral apresenta células cocóides de maiores dimensões e as estirpes 22-68 e B-15 as de menores dimensões. A estirpe G-7 situa-se numa posição intermediária entre os dois grupos acima referidos.

Os agregados de elementos cocóides em todas as estirpes estudadas apresentaram-se constituídos por um número variável de células ao longo de todo o tempo de incubação observado.

As formas móveis (fig. 3m) tem um aspecto bacilar, elíptico ou lanceolar e como o próprio nome indica, apresentam mobilidade.

As estirpes G-7 e 22-68 são as que apresentam maior número de formas móveis. A estirpe B-15 forma relativamente poucas formas móveis e nas estirpes G-9 e G-17 só raramente pudemos observar aquelas células.
Figuras 3 a 7 - Morfologia das várias estirpes em meio líquido YDC-NZ. Cultura em aerobiose com agitação e incubação a 30°C. As imagens apresentadas são representativas da totalidade da população bacteriana. As abreviaturas usadas são as seguintes: células cocóides (c), células móveis (m), células filamentosas (f), células intermediárias (i) e gêmulas (g). Observações em microscopia óptica de contraste de fase após 48 horas de incubação. Ampliação: 800x.

Figura 3 - Estirpe G-7
Pleomorfismo acentuado com a presença simultânea de células cocóides (c), móveis (m), filamentosas (f) e intermediárias (i). Notar a relativa abundância de formas móveis. Gêmulas em formação (g).

Figura 4 - Estirpe G-9
Agregados de células cocóides. Notar a presença de uma célula filamentosa (f) e de uma célula em gemulação (g).

Figura 5 - Estirpe 22-68
Aspecto comparável ao da Fig. 3

Figura 6 - Estirpe B-15
Aspectos semelhantes aos da Fig. 3 e 5, excepto no predomínio de formas cocóides (c), algumas das quais em agregados maiores que os que são vistos naquelas figuras.

Figura 7 - Estirpe G-17
Mostra exclusivamente agregados de células cocóides (c).
As formas filamentosas (fig. 3f, 4f e 5f) são alongadas e com um comprimento que ultrapassa o diâmetro médio das células cocóides.

As formas intermediárias são as células originárias de células móveis e filamentosas que aumentam o seu volume e que estão no processo de evolução para células cocóides que irão formar os agregados.

Não observamos formas ramificadas em nenhuma das estirpes apresentadas neste estudo.

Em observações realizadas em esfregaços corados pela técnica de Gram verificamos que todas as células são Gram positivo, embora nas culturas com período de incubação mais longos, algumas células se comportem como Gram negativo.

Observações realizadas após coloração pelo sudão negro permitem verificar inclusões sudanófilas em todas as estirpes.

2.2 - Ciclo de crescimento.

As observações que fizemos ao microscópio óptico permitiram verificar a existência de ciclos de crescimento relativamente semelhantes nas várias estirpes e compreender a sequência das várias formas encontradas ao longo da curva de crescimento (Fig. 8 e 10). Tendo em conta as observações feitas em culturas agitadas no meio YDC-NZ com incubação a 30°C, verificamos que o ciclo mais complexo é observado nas estirpes G-4, G-7, G-8, 22-68 e B-15, embora nesta haja uma pequena proporção de células móveis (Fig. 8d), filamentosas (Fig. 8e) e intermediárias (Fig. 8f). O tipo de crescimento dominante nas estirpes G-9 e G-17 é a formação de novas células cocóides por um processo de divisão múltipla, esquematizado na fig. 9.

3 - Curvas de crescimento.

As curvas de crescimento das várias estirpes ensaiadas estão representadas na fig. 11.

A fase de latência nas várias estirpes foi variável, tendo-se prolongado até cerca de 12 horas nas estirpes G-7 e 22-68 e cerca de 24 horas nas estirpes G-4, G-8 e B-15. A estirpe G-17 teve uma fase de latência relativamente mais prolongada tendo atingido cerca de 3 dias e meio.

Figura 8 - Estirpe G-7
a - Agregados de células cocóides;
b - Idem;
c - Formação de gémulas;
d - Células móveis;
e - Células filamentosas;
f - Células intermediárias;
g - Início de formação de agregados.

Figura 9 - Estirpe G-17
a - Agregados de células cocóides;
b - formação de novas células cocóides;
Ver texto para pormenores destes ciclos.
Figura 10 - Interpretação do ciclo de crescimento no *Geodermatophilus*. Observação em microscopia electrónica de transmissão, pela técnica de cortes ultra-finos das várias formas que, em nosso entender, podem corresponder aos aspectos característicos indicados no texto.
Comparar com imagens idênticas da Fig. 8 (microscopia óptica)
Figura 11 - Curvas de crescimento de várias estirpes do _Géo-dermatophilus e Blastococcus._

a - Estirpe G-7;
b - Estirpe 22-68;
c - Estirpe G-17;
d - Estirpe G-4;
e - Estirpe G-8;
f - Estirpe B-15.

Culturas agitadas em meio líquido YDC-NZ com inóculo preparado conforme indicado no texto.
A fase logarítmica das estirpes G-4 e G-7 estendeu-se até cerca de 4 dias, ao passo que na estirpe B-15 e G-8 aquela fase vai até ao quinto dia. Na estirpe 22-68 a fase exponencial terminou aos 7 dias e na estirpe G-17 aos 10 dias.

Em todas as estirpes, a fase logarítmica é seguida por uma fase de declínio.

Os pontos máximos de absorvância encontrados são variáveis com a estirpe estudada, sendo máxima para a G-7 e mínima para a B-15.

Fizemos a regressão linear pelo método dos quadrados mínimos entre o logaritmo natural da absorbância lida e o dia de leitura, para a fase linear da curva de cada estirpe. Os resultados obtidos estão indicados no quadro II.

<table>
<thead>
<tr>
<th>QUADRO II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>G-4</td>
</tr>
<tr>
<td>G-7</td>
</tr>
<tr>
<td>G-8</td>
</tr>
<tr>
<td>G-17</td>
</tr>
<tr>
<td>22-68</td>
</tr>
<tr>
<td>B-15</td>
</tr>
</tbody>
</table>

a - termo independente
b - coeficiente do termo dependente
CMD - crescimento médio diário na fase logarítmica
TGM - tempo de geração média na mesma fase

4 - Provas biológicas.

4.1 - O comportamento das várias estirpes no que diz respeito à utilização dos vários carbohidratos e à produção de ácido está indicado no quadro III.

O crescimento bacteriano foi anotado do seguinte modo:

1 - Crescimento semelhante ao tubo controlo constituído pelo meio básico sem carbohidrato.
2 - Crescimento moderadamente superior ao controlo.
3 - Crescimento francamente superior ao controlo.
A produção de ácido é traduzida pela viragem de cor do indicador de pH e foi anotada do seguinte modo:

a - Viragem esporádica ou transitória
A - Viragem relativamente consistente

A leitura dos resultados foi feita de acordo com o trabalho original de Luedemann (50), embora em nosso entender o critério utilizado não nos pareça satisfatório. O interesse de compararmos os nossos resultados com os obtidos por Luedemann não permitiu que alterássemos o seu critério.

4.2 - O quadro IV mostra o comportamento das várias estirpes em relação com a hidrólise do amido, hidrólise da gelatina e da caseína, redução dos nitratos e produção de hemólise beta.

QUADRO III

<table>
<thead>
<tr>
<th></th>
<th>G-4</th>
<th>G-7</th>
<th>G-8</th>
<th>G-17</th>
<th>22-68</th>
<th>B-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Arabinose</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1a</td>
<td>1</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>1a</td>
<td>1a</td>
<td>1a</td>
<td>1</td>
<td>1a</td>
<td>1A</td>
</tr>
<tr>
<td>D-Galactose</td>
<td>1</td>
<td>2a</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>3</td>
<td>3a</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Glicerol</td>
<td>1A</td>
<td>1a</td>
<td>1A</td>
<td>1A</td>
<td>2A</td>
<td>1A</td>
</tr>
<tr>
<td>Inositol</td>
<td>2</td>
<td>1</td>
<td>2a</td>
<td>1A</td>
<td>1a</td>
<td>1a</td>
</tr>
<tr>
<td>Beta-Lactose</td>
<td>1</td>
<td>2A</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D-Fructose</td>
<td>2a</td>
<td>3a</td>
<td>2A</td>
<td>2A</td>
<td>2A</td>
<td>2A</td>
</tr>
<tr>
<td>D-Manitol</td>
<td>1</td>
<td>2A</td>
<td>1</td>
<td>2</td>
<td>1A</td>
<td>1</td>
</tr>
<tr>
<td>Melezitose</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L-Ramnose</td>
<td>1</td>
<td>2A</td>
<td>1a</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>1a</td>
<td>2a</td>
<td>1</td>
<td>1</td>
<td>1a</td>
<td>2a</td>
</tr>
<tr>
<td>Sacarose</td>
<td>1a</td>
<td>2a</td>
<td>2a</td>
<td>1</td>
<td>1A</td>
<td>2A</td>
</tr>
<tr>
<td>D-Xilose</td>
<td>2</td>
<td>2a</td>
<td>1</td>
<td>3</td>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

* Poli-alcoois que se comportam metabolicamente como carboidratos

QUADRO IV

<table>
<thead>
<tr>
<th></th>
<th>G-4</th>
<th>G-7</th>
<th>G-8</th>
<th>G-17</th>
<th>22-68</th>
<th>B-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amido</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatina</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Caseína</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitratos</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>Beta hemólise</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

0 sinal + indica reacção não consistente, o - reacção positiva e o - reacção negativa
5 - Observações ao microscópio electrónico.

Em microfotografia de cortes ultrafinos fizemos medições das várias formas celulares. As formas cocóides das várias estirpes tem diâmetros que oscilam entre 0,5 a 2,5µm. As formas móveis, de morfologia elíptica ou lancelolada têm um comprimento de cerca de 1µm e 0,4µm de largura. As formas filamentosas podem atingir e até ultrapassar os 5µm de comprimento sendo a largura muito variável.

As formas intermediárias, pelas características próprias destas formas, não foram medidas. Sucessivamente serão apresentados os resultados obtidos pela aplicação da técnica dos cortes ultrafinos, coloração negativa e crio-fractura. Recorremos a estas três técnicas visto elas nos fornecerem dados complementares.

5.1 - Cortes ultrafinos
5.1.1 - Invólucros bacterianos
5.1.1.1 - Camada mucóide (Slime layer)

Nestas bactérias é relativamente frequente encontrarmos um material de elevada densidade electrónica localizado por fora da parede celular (Fig. 12, 13, 14, 15 e 16). Este material de superfície foi observado em células que tinham sido cultivadas em meios líquidos (Fig. 12, 13 e 14) e sólidos (Fig. 15), embora a camada mucóide fosse relativamente mais abundante neste último caso.

Das várias estirpes, a G-9 e G-17 foram as que mostraram com maior abundância e regularidade este material, ocupando as estirpes G-7 e G-8 o lugar imediato. As restantes estirpes (B-15, G-4 e G-5) mostram camadas relativamente mais reduzidas.

O estudo ultraestrutural da camada mucóide revelou aspectos diferentes nas várias estirpes estudadas e em cada uma variou de acordo com o tipo de fixação utilizado.

Na estirpe G-7 e após fixação RK sem prefixação, a camada mucóide, mostrou uma estrutura fibrilar, sobretudo bem visível nas zonas periféricas (Fig. 12). Pelo contrário, entre as células dos agregados, este material apresenta uma maior densidade electrónica devido à junção das suas fibrilas que por este facto perdem a sua individualização (Fig. 12 e 20). Esta mesma estirpe, após a fixação GA/RK/AU, mostra uma estrutura igualmente fibri-
Figura 12 - Agregado de células cocóides da estirpe G-7.
Cultura em meio líquido YDC-NZ com 5 dias de incubação.
Fixação: RK sem pré-fixação.
Inclusão: Epon.

Notar os elementos fundamentais destas células bacterianas:
Camada mucóide (CM), parede celular (PC), membrana citoplasmática (MC), citoplasma (C), ribossomas (R), nucleóide (N), inclusões lipídicas (L), inclusões polissacarídeas (P), "core" (CR), mesossomas (M).
Ampliação: 42000x.
Fixação: GA/RK/AU.
Inclusão: Epon.
Notar a camada mucóide de estrutura fibrilar embora de aspecto ligeiramente mais compacto que na fixação RK (Figs. 12 e 20). Membrana citoplasmática (MC) aproximadamente simétrica e descontínua. Mesossomas (M) simples e DNA (N) fibrilar. Ampliação: 60000x

Fixação: GA/RK/AU.
Inclusão: Epon.
Notar a camada mucóide com acentuada agregação, perdendo-se o aspecto homogéneo que pode ser visto após fixação RK (Fig. 22). Membrana citoplasmática (MC) simétrica e descontínua. DNA (N) fibrilar.
Ampliação: 60000x
lar, embora com um aspecto mais compacto que na fixação RK, mesmo nas zonas periféricas (Fig. 13).

A estirpe G-9 após fixação RK mostrou uma boa individualização das fibrilas constituintes da camada mucóide (Fig. 21) sendo, como na estirpe G-7, mais abundante entre as células cocóides dos agregados.

Usando a fixação RK na estirpe G-17 (Fig. 22), a camada mucóide apresenta-se formada por um material homogéneo, com aspecto não fibrilar muito abundante entre as células cocóides dos agregados. Na mesma estirpe, após fixação GA/RK/AU (Fig. 14), a camada mucóide mostra uma acentuada agregação, perdendo-se o aspecto homogéneo visto na fixação RK.

A camada mucóide das bactérias fixadas pelo tetróxido de ósmio e glutaraldeído-tetróxido de ósmio adicionados de vermelho de ruténio, ou nas bactérias que são pré-fixadas com soluto de vermelho de ruténio antes da fixação, apresenta aspectos muito diferentes, desde uma reacção considerada como duvidosa (Fig. 16) até uma reacção francamente positiva (Fig. 15).

Nos cortes tratados pela técnica de Thiéry verificamos uma deposição de grãos de prata na camada mucóide de todas as estirpes ensaiadas (Fig. 17, 18 e 19), a traduzir uma reacção positiva.

5.1.1.2 - Parede celular

A parede celular destas bactérias apresenta-se de um modo geral bem definida em todas as formas, independentemente da fase do seu ciclo de crescimento (Fig. 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27 e 28). Tal como se observou em outras bactérias de Gram positivo (36), mostrou também de um modo geral uma estrutura de densidade homogénea, sem estratificação aparente.

Salientemos no entanto que ocasionalmente foi possível observarmos a existência de duas camadas na parede celular: uma camada interna sempre visível e com elevada densidade electrónica e uma camada externa praticamente electrono-transparente, só visível em algumas fixações, especialmente nas que foi adicionado vermelho de ruténio (Fig. 25). O aspecto ultraestrutural da parede celular após as várias fixações utilizadas não apresentou alterações importantes, excepto na fixação GA/RK/AU (Fig. 24) em que a parede mostrou ter um contorno exterior mais regular. Em todas as outras fixações aquele contorno foi em geral irregular e maldefinido.
Figura 15 - Células cocóides da estirpe B-15
Cultura em meio YDC-NZ com 5 dias de incubação.

Fixação: Pré-incubação das células em cacodilato de sódio 0,1M com 0,15% de vermelho de ruténio durante 20 minutos, seguida da fixação em GA em cacodilato de sódio e 0,15% de vermelho de ruténio.

Inclusão: Epon.

Camada mucóide (CM) com aspecto muito agregado e com contraste positivo com o vermelho de ruténio. Membrana citoplasmática (MC) simétrica e DNA (N) fibrilar.
Ampliação: 60000x

Figura 16 - Célula cocóide e possivelmente parte de duas células móveis (lado esquerdo da figura) da estirpe G-7.
Cultura em meio líquido YDC-NZ com 2 dias de incubação.

Fixação: RK sem pré-fixação adicionado de vermelho de ruténio.

Inclusão: Epon.

Camada mucóide moderadamente agregada e sem sinais de contraste positivo pelo vermelho de ruténio. Membrana citoplasmática simétrica ou ligeiramente assimétrica, mesossomas simples e DNA fibrilar.
Ampliação: 60000x
Figuras 17 a 19 - Aspecto de cortes tratados pela técnica de Thiéry.

Figura 17 - Zona entre células da estirpe G-9.
Cultura em meio sólido YDC-NZ com 4 dias de incubação.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Reacção positiva ao nível da camada mucóide (CM). Na parte superior esquerda vemos uma pequena célula com reacção positiva nas inclusões polissacarídeas intracelulares.
Ampliação: 60000×.

Figura 18 - Célula cocóide da estirpe G-9.
Condições de cultura, fixação e inclusão iguais às da Fig. 17.
Reacção positiva ao nível da camada mucóide (CM) e das inclusões polissacarídeas (P) intracelulares; reacção moderada na parede celular (PC).
Ampliação: 60000×.

Figura 19 - Célula cocóide da estirpe G-17.
Cultura em meio sólido YDC-NZ com 4 dias de incubação.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Reacção positiva ao nível da camada mucóide (CM) e das inclusões polissacarídeas (P) intracelulares; reacção moderada na parede celular (PC).
Ampliação: 60000×.
Figuras 20 a 22 - Agregados de células cocóides.

Cultura em meio sólido YDC-NZ (Figs. 21 e 22) ou em meio líquido YDC-NZ (Fig. 20) com 4 dias de incubação.

Fixação: RK sem pré-fixação.

Inclusão: Epon.

Notar em todas as estirpes a existência de uma parede celular (PC) relativamente espessa. Observar ainda três aspectos diferentes da camada mucóide (CM), apresentando-se sob a forma de fibrilas compactas na estirpe G-7 (Fig. 20), fibrilas dispersas na G-9 (Fig. 21) e aspecto homogêneo não fibrilar na estirpe G-17 (Fig. 22).

Membrana citoplasmática (MC) aproximadamente simétrica (ligeiramente assimétrica em algumas zonas da fig. 21) e mesossomas (M) simples (Fig. 20) e vesiculares (Fig. 22)

Ampliação: 60000x.
Figuras 23 e 24 - Parede celular de formas cocóides em divisão, da estirpe G-7.
Cultura em meio líquido YDC-NZ com 48 horas de incubação.
Comparar a espessura da parede celular nas Figs. 23 e 24.
Ampliação: 80000x.

Figura 23 - Fixação: RK sem pré-fixação.
Inclusão: Epon.
Membrana citoplasmática (MC) ligeiramente assimétrica.

Figura 24 - Fixação: GA/RK/AU.
Inclusão: Epon.
Notar na parede celular a sua superfície com aspecto mais regular, neste tipo de fixação.
Membrana citoplasmática (MC) simétrica.

Figura 25 a e b - Aspectos ocasionais de parede celular, consistindo por uma camada interna e uma externa, na estirpe B-15.
Cultura em meio sólido YDC-NZ com 5 dias de incubação.
Fixação: RK sem pré-fixação adicionado de vermelho de rutênio.
Inclusão: Spurr.
Ampliação: 140000x.
Há diferenças na espessura da parede celular das formas cocóides dos agregados, nas diversas estirpes. O valor médio que encontramos após a fixação pela técnica RK, em células cultivadas no mesmo meio e com igual período de incubação, foi de 40nm para a estirpe G-7 e 45, 60, 30 e 25nm para as estirpes G-9, G-17, 22-68 e B-15 respectivamente.

Nas formas móveis (Fig. 26 e 27) e filamentosas (Fig. 28) a parede celular apresentou uma espessura média de 15nm, valor que foi comum às várias estirpes estudadas. A espessura média da parede celular da gémula (Fig. 34 e 64) foi 15nm.

A aplicação da técnica de Thiéry (127) a cortes ultrafinos revelou a presença de grãos de prata sob a forma de pontuado discreto depositado ao longo da parede celular (Fig. 19 e 47b).

A oxidação dos cortes ultrafinos pelo peróxido de hidrogénio ou ácido periódico, seguido da coloração pelo citrato de chumbo nos moldes já efectuados para outras bactérias (104), originou uma perda de densidade electrónica da parede celular nas várias estirpes (fig. 59 e 60).

A formação de protoplastos a partir de células bacterianas intactas, nas várias estirpes, foi possível pela acção da lisozima. Dos vários métodos ensaiados verificamos que aquele que deu melhores resultados inclui a acção de uma solução de lisozima em tampão fosfato (pH 7,0) (ver materiais e métodos), adicionado da sacarose e magnésio. (Fig. 72).

5.1.1.3 - Membrana citoplasmática
5.1.1.3.1 - Células intactas

A membrana citoplasmática surge encostada à face interna da parede celular a significar que o espaço periplasmático é virtual (Fig. 23, 24, 25, 27, 28 e 32). É formada por duas bandas de elevada densidade electrónica separadas por uma zona transparente, isto é, apresenta uma estrutura tripla. O perfil da membrana citoplasmática foi estudado nas várias estirpes bactérianas em relação a várias fixações e a dois tipos de coloração: coloração dupla pelo acetato de uranilo e citrato de chumbo e coloração simples pelo citrato de chumbo.

5.1.1.3.1.1 - Coloração dupla pelo acetato de uranilo e citrato de chumbo.
Figuras 26 e 27 – Células móveis da estirpe G-7, cultivada em meio líquido YDC-NZ durante 24 horas.
Estas células apresentam uma forma elíptica ou lanceolada, com uma parede celular pouco espessa relativamente às formas cocóides. Os (F) representam cortes de flagelos em várias incidências.
Membrana citoplasmática (MC) ligeiramente assimétrica, mesossomas complexos do tipo misto e DNA fibrilar, com algumas zonas de aspecto agregado.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000x.

Figura 28 – Célula filamentosa da estirpe 22-68.
Cultura em meio líquido YDC-NZ durante 48 horas.
Notar as suas dimensões relativamente às formas móveis.
Mesossomas simples de pequenas dimensões com aspecto em anel.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000x.
Cultura em meio YDC-NZ com 48 horas de incubação.
Notar a parede celular (PC) fina e de superfície regular e na célula da esquerda um septo (S) equatorial completo. A membrana citoplasmática (MC) é simétrica em várias zonas. Verificar a presença de uma "membrana" de folheto simples em algumas inclusões lipídicas (L). DNA moderadamente agregado.
Fixação: GA/RK/AU.
Inclusão: Epon.
Ampliação: 60000×.

Figura 30 - Agregado de células cocóides em divisão, da estirpe B-15.
Cultura em meio líquido YDC-NZ com 52 horas de incubação.
Notar a presença de mesossomas (M) grandes e complexos de configuração mista (vesículo-lamelares) e formação de septos (S) em diferentes planos incluindo um longitudinal, em que a cada uma das duas zonas densas da parede celular corresponde uma das células contíguas, e estão separadas por uma zona electrono-transparente. DNA (N) fibrilar.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000×.
Figura 31 - Agregado cocóide da estirpe G-17 com septação irregular.

Cultura em meio sólido YDC-NZ com 4 dias de incubação.

Notar uma parede celular (PC) espessa e uma camada mucóide (CM) homogénea e abundante, e DNA fibrilar.

Fixação: RK sem pré-fixação.

Inclusão: Epon.

Ampliação 50000x.

Figura 32 - Agregado cocóide da estirpe G-9 com septação em planos perpendiculares.

Cultura em meio sólido YDC-NZ com 5 dias de incubação.

Notar uma parede celular (PC) um pouco menos espessa que na fig. anterior, e em dois septos a estrutura tripla descrita na fig. 30. Camada mucóide (CM) abundante constituída por material fibrilar. A membrana citoplasmática (MC) é aproximadamente simétrica e DNA fibrilar.

Fixação: RK sem pré-fixação.

Inclusão: Epon.

Ampliação: 60000x.
Quando a coloração dos cortes é feita pela ação do acetato de urânio seguido de citrato de chumbo, o aspecto da membrana citoplasmática é diferente consoante a fixação utilizada. Após a fixação pelo método RK sem pré-fixação a geometria do perfil da membrana citoplasmática é variável de célula para célula, por vezes dentro do mesmo corte, predominando o perfil de geometria aproximadamente simétrico (Fig. 39b). Quando o perfil é assimétrico (Fig. 39a) esta assimetria não é habitualmente muito marcada e neste caso o folheto externo é mais espesso e/ou mais denso que o folheto interno.

O mesmo método RK mas com pré-fixação determinou aspectos da membrana diferentes nas várias estirpes: ligeiramente assimétrico na estirpe G-7 (Fig. 34) e G-9 ou simétrico na estirpe B-15 (Fig. 45). Após a fixação RK com pré-fixação não seguida de pós-fixação pelo acetato de urânio, a membrana citoplasmática surge sempre simétrica nas várias estirpes (G-9, G-17, B-15) (Fig. 46) e 22-68. A excepção é dada pela estirpe G-7 em que o perfil é ligeiramente assimétrico.

A fixação RK sem pré-fixação e sem pós-fixação pelo acetato de urânio realizada num número limitado de experiências demonstrou a existência de membranas de perfil simétrico (Fig. 39). Após fixação pelo GA/RK/AU, a geometria do perfil da membrana é também um pouco variável, mas com larga predominância de perfis simétricos (Fig. 24, 29, 35, 36 e 40a), por vezes desconínuos (Fig. 13 e 14). O perfil assimétrico também pode ser observado (Fig. 40b).

Após a fixação pelo permanganato de potássio nas concentrações de 0,6 e 5% seguido de acetato de urânio, as membranas não são geralmente visíveis. No entanto na estirpe 22-68 e após fixação por uma solução aquosa a 5% de permanganato de potássio, foi possível observar a membrana citoplasmática, a qual aparece simétrica e frequentemente descontínua (Fig. 42, 43 e 44).

É de referir que nos casos da estirpe G-9 e, sobretudo G-17, a membrana citoplasmática frequentemente aparece com sinais de preservação deficiente após qualquer das fixações usadas (Fig. 14 e 31).

5.1.1.3.1.2 - Coloração simples pelo citrato de chumbo.

Quando a coloração dos cortes é feita apenas pelo citrato de chumbo, o perfil da membrana citoplasmática, estudada na estirpe G-7 e para as fi-
Cultura em meio sólido YDC-NZ com 5 dias de incubação.

Notar septação múltipla e anárquica originando um agregado de elementos pleomórficos. Setas brancas indicam zonas entre células vizinhas, em que já há material do tipo do da camada mucóide. Membrana citoplasmática (MC) com zonas de perfil assimétrico. Os mesossomas (M) são pequenos e simples, a camada mucóide (CM) tem abundante material fibrilar e parede celular (PC) idêntica à da fig. 32.

Fixação: RK sem pré-fixação.

Inclusão: Epon.

Ampliação: 60000x.
Figura 34 - Célula cocóide da estirpe G-7, com formação de uma gémula.

Cultura em meio líquido YDC-NZ com 48 horas de incubação.

Notar a forma dos septos (S) da divisão celular, um dos quais (S₁) apresenta próximo um mesossoma (M) volumoso do tipo vesicular. A membrana citoplasmática (MC) é ligeiramente assimétrica e o nucleóide (N) com aspecto pouco compacto, frequentemente nas inclusões em Spurr.

Fixação: RK sem pré-fixação.

Inclusão: Spurr.

Ampliação: 60000x.

Figura 35 - Célula cocóide em divisão da estirpe G-7.

Cultura em meio líquido YDC-NZ com 5 dias de incubação.

Notar a parede celular (PC) fina e de superfície regular, início de formação de septo (S) com a presença de um mesossoma (M) simples em dedo de luva. A membrana citoplasmática (MC) e a membrana mesossômica apresentam um perfil geralmente simétrico. DNA moderadamente agregado.

Fixação: GA/RK/AU.

Inclusão: Epon.

Ampliação: 60000x.

Figura 36 - Célula cocóide da estirpe G-7.

Cultura em meio líquido YDC-NZ com 48 horas de incubação.

Parede celular (PC) fina e superfície regular, com membrana citoplasmática (MC) simétrica em largas zonas.

Notar a presença de mesossomas (M) lamelares, compactos, tipo figura de mielina. DNA moderadamente agregado.

Fixação: GA/RK/AU.

Inclusão: Epon.

Ampliação: 60000x.

Notar a parede celular (PC) espessa e a geometria simétrica dos restos da membrana citoplasmática (MC). Conteúdo citoplasmático praticamente desaparecido, sem ribossomas ou material nuclear.

Fixação: OA/RK adicionado de vermelho de rutênio e pós-fixado com acetato de urânio.

Inclusão: Epon.

Ampliação: 80000x.
Figura 38 - Agregado de células cocóides, em líse, da estirpe G-17.
Cultura em meio líquido YDC-NZ com 15 dias de incubação.

Fixação: GA/RK/AU.
Inclusão: Epon.

Notar a parede celular (PC) de aspecto irregular com sinais evidentes (setas) de degradação.
Membrana citoplasmática (MC) simétrica e conteúdo intracelular geralmente reduzido a fibrilas de DNA (N) e ribossomas (R).
Ampliação: 80000x.
Figura 39 - Traçados densitométricos do perfil da membrana citoplasmática das situações mais frequentes, descritas no texto; exemplos referentes a células exponenciais da estirpe G-7, no meio líquido YDC-NZ.

Figura 39a - Perfil assimétrico.
Fixação: RK sem pré-fixação.
Coloração: AU/Pb.

Figura 39b - Perfil praticamente simétrico.
Fixação: Idem.
Coloração: Idem.

Figura 39c - Perfil acentuadamente assimétrico.
Fixação: Idem.
Coloração: Pb.

Figura 39d - Perfil simétrico.
Fixação: RK com pré-fixação.
Coloração: AU/Pb.
Figura 40 - Traçado densitométrico do perfil da membrana citoplasmática das situações mais frequentes descritas no texto; exemplos referentes a células exponenciais da estirpe G-7 no meio líquido YDC-NZ.

Figura 40a - Perfil simétrico.
Fixação: GA/RK/AU.
Coloração: AU/Pb.

Figura 40b - Perfil assimétrico.
Fixação: Idem.
Coloração: Idem.

Figura 40c - Perfil acentuadamente assimétrico.
Fixação: Idem.
Coloração: Pb.

Fixação: Idem.
Coloração: AU/Pb.
ações RK e GA/RK/AU é sempre acentuadamente assimétrico (Fig. 39c e 40c respectivamente).

5.1.1.3.2. - Células em lise.

O perfil da membrana citoplasmática das células em lise é sempre assimétrico, independentemente da estirpe, do método de fixação e do método de coloração usado (Fig. 38 e 40d).

5.1.1.3.3 - Protoplastos.

O perfil da membrana citoplasmática dos protoplastos é assimétrico, após fixação FA/GA/RK/AU e coloração dupla pelo acetato de uranilo e citrato de chumbo (Fig. 72).

Nos cortes tratados pela técnica de Thiéry (127) observamos uma discreta reacção positiva na membrana citoplasmática (Fig. 47a); a observação de um número limitado de preparações, sugere que a deposição dos grãos de prata se faz no folheto exterior da membrana citoplasmática.

O estudo densitométrico da membrana citoplasmática permitiu quantificar os aspectos ultrastruturais do seu perfil. Os resultados obtidos estão indicados no quadro V.

QUADRO V

Representação esquemática do traçado densitométrico ortogonal à membrana citoplasmática

![Diagrama esquemático do traçado densitométrico ortogonal à membrana citoplasmática](image)

<table>
<thead>
<tr>
<th>RK s/pré-f.</th>
<th>RK s/pré-f.</th>
<th>RK</th>
<th>GA/RK</th>
<th>GA/RK</th>
<th>GA/RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiação s/pré-f.</td>
<td>Fiação s/pré-f.</td>
<td>GA/RK</td>
<td>GA/RK</td>
<td>GA/RK</td>
<td>GA/RK</td>
</tr>
<tr>
<td>AU/Pb</td>
<td>Pb</td>
<td>AU/Pb</td>
<td>Pb</td>
<td>AU/Pb</td>
<td></td>
</tr>
<tr>
<td>a mm</td>
<td>5,83</td>
<td>6,0</td>
<td>6,0</td>
<td>5,28</td>
<td>6,0</td>
</tr>
<tr>
<td>C %</td>
<td>52,1</td>
<td>54,2</td>
<td>51,6</td>
<td>45,4</td>
<td>60,0</td>
</tr>
<tr>
<td>D %</td>
<td>47,9</td>
<td>45,8</td>
<td>48,4</td>
<td>54,6</td>
<td>40,0</td>
</tr>
<tr>
<td>E %</td>
<td>69,2</td>
<td>62,9</td>
<td>59,2</td>
<td>60,8</td>
<td>84,3</td>
</tr>
<tr>
<td>G %</td>
<td>30,8</td>
<td>37,1</td>
<td>40,8</td>
<td>39,2</td>
<td>15,7</td>
</tr>
</tbody>
</table>
a - Distância em nanómetros entre os pontos indicados no esquema.
A e B - Áreas correspondentes no traçado de cada folheto da membrana.
A* e B - Percentagem relativa daquelas áreas.
C e D - Percentagem relativa das distâncias b e c indicadas no esquema.

Folheto A - correspondente ao folheto externo, isto é, o folheto do lado da parede celular.

Estes resultados são as médias de um número variável de observações (entre 6 e 10) realizadas, em cada caso, a partir dos mesmos negativos.

5.1.1.4 - Mesossomas.

Os mesossomas foram observados frequentemente nas células destas bactérias embora apresentando uma grande variação no seu tamanho, configuração e número por célula.

Quando usamos a técnica RK sem pré-fixação, os mesossomas são simples (Fig. 16, 20, 28, 35, 51, 53, 55 e 67), complexos do tipo vesicular (Fig. 22 e 65) ou ainda do tipo misto (Fig. 26, 27 e 30) e apresentam membranas com um perfil semelhante ao da membrana citoplasmática respectiva.

Após a mesma técnica, mas com pré-fixação e pós-fixação pelo acetato de uranilo, os mesossomas surgem também com aspectos diferentes, em relação com as várias estirpes ensaiadas. Assim na estirpe B-15, os mesossomas são em geral volumosos, do tipo lamelar (Fig. 45) e nas restantes estirpes surgem sob a forma vesicular (Fig. 34). A mesma fixação sem pós-fixação pelo acetato de uranilo, revela mesossomas do tipo lamelar na estirpe B-15 (Fig. 46), configuração vesicular (G-7) ou mista (G-17).

O doseamento de cálcio feito no meio de cultura YDC-NZ recém preparado, após a adição do tampão RK com 10mM de cloreto cálcio e após um período de incubação de cerca de 3 dias não revelou grande diferença nos valores encontrados (respectiveivamente 8,6; 9,7 e 7,2mg/100ml).

Quando fixamos as células pelo GA/RK/AU os mesossomas aparecem com o tipo lamelar (Fig. 36 e 63) ou simples (Fig. 13 e 35).

Após a fixação pelo permanganato de potássio não vimos mesossomas em qualquer das estirpes estudadas, incluindo a estirpe 22-68, a qual, como indicamos, é a única em que conseguimos observar a membrana citoplasmática.
Figura 41 - Tipos morfológicos de mesossomas encontrados em células do *Geodermatophilus*.

Figura 41c - Estirpe 22-68. Mesossomas simples em anel duplo.

com este tipo de fixação (Fig. 42, 43 e 44).

Os mesossomas foram vistos por vezes em contacto com a membrana citoplasmática (Fig. 67), como o septo em formação na divisão celular (Fig. 35 e 51) e com áreas do DNA (Fig. 26 e 27).

5.1.2 - Compartimento intracelular.

5.1.2.1 - Nucléoide

O aspecto ultraestrutural do DNA é dependente do processo de fixação usado. Assim os resultados que encontramos após a fixação RK com ou sem pré-fixação (Fig. 30 e 31) mostram-nos as fibras de DNA bem individualizadas, aspecto que é igualmente observado após a fixação pelo KMnO₄/AU (Fig. 42, 43 e 44). O DNA fibrilar é ainda patente nas imagens obtidas após a fixação FA/GA/RK/AU (Fig. 72). A fixação RK com pré-fixação não seguida da ação do acetato de urânio mostra invariavelmente fibras de DNA agregadas (Fig. 46). Após a fixação GA/RK/AU (Fig. 29, 35 e 36) verificamos que as fibras de DNA se mostram sempre agregadas, algumas vezes com o aspecto de blocos grosseiros largamente separados entre si. Salientemos ainda que em todos os casos em que fizemos a inclusão pelo uso da resina Spurr, o DNA apresenta-se com um aspecto pouco compacto (Fig. 34).

As áreas ocupadas pelo DNA aparecem-nos como zonas de baixa densidade electrónica em relação ao citoplasma envolvente e a sua localização na célula é muito variável. Nas células cocóides, o DNA distribui-se, de um modo geral, na área central do corpo bacteriano, embora por vezes se apresente espalhado por diversas zonas. Nas células móveis e filamentosas, o nucléoide estende-se habitualmente ao longo do corpo bacteriano. A observação dos protoplastos revela a presença de DNA, ocupando, regra geral, a zona central da célula mas apresentando sempre um aspecto menos compacto que nas células intactas (Fig. 72).

5.1.2.2 - Citoplasma.

O citoplasma das células bacterianas aparece-nos constituído por uma matriz filamente granular, especialmente após a fixação pelo GA/RK/AU, e por grânulos diversos em número muito variável que pelas suas características correspondem aos ribossomas (Fig. 12, 13 e 29).

Estes distribuem-se por todo o citoplasma constituindo unidades separadas, embora por vezes, se vejam agrupados em determinadas zonas, como,
Figuras 42 a 44 - Estirpe 22-68.

Cultura em meio líquido YDC-NZ com 48 horas de incubação.

Fixação: KMnO₄/AU.

Inclusão: Spurr.

Célula cocóide originando possivelmente uma forma filamentosãsa (Fig. 42) e formação de uma gêmula (Fig. 43). A fig. 44 mostra pormenores da parede celular (PC) e membrana citoplasmática (MC) com maior ampliação (120000x).

Notar uma preservação satisfatória do nucleóide (N) e ausência de ribossomas. Áreas polissacarídeas (P) de densidade superior às obtidas pela fixação com ósmio (RK). A membrana citoplasmática (MC) está irregularmente preservada e, nas zonas onde é possível observar-se, apresenta um perfil simétrico.

Ampliação: 60000x.
por exemplo, em volta da área do DNA.

5.1.2.3 - Inclusões intracitoplasmáticas.

O citoplasma destas bactérias é sede de três tipos diferentes de inclusões.

5.1.2.3.1 - Inclusões lipídicas.

O resultado das observações ao microscópio óptico após a coloração pelo sudão negro, foram a primeira indicação da presença de depósitos lipídicos em todas as estirpes estudadas. De facto, no citoplasma destas bactérias observamos áreas de dimensões muito diversas com fraca densidade electrónica e parecendo não ter qualquer distribuição especial na célula. Estas zonas de forma geralmente circular ou ovóide, por vezes alongadas, e cujo número por corte é muito variável, foram interpretadas como representando áreas de material extraído durante o processo de preparação para microscopia electrónica. Verificamos que o número e bem assim as dimensões daquelas áreas se tornam progressivamente maiores com a idade da cultura, contudo o diâmetro destas inclusões está habitualmente situado entre 0,1 e 0,2µm. Após a fixação RK com ou sem pré-fixação (Fig. 49, 50 e 51), as granulações lipídicas são geralmente delimitadas por uma delgada "membrana" com uma só camada com cerca de 4nm de espessura, sendo facilmente visível mesmo em células não lisadas.

Quando usamos a fixação GA/RK/AU aquela "membrana" é também visível, embora por vezes apresente interrupções e irregularidades (Fig. 29).

Na fixação KMnO₄/AU (Fig. 42, 43 e 44) as áreas lipídicas apresentam-se de um modo geral de configuração irregularmente ovóide e de dimensões menores que na fixação RK. Ao contrário do que foi observada nas outras estirpes, a estirpe 22-68 após a fixação KMnO₄/AU a 5% mostrou uma "membrana" irregular delimitando as inclusões lipídicas (Fig. 42, 43 e 44).

5.1.2.3.2 - Inclusões de polissacarídeos.

Observamos na quase totalidade das células das várias estirpes deste actinomiceto a presença de pequenas zonas de contornos irregulares, não delimitadas por membranas. Estas áreas mostram-se quase sempre sob a forma de aglomerados que ocupam grandes extensões do citoplasma bacteriano.
Figuras 45 e 46 - Estirpe B-15.
Efeito da omissão da pós-fixação pelo acetato de uranilo sobre a densidade das inclusões polissacarídeas (P). Membrana simétrica em ambos os casos e mesossomas (M) lamelares, de membranas simétricas.
Cultura em meio líquido YDC-NZ com 54 horas de incubação.
Ampliação: 60000x.

Figura 45 - Fixação: RK completo.
Inclusão: Spurr.
Notar a baixa densidade das inclusões polissacarídeas (P).

Figura 46 - Fixação: RK com pré-fixação e sem pós-fixação.
Inclusão: Spurr.
Notar a maior densidade das áreas polissacarídeas (P) em comparação com a figura anterior. Observar que o nucleóide se apresenta fibrilar na fig. 45 e agregado na fig. 46.
Figura 47 - Estirpe G-7 cultivado em meio líquido YDC-NZ com 54 horas de incubação.
Cortes tratados pelo método Thiéry sem qualquer coloração posterior.
Aspecto geral das deposições de prata na parede celular, membrana citoplasmática e citoplasma. Áreas de DNA (N) inclusões lipídicas (L) e "core" (CR). Notar a formação inicial de um septo (S).
Fixação: RK sem pré-fixação.
Inclusão: Spurr.
Ampliação: 60000x.

Figuras 47a, 47b, 47c - Maiores ampliações (120000x) mostram do pormenores da deposição de grãos de prata. Esta deposição acentuada ao nível das inclusões (P), discreta ao nível da parede celular (PC) e da membrana citoplasmática (MC) - só visível na fig. 47a - e nula nas restantes regiões da célula.
Figura 48 - Traçado densitométrico do perfil de estruturas segundo a direcção indicada pela seta, na fotografia. Pormenor da fig. 50.

Notar o perfil da membrana citoplasmática (MC) praticamente simétrica e a "membrana" de folheto simples da inclusão lipídica (L).
Quando usamos a técnica RK completa seguida de pós-fixação pelo acetato de uranilo (Fig. 45) verificamos que as áreas acima citadas se apresentavam com menos densidade electrónica, quando comparadas com idênticas zonas do citoplasma de bactérias retiradas da mesma cultura e que haviam sido fixadas pelo mesmo método RK não seguido pelo tratamento com o acetato de uranilo (Fig. 46).

A aplicação da técnica de Thiéry (Fig. 18 e 19) mostrou depósitos de grãos de prata dispostos em grupo, nas áreas referidas atrás. De um modo geral estes agrupamentos são bastante numerosos embora a sua quantidade seja variável de célula para célula (Fig. 18, 19, 47, 47a,b e c).

5.1.2.3.3 - "Core".

Nas estirpes G-4, G-7 (Fig. 49, 50, 51 e 52), G-8, G-17 (Fig. 53 e 54) 22-68 (Fig. 55) e B-15 (Fig. 45), observamos a presença de uma estrutura intracitoplasmática que chamamos "core".

Estes "cores" aparecem como estruturas aproximadamente cilíndricas com um comprimento variável entre 0,1 e 0,5 μm e uma largura também variável mas à volta de 160nm. O contorno exterior desta inclusão é por vezes um tanto indefinido, não havendo qualquer indício de membrana envolvente.

Em células intactas, a densidade electrónica dos "cores" em cortes ultrafinos corados com acetato de uranilo e citrato de chumbo, é sensivelmente idêntica à da parede celular e a sua estrutura é aparentemente homogénea (Fig. 50 e 55). Após o tratamento com H₂O₂, em cortes de células intactas, esta inclusão mostra ser constituída por fibras paralelas (Fig. 60).

Os "cores" foram encontrados em células que haviam sido cultivadas em meio YDC-NZ líquido ou sólido e também em meio TYA e TYB, (49) independentemente da temperatura e período de incubação. Estão presentes em todas as formas celulares do ciclo de crescimento embora sejam raras nas células mais jovens (formas móveis). Observamos estas estruturas após várias técnicas de fixação, como o RK (Fig. 45, 49 e 53), GA/RK/AU (Fig. 52) e FA/GA/RK/AU (Fig. 72). Não foram encontradas diferenças significativas quanto à preservação do "core" nos métodos de fixação acima indicados.

A frequência do aparecimento de "cores" nas células das várias estirpes estudadas foi diferente, mas nunca foram encontrados nas estirpes G-5,
Figuras 49 a 58 - Vários aspectos do "core" nas estirpes G-7, G-17 e 22-68, em diversas formas celulares e com várias fixações.

Figuras 49 a 51 - Estirpe G-7.
Cultura em meio sólido YDC-NZ com 4 dias de incubação.

Notar a presença do "core" cortado em várias incidências. Na fig. 49 o "core" apresenta-se encostado numa grande extensão à membrana citoplasmática (MC), numa forma filamentosa. Na fig. 50, o aspecto pode ser interpretado como sendo um "core" de forma encurvada. De notar as inclusões lipídicas (L) envolvidas por uma "membrana" de folheto simples. Na fig. 51, notar um "core" situado na zona de septação da célula. Ao septo (S) está ligado um mesossoma (M) longo e simples formado pela invaginação em forma de dedo de luva da membrana citoplasmática (MC).

Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 40000x.
Figura 52 - Célula da estirpe G-7.

Cultura em meio líquido YDC-NZ com 40 horas de incubação.

Na célula superior o "core" apresenta-se ondulado e na célula inferior aquela estrutura está a preencher o espaço deixado pela septação incompleta, ocupando zonas citoplasmáticas das duas células filhas.

De notar as inclusões lipídicas (L) que mostram "membranas" muito bem visíveis e que a membrana citoplasmática (MC) está muito bem contrastada, e de perfil geralmente simétrico. A parede celular (PC) é fina e de superfície regular. Áreas polissacarídeas (P) de densidade superior à observada nas imagens correspondentes às fixações em que a pós-fixação pelo acetato de uranilo também foi utilizada.

Fixação: GA/RK/AU.

Inclusão: Spurr.

Ampliação: 60000x.

Figura 52a - Detalhe em maior ampliação da zona de septação, mostrando o que poderá ser o processo de divisão de um "core" com formação de duas metades, posteriormente pertencentes a cada uma das células filhas.

Ampliação: 80000x.
Figuras 53 e 54 - Estirpe G-17.
Cultura em meio sólido YDC-NZ com 4 dias de incubação.
Notar "cores" (CR) cortados em várias incidências e apresentando um contraste moderado. Parede celular (PC) espessa, membrana citoplasmática pouco visível, mesossomas (M) em geral pequenos e simples. As áreas polissacarídeas (P) aparecem com zonas de muito baixa densidade.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 40000x.

Figura 55 - Estirpe 22-68.
Cultura em meio líquido YDC-NZ com 48 horas de incubação.
Corte longitudinal de uma célula lanceolada em gemulação, mostrando um "core" ligeiramente encurvado que ocupa áreas citoplasmáticas das duas células em formação. A membrana citoplasmática (MC) é bem visível e ligeiramente assimétrica e os mesossomas (M) são simples. A seta indica um desses mesossomas (M) formado pela invaginação da membrana citoplasmática (MC).
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000x.
Figura 56 - Série de 6 cortes sucessivos de uma célula em gemulação, da estirpe G-17.
Cultura em meio líquido YDC-NZ com 5 dias de incubação.
De notar a presença de um "core" ligeiramente encurvado em corte longitudinal.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000x.
Figura 57 - Série de 10 cortes sucessivos de uma célula co-coide em septação múltipla da estirpe G-7.
Cultura em meio líquido YDC-NZ com 4 dias de incubação.
De salientar a presença de um "core" que ocupa zonas cito-plasmáticas das várias células em formação.
Fixação: GA/RK/AU.
Inclusão: Epon.
Ampliação: 30000×.
Cultura em meio sólido YDC-NZ durante 4 dias.
Série de cortes destinados a mostrar o "core" com configuração helicoidal.
Fixação: GA/RK/AU.
Inclusão: Epon.
Ampliação: 43200x (Fig. 58a e b), 37800x (Fig. 58c e d)
G-8 e G-9 do *G. obscurus*. Embora como referimos atrás a percentagem de "cores" seja variável, pode atingir valores na ordem dos 65% como é o caso da estirpe G-7. Para obter aquele número foi feito o estudo da sequência completa de cortes seriados, tendo aquela estirpe (G-7) sido cultivada em meio YDC-NZ durante 4 dias à temperatura de 30°C.

O "core" quando presente na célula é sempre único, embora seja possível observar-se o mesmo "core" situado entre duas células com o septo ainda incompleto. O que poderá ser o processo de divisão de um "core" com início de formação de duas metades mais tarde pertencentes às células filhas, está ilustrado na Fig. 52 e 52a.

Embora os "cores" surjam habitualmente como formações rectilíneas no maior número de casos, o facto é que se observou, em baixa percentagem, aquela estrutura sob a forma encurvada e algumas vezes enrolada em espiral.

A reconstituição tridimensional mostrou os "cores" ocupando, por via de regra, uma posição central na célula (Fig. 56 e 57), embora em certos casos se encontrem lateralizados (Fig. 49). Não nos pareceu haver qualquer relação entre os "cores" e a membrana citoplasmática, ou quaisquer outras estruturas celulares, ainda que por vezes, estejam situados muito próximos da membrana citoplasmática.

Tendo em vista o estudo da natureza química desta estrutura, ensaiamos duas técnicas diferentes: método de Thiéry e extracção pela prónase (36 e 64). A observação de cortes tratados pelo método de Thiéry (113) não revelou qualquer posição de grãos de prata na área do "core" (Fig. 47).

O estudo de cortes ultrafinos previamente oxidados pelo peróxido de hidrogénio e em seguida tratados com prónase mostrou que a extracção enzimática se iniciou aos 30 min. se bem que de modo muito discreto. Tornou-se aparente após 60 minutos de incubação com prónase e nas incubações mais prolongadas (90 e 120 minutos), os "cores" foram extensamente extraídos (Fig. 61 e 62). Nos cortes que flutuaram na solução enzimática inactivada ou na água destilada com pH ajustado a 7,4 não observamos qualquer indício de extracção (Fig. 59 e 60).

Estes resultados foram observados em cortes de bactérias que haviam sido fixadas pelo petróxido de ósmio (RK/AU) (Fig. 61 e 62) e GA/RK/AU, não se verificando diferenças significativas na acção da solução enzimática sobre o "core" após as fixações acima referidas.
Figuras 59 a 62 - Aspectos no processo de digestão enzimática com a prônase em cortes das células da estirpe G-7. Cultura em meio líquido YDC-NZ com 5 dias de incubação e em meio sólido YDC-NZ com 2 dias de incubação (Fig. 60).

Fixação: RK sem pré-fixação (Figs. 59, 61 e 62) e GA/RK/AU (Fig. 60.)

Inclusão: Epon.
Coloração: AU/Pb.

Figura 59 - Corte oxidado com peróxido de hidrogénio a 3% durante 20 minutos, não tratado com prônase.

Notar que o "core" continua denso.
Ampliação: 45000x.

Figura 60 - Corte oxidado com peróxido de hidrogénio a 3% durante 20 minutos não tratado com prônase. Notar que, ao contrário da fig. 59, pode observar-se um "core" formado por fibras paralelas.
Ampliação: 66000x.

Figura 61-62 - Cortes oxidados como nas figs. 59 e 60.
Tratamento com prônase durante 90 minutos (Fig. 61 e 62).

Notar a marcada redução da densidade do "core".

Notar acentuada redução da densidade da parede celular (PC) efeitos descritos para outras espécies bacterianas (104).
Ampliação: 45000x. (Figs. 61 e 62)
O passo seguinte no estudo desta inclusão consistiu no seu isolamento. Após ensaios preliminares que demonstraram a susceptibilidade da parede celular das várias estirpes aos tratamentos pela lisozima, foram selecionadas as estirpes G-7 (G. *obscurus*) e B-15 (*B. aggregatus*). O melhor método encontrado para a formação de protoplastos inclui o uso de tampão de fosfato 0,1M+lisozima+sacarose e magnésio, com incubação a 37°C durante cerca de 3 horas e meia.

O processo de isolamento do "core" incluiu várias fases e as observações feitas durante o processo mostraram:

1 - Protoplastos com o aspecto habitual dos protoplastos obtidos a partir das bactérias Gram positivo e em alguns foram observados "cores" (Fig. 72).

2 - Protoplastos lisados, "ghosts", com vesículas membranosas contendo "cores", fibras de DNA e blocos formados por material eletronodensos (Fig. 73 e 74).

3 - Vesículas membranosas com "cores" e restos de camada mucóide (Fig. 75).

4 - No sedimento final observaram-se "cores" com restos de camada mucóide (Fig. 76 e 77).

Nestes "cores" tal como acontece em cortes de células intactas quando tratadas pelo peróxido de hidrogénio pode observar-se que a sua estrutura é constituída por fibras paralelas com um diâmetro à volta de 13nm.

5.1.3 - Flagelos.

Algumas vezes foi possível observarmos flagelos sob a forma de longos filamentos em corte longitudinal (Fig. 26, 27 e 67) ou com a estrutura poligonal quando selecionados transversalmente (Fig. 63 e 63a).

5.1.4 - Ciclo de crescimento.

As linhas gerais do comportamento das várias estirpes ao longo do seu complexo ciclo de crescimento foram estabelecidas pelas observações realizadas em microscopia óptica, sendo igualmente estudadas as variações daquele ciclo em relação às diferentes estirpes que usamos neste trabalho.

Impunha-se, no entanto, fazer um estudo mais profundo no sentido de
Figura 63 - Células da estirpe 22-68.
Cultura em meio líquido YDC-NZ com 48 horas de incubação.

Notar a presença de flagelos bem preservados em corte longitudinal (Fig. 63) e corte transversal (Fig. 63a). Mesossoma (M) lamelar e membrana citoplasmática (MC) assimétrica.

Fixação: GA/RK, adicionados de vermelho de rutênio, seguido de acetato de urânio.

Inclusão: Epon.
Ampliação: 60000x.

Figura 63a - Maior ampliação do conjunto de flagelos cortados transversalmente.
Ampliação: 120000x.

Figura 63b - Maior ampliação da zona da parede celular mostrando uma estrutura periódica.
Ampliação: 120000x.
Figura 64 - Fase inicial do ciclo com formação de gêmulas (seitas duplas) a partir de células da estirpe G-7.
Cultura em meio líquido YDC-NZ com 24 horas de incubação.
De notar as gêmulas revestidas de parede celular fina e membra citoplasmática. Citoplasma com ribossomas.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000x.
recolhemos pormenores ultrastruturais susceptíveis de esclarecer diversos pontos naquele ciclo.

Conforme foi já resumidamente descrito (29 e 32), verificamos que para qualquer das estirpes, quando células da fase estacionária são colocadas em um meio de cultura fresco, após um período de incubação variável, as células cocóides isoladas (Fig. 65) ou as que constituem os agregados (Fig. 64), formam pequenas protuberâncias na parede celular, que observadas pela técnica dos cortes ultrafinos, mostram ser constituídas por saliências do citoplasma revestidas de membrana e parede celular; a espessura desta é por via de regra menor que a de outras regiões da célula. Aquelas saliências aumentam as suas dimensões e vêm a constituir as gémulas, que são verdadeiras extensões da célula que lhes deu origem e nas quais podemos observar vários componentes da célula bacteriana, nomeadamente ribossomas, DNA e algumas vezes mesossomas (Fig. 65).

Na base da gémula, junto da célula mãe, vemos que o diâmetro é menor, alargando-se progressivamente para a sua extremidade livre. É habitualmente nesta zona estreitada que mais tarde se forma um septo (Fig. 66, 67 e 68) que, ao completar-se, acaba por separar a célula mãe de uma nova e pequena célula de forma elíptica ou lanceolada (Fig. 67). Por um processo semelhante formam-se as células filamentosas. As células cocóides isoladas ou as que fazem parte de agregados formam, de um modo geral, apenas uma gémula, mas por vezes foi possível observarmos o aparecimento naquelas células de pelo menos duas gémulas (Fig. 59 e 65).

As células móveis podem multiplicar-se por gemulação ou divisão binária, originando outras células também móveis e igualmente de forma lanceolada (Fig. 56) que por vezes se mantêm unidas entre si constituindo séries de dois ou mais elementos colocados topo a topo.

Seguidamente à célula móvel (Fig. 26 e 27) perde a mobilidade e aumenta o seu volume, facto que também se verifica nas células filamentosas (Fig. 28). Mais tarde, estas células aparecem com septação transversal multipla e longitudinal, tomando a forma grosseiramente esférica.

Estes agregados de formas cocóides vão aumentando o seu tamanho à custa de novas divisões binárias que ocorrem em planos perpendiculares ou oblíquos entre si. A partir de certas dimensões estes agregados subdividem-se em a-

Cultura em meio líquido com 24 horas de incubação.

Notar a presença de um mesossoma (M) volumoso do tipo vesicular junto de uma das gêmeas. "Core" (CR) presente na zona central e inclusões lipídicas (L) de grandes dimensões.

Fixação: RK sem pré-fixação.

Inclusão: Epon.

Ampliação: 60000x.
Figura 66 - Célula cocóide de um agregado da estirpe G-7 com uma célula filha alongada produzida por gemulação. Cultura em meio líquido YDC-NZ com 5 dias de incubação.

Notar na base da gêmea um mesossoma (M). Ribossoma (R) e uma área provavelmente de DNA (N). Notar a má definição de algumas estruturas visto o corte ser tangencial.

Fixação: GA/RK/AU.
Inclusão: Epon.
Ampliação: 60000x.

Figura 67 - Aspecto semelhante ao da fig. 66, mas referente à estirpe 22-68. Cultura em meio líquido YDC-NZ com 48 horas de incubação.

Notar uma célula provavelmente móvel com mesossomas (M) simples em forma de anel e fibras de DNA (N) moderadamente agregadas. Um desses mesossomas (M) está em contacto com a membrana citoplasmática (MC);
Observar ainda a presença de flagelos (F) cortados em várias incidências.

Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 60000x.
Figura 68 - Série de cortes mostrando uma célula cocóide da estirpe G-7, originando, por um processo de gemulação, uma célula filha. Notar a septação na base desta célula como modo de separação entre as duas células.
No outro extremo da célula cocóide podemos ver o início da septação.
Cultura em meio líquido YDC-NZ com 5 dias de incubação.
Fixação: RK sem pré-fixação.
Inclusão: Epon.
Ampliação: 30600x.
Figura 69 – Série de três cortes de uma célula cocoide.
Cultura em meio líquido YDC-NZ com 5 dias de incubação.

Notar a presença simultânea de septação e formação de uma gé-
mula.

Fixação: RK/AU.
Inclusão: Epon.
Ampliação: 45000x.
Figura 70 – Agregado de células cocóides da estirpe G-7. Cultura em meio líquido YDC-NZ com 5 dias de incubação.

Notar a septação múltipla transversal. Membrana ligeiramente assimétrica.

Fixação: GA/RK/AU.
Inclusão: Spurr.
Ampliação: 60000×.
Figura 71 - Agregado de células cocóides da estirpe G-7.
Fase final do ciclo de crescimento com formação de agregados de células cocóides.

Notar a presença da camada mucóide (CM) entre as células; "cores" (CR); várias inclusões lipídicas (L) e um mesossoma complexo (M).

Fixação: RK/AU.
Inclusão: Epon.
Ampliação: 60000x.
Figura 72 - Protoplastos obtidos a partir da estirpe B-15 segundo métodos descritos em Material e Métodos.

Notar a presença do "core" (CR), áreas de DNA (N) e membrana citoplasmática (MC) assimétrica.

Fixação: FA/GA/RK/AU.
Inclusão: Epon.
Ampliação: 55900x.

Figura 73 - Protoplastos lisados da estirpe G-7.

Notar a presença do "core" (CR), restos da camada mucóide (CM) e fibras de DNA (setas).

Fixação: FA/GA/RK/AU.
Inclusão: Epon.
Ampliação: 47000x.
Figura 74 – Protoplasto lisado da estirpe G-7. Notar a possível saída de um "core", onde podemos observar a sua constituição fibrilar.
Fixação: FA/GA/RK/AU.
Inclusão: Epon.
Ampliação: 88000x.

Figura 75 – Protoplastos lisados da estirpe G-7 após tratamento com DNase, RNase e Mg++. Notar a presença de membranas vesiculares e de três "cores" (CR).
Fixação: FA/GA/RK/AU.
Inclusão: Epon.
Ampliação: 68000x.
Figuras 76 e 77 — Amostra final no processo de isolamento dos "cores", na estirpe G-7. Notar a presença de "cores" (CR) isolados, seccionados em diferentes incidências e vestígios da camada mucóide (CM) (setas).

Fixação: FA/GA/RK/AU.

Inclusão: Epon.

Ampliação: 37800x (Fig. 76), 78200x (Fig. 77).
gregados mais pequenos, sendo a separação acompanhada pela deposição de material de superfície (camada mucóide) (Fig. 33 e 71).

O processo de septação das células cócóides, móveis e filamentosas faz-se por crescimento centriptio de material parietal que desde o início é formado por dois folhetos densos separados por uma zona transparente (Fig. 32).

Seguidamente as células dos agregados vão entrando em lise progressiva conforme se pode deduzir do estudo turbidimétrico (Fig. 10) e ultrastructural (Fig. 37 e 38). As células em lise (Fig. 38) apresentam zonas de degradação da parede celular, membranas de perfil simétrico por vezes com fracturas, e clarificação do compartimento intracelular, onde durante algum tempo se mantêm ribossomas e DNA.

Por vezes as células que estão em processo de septação múltipla, estão simultaneamente a formar gémulas (Fig. 64).

5.2 - Coloração negativa.

Esta técnica de coloração negativa foi utilizada com a finalidade de visualizar flagelos das células móveis das várias estirpes, procurando esclarecer o seu número e os seus pontos de inserção.

Observamos na estirpe G-7 (Fig. 78), 1 a 3 flagelos inseridos na face côncava das formas móveis e na estirpe 22-68, 1 a 4 flagelos cuja inserção se faz habitually no polo da célula.

5.3 - Crio-fractura.

Selecionamos para o estudo por esta técnica a estirpe G-7 dado que, pelo seu elevado pleomorfismo, permite a observação fácil das várias formas celulares.

A parede celular é facilmente identificável nas fracturas transversais (Fig. 79 e 82), embora nem sempre visível nos outros tipos de fracturas (Fig. 80). Em qualquer dos casos não observamos qualquer sub-estrutura aparente e tal como já havíamos assinalado na técnica dos cortes ultrafinos, a espessura da parede celular é variável, conforme observamos as células cócóides dos agregados (Fig. 79 e 82) e as outras formas celulares. Para fora da parede celular notamos em várias células a presença de material de aspecto fibrilar (Fig. 82) que poderá corresponder à camada mucóide.
Figura 78 - Célula móvel da estirpe G-7.
Cultura em meio líquido YDC-NZ com 24 horas de incubação.
Coloração negativa com PTA.
Notar a presença de dois longos flagelos com inserção lateral.
Figuras 79 a 83 - Imagens de crio-fractura da estirpe G-7. Cultura em meio líquido YDC-NZ com 8 dias de incubação. Congelação feita em presença de glicerol a 20%.

NOTA - Nos casos em que a crio-fractura revela superfícies (exteriores ou interiores) utilizamos a nomenclatura descrita por Schmid, Sleyter & Lickfeld (1980).
Figura 80 - Célula cocóide mostrando a superfície interna do folheto interno da membrana citoplasmática (imPF) com numerosas granulações agregadas e restos da parede celular (cwPS) de superfície exterior homogénea. Ampliação: 60000x.

Figura 81 - Na célula cocóide (a) verificamos a formação de uma gémula em cuja base notamos uma estrutura que poderá corresponder a um mesossoma (M). A gémula apresenta a superfície interna do folheto interno da membrana citoplasmática (imPF).

As células cocóides (b) e (c) mostram igualmente a superfície interna do folheto interno, enquanto a célula (d) mostra a superfície interna do folheto externo (imEF).

Notar a frequência e distribuição das granulações daqueles dois folhetos. M - estrutura provavelmente correspondendo a um mesossoma vesicular. Ampliação: 60000x.
Figura 82 - Na parte esquerda da célula cocóide fracturada transversalmente vemos o citoplasma (C) granuloso e inclusões lipídicas como na fig. 79.

Notar a presença de pequenas formações esféricas em contacto com a membrana citoplasmática (MC) (a qual aparece fracturada transversalmente) e que poderão corresponder a pequenas vesículas mesossómicas (M). As duas células da direita mostram a superfície interna do folheto interno da membrana citoplasmática (imPF).

Ampliação: 52500x.

Figura 83 - Uma célula cocóide possivelmente em gemulação mostrando uma larga superfície de fractura com citoplasma (C) e inclusões lipídicas como nas figs. 79 e 82.

Notar na parede direita da célula uma zona evidenciada pelo "etching" correspondendo à superfície interna do folheto interno da membrana citoplasmática (imPF). Na parte esquerda da célula, uma pequena área mostrando a superfície interna do folheto externo (imEF). Observar o número e distribuição das granulações nestas duas superfícies membranosas.

Ampliação: 72000x.
A membrana citoplasmática pode ser observada quer mostrando a superfície interna do folheto interno (Fig. 80, 81 e 83) quer a superfície interna do folheto externo (Fig. 79, 81 e 83). A primeira é caracterizada por numerosas granulações e a segunda mostra apenas raros grânulos.

Em nenhum caso observamos o nucleóide ou os ribossomos. Em fractura transversal o citoplasma bacteriano mostrou um aspecto granular (Figs. 79 e 82) e ainda um conjunto de formações esféricas em número e dimensões variáveis (Figs. 79 e 82). Estas formações ou foram arrastadas pelo processo de fractura deixando apenas a sua impressão marcada ou surgem como grosseiras meias esferas salientes. Por vezes conseguimos observar na superfície exterior destas inclusões intracitoplasmáticas, a presença de fibras orientadas radialmente (Fig. 83). Interpretamos estes grânulos como depósitos lipídicos e as fibras como elementos do polímero ácido-beta-hidroxibutilírico.

Na zona periférica do citoplasma, em fractura transversal, notamos a existência de formações arredondadas em contacto com a membrana citoplasmática (Fig. 82) e que pensamos serem pequenas vesículas mesossómicas. Mesossomas de maiores dimensões e estrutura mais complexa, tipo vesicular poderem também ser observados (Fig. 81).
DISCUSSÃO
1 - Aspecto macroscópico das culturas

A observação macroscópica das colónias desenvolvidas no meio sólido YDC-NZ permitiu-nos verificar que a morfologia e a cor são diferentes nas várias estirpes e que na mesma estirpe poderá haver também modificação na cor e algumas vezes do aspecto das colónias ao longo do tempo de incubação.

A estirpe G-17 apresenta, por via de regra, colónias de aspecto mucóide, o que está de acordo com a presença de abundante material de superfície (camada mucóide), verificado pelas nossas observações em microscopia electrónica. O crescimento em meio líquido YDC-NZ traduz-se pela acumulação de células no fundo do tubo de cultura (depósito abundante), com um sobrenadante límpido: esta característica cultural é explicada pela formação de grandes agregados de células cocóides e pela ausência quase completa de células móveis. A estirpe G-9 segue de perto o que foi descrito para a estirpe G-17 embora a menor quantidade de material de superfície não venha a conferir um aspecto tão mucóide às colónias. No meio líquido YDC-NZ a ausência de turvação do sobrenadante e a acumulação de células cocóides de grandes dimensões e em agregados no fundo do tubo de cultura, tem o mesmo efeito que no caso anterior.

A estirpe B-15 mostra sedimento e turvação a traduzir a existência de células cocóides em agregados no fundo do tubo de cultura e de células móveis no sobrenadante.

As estirpes G-7 e 22-68, a primeira das quais com produção de maior quantidade de material mucóide, apresentam colónias lisas. No meio líquido YDC-NZ as duas estirpes mostram uma turvação abundante que é devida ao desenvolvimento de grande número de células de pequenas dimensões e células com mobilidade.

Conforme acima ficou referido as várias estirpes originam colónias de diversas colorações, fenómeno aliás vulgar entre os actinomicetos. A
côr das colónias nestas bactérias está dependente, conforme afirma Waksman, da formação de vários pigmentos, em regra complexos (136). A presença de vários pigmentos explica neste caso a possibilidade de uma mudança gradual de côr, situação que aliás podemos verificar em algumas das estirpes que estudamos (G-4, G-7, G-8 e G-17). Como Waksman (136) apontou, a natureza do pigmento está dependente da estirpe em causa e também da composição do meio de cultura. Com efeito, em observação limitada a um número reduzido de experiências, podemos verificar que a omissão de um dos componentes (amina NZ) do meio de cultura YDC-NZ, determinou alteração na pigmentação das colónias. Este facto também foi confirmado quando do estudo da utilização dos vários carbohidratos.

Nas observações em meio sólido YDC-NZ, das estirpes por nós estudadas, verificamos que a 22-68 e a B-15 são as únicas em que as colónias se mantêm praticamente sem qualquer alteração ao longo do período de incubação. Na estirpe G-9 a côr rósea ténue torna-se progressivamente mais acentuada com o envelhecimento da cultura e a estirpe G-17 inicialmente apresenta colónias da côr esverdeada que se torna cada vez mais escuras à medida que aumenta o período de incubação.

A estirpe G-7 foi a que mais modificou a sua pigmentação, pois a côr rósea inicial das colónias foi lentamente mudando para o verde escuro até terminar, em regra, quase em negro.

As observações com meio líquido YDC-NZ mostram que a côr das células das várias estirpes segue aproximadamente aquilo que foi indicado para o meio sólido.

Após a centrifugação dos meios de cultura, verificamos que o sedimento celular contém o pigmento e que no sobrenadante a coloração é muito ténue.

O estudo de pigmento só foi feito na estirpe B-15, tendo Ahrens e Moll (1) verificado que havia dois picos de absorção máxima do extrato metanolico, um situado a 470 e outro a 500nm e deduziram que se tratava de pigmento carotenóide. Afirmaram ainda que o espectro de absorção não foi influenciado pelo tempo de tratamento das células pelos ultrasons, o uso de
104

meios de extracção diferentes e ou variação das condições da iluminação durante a cultura.

2 - Aspectos ligados ao ciclo de crescimento

Ishiguro e Fletcher (48) isolaram vários microrganismos de solos do Monte Everest, estudaram as suas várias formas que agruparam em células cocóides, imóveis e células móveis do tipo bacilar. APLICANDO técnicas de cultura em lâmina, observaram também as diferentes fases da sua morfogénese, admitindo desde logo a existência de um ciclo de crescimento.

Luedemann (54) isolou uma série de microrganismos a partir de solos nos Estados Unidos e estudou as suas características morfológicas comparando-as com o Dermatophilus congolensis. Usando conjuntamente os elementos fornecidos pelo comportamento de vários actinomicetos aquáticos e ainda os dados obtidos em estudos anteriores sobre o complexo ciclo de crescimento do Dermatophilus congolensis vem a estabelecer também um ciclo de vida para estes isolados.

As nossas observações foram realizadas em oito estirpes, crescendo em vários meios de cultura. No entanto o meio YDC-NZ, descrito por Luedemann, foi mais vezes usado, pois permite um bom crescimento de todas as estirpes e bem assim o desenvolvimento das várias formas celulares ao longo do seu ciclo de vida. As condições gerais de cultura foram as mesmas em todas as estirpes que estudamos incluindo uma temperatura de incubação entre 30-35°C e um arejamento do meio de cultura por agitação contínua.

Os nossos resultados são sobreponíveis às observações de Ishiguro e Fletcher, Luedemann, Ishiguro e Wolfe, e Ahrens e Moll no que diz respeito à existência de um ciclo de crescimento em todas as estirpes, embora como saliente Luedemann, ser possível observarem-se fases muito aparentes numa estirpe, que passam facilmente despercebidas noutras. As estirpes G-7, G-4, G-8 e 22-68 foram as que apresentaram o ciclo mais complexo, enquanto as estirpes G-9 e G-17 evidenciaram predominantemente apenas uma parte daquele ciclo. A estirpe B-15 não mostrou predomínio de qualquer das fases do ciclo.

Luedemann (53) estudando um grande número de estirpes (G-7, G-12, G-5, G-13, G-17, G-20) descreveu células cocóides em agregados (talo) capazes de
originarem a formação de filamentos tubulares e ainda as células móveis (zoosporos).

Luedemann afirma "I believe that the lanceolate zoospores are derived from the spheroidal cells possibly by two processes, one in which the spheroidal cell loses its rigidity and assumes the lanceolate shape of the zoospore, and the other in which the rigid spheroidal cell develops a small pore through which the protoplasm emerges and undergoes a metamorphosis into a zoospore. This pore method of zoospore emergence was suggested by Austriack".

As propostas apresentadas por Luedemann em 1968, mesmo sem o apoio da microscopia electrónica, não são de admitir, pois os conhecimentos sobre a função protectora da parede celular não suportam aquela interpretação. Na realidade, a aparente saída do protoplasto através dum poro da parede celular é incompatível com a manutenção da estrutura celular normal e da sua sobrevivência. A verificar-se tal facto dar-se-ia inevitavelmente a lise celular.

Ishiguro e Wolfe (49) na estirpe 22-68 mencionam como tipos celulares principais, o agregado de células cocóides (forma C) e a forma bacilar móvel (forma R). Ahrens e Moll (1) na estirpe B-15 descrevem células móveis de forma lanceolada e células cocóides isoladas ou em agregados, indicando ainda a possibilidade da existência de vários estádios intermediários.

Como estes trabalhos foram realizados com diferentes estirpes, cultivadas em meios de cultura de composição desigual, decidimos submeter as várias estirpes às mesmas condições experimentais. As nossas observações microscópicas em preparações obtidas de culturas no meio YDC-NZ, permitiram separar as várias formas encontradas e classificá-las em células cocóides, móveis, filamentosas e intermediárias.

Luedemann(54) verificou que em várias estirpes as células cocóides davam directamente outras células cocóides por divisão binária ou múltipla, apresentando ocasionamente filamentos ramificados (G-17) e excepcionalmente uma fase móvel.
Estudos posteriores de Ishiguro e Wolfe (49) com base em observações em microscopia electrónica vieram mostrar que a forma móvel tem origem na célula cocóide segundo um processo de gemulação, mostrando como era de esperar, que não se confirmava a existência dos mecanismos propostos por Luedemann. Os nossos resultados vieram claramente confirmar a posição de Ishiguro e Wolfe sobre o modo de formação da célula móvel e obviamente também da forma filamentosa.

Outro ponto controverso residia na possibilidade de as células cocóides originarem ou não mais que uma gémula. As observações de Luedemann (54) em microscopia óptica dizem-nos desta possibilidade que por outro lado é negada por Ishiguro e Wolfe (49). Os nossos resultados mostraram que, por vezes, se forma mais que uma gémula. Convém salientar no entanto, que os meios de cultura usados pelos vários autores não tinham a mesma composição que aqueles que utilizamos.

Os resultados que obtivemos mostraram que no meio YDC-NZ, as estirpes G-7 e 22-68 são as que mais se assemelham entre si não só na sua morfologia mas também no comportamento observado ao longo do ciclo. Qualquer destas duas estirpes é franca produtora de formas móveis e também de formas filamentosas.

A estirpe G-9 (que foi no presente trabalho estudada pela primeira vez) e a estirpe G-17, são semelhantes. São caracterizadas por formarem um número muito diminuto de formas móveis e de formas filamentosas. As nossas observações sobre a estirpe G-17 não são coincidentes com as realizadas por Luedemann pois este investigador afirma que as células cocóides daquela estirpe dão origem a muitas formas móveis. Usando os mesmos meios de cultura e condições experimentais idênticas às usadas por aquele autor, nunca nos foi possível detectar a formação de formas móveis em número elevado (92). Por outro lado também não nos foi dado observar qualquer elemento celular com ramificação.

A estirpe B-15 ocupa, por assim dizer, um lugar intermediário, pois não forma um número tão elevado de formas móveis como vimos na estirpe G-7 e na 22-68, nem um número tão diminuto daquelas células, como nas estirpes G-9 e G-17.
Ensaiamos ainda nas várias estirpes além da 22-68, os meios de cultura TYB e CB utilizados por Ishiguro e Wolfe. Como dissemos atrás, estes autores no seu artigo inicial (49) indicam um modo de controlar a morfogénesis da estirpe 22-68 pelo uso dos meios de cultura, TYB e CB. Estudos posteriores dos mesmos investigadores (50) vieram demonstrar que existem certos catiões orgânicos nitrogenados capazes também de influenciar a morfogénesis, e sugerem que a acção daqueles catiões está relacionada com a subida do pH intracelular que acompanha a entrada daqueles catiões na célula.

Outros autores referem indução da morfogénesis, por acção catiónica, em outras bactérias, nomeadamente *Stigmatella aurantiaca* (84) e *Dermatophilus congolensis* (87).

3 – Aspectos ligados às curvas de crescimento

As curvas de crescimento das estirpes 22-68 e B-15 tinham já sido estudadas, respectivamente por Ishiguro e Wolfe (49) e Ahrens e Moll (1). O crescimento da estirpe 22-68 foi observado após inoculação nos meios de cultura CB e TYB, a partir do meio TyA e incubados a 30ºC com agitação contínua. O crescimento da estirpe B-15 foi feito em meio líquido com peptonas e extracto de levedura à temperatura de 20ºC, com ou sem agitação, tendo a curva sido obtida a partir de valores dados pela contagem em câmara dos elementos celulares (isolados ou em agregados).

O uso de meios de cultura, temperaturas e técnicas diferentes não permite comparar aquelas duas estirpes entre si, havendo necessidade, por outro lado, de investigar o comportamento das outras estirpes, para finalmente as avaliar em conjunto.

Por todos os factos atrás mencionados entendemos que todas as estirpes deveriam ser submetidas às mesmas condições experimentais e a partir daí fossem construídas e comparadas as diferentes curvas de crescimento.

Da observação das diferentes curvas representadas na Fig. 11 podemos verificar que a estirpe G-7 foi a que atingiu valores mais altos na absorbância, a significar um maior número de elementos celulares, somatório de células cocóides isoladas e dos agregados, obtidos por divisão binária em vários planos e de células livres, móveis e filamentosas, obtidas por gemu-
lação. Os valores mais baixos da absorbância máxima foram encontrados na es-
tirpe B-15, facto que poderá ser explicado pela presença quase exclusiva de
elementos cocóides, isolados ou em agregados. As outras estirpes têm situa-
ções intermédias relativamente a estas duas situações extremas.

Por outro lado, podemos ainda afirmar que a velocidade de crescimento
na estirpes G-4 e G-7 é maior que nas restantes estirpes, conforme se pode
inferir pela inclinação das respectivas curvas, na fase exponencial. A me-
nor inclinação e o paralelismo das outras curvas na fase logarítmica diz-
-nos, por um lado, da menor velocidade de crescimento das outras estirpes
e por outro lado que elas têm velocidade de crescimento semelhante.

O aparecimento de uma fase de declínio após a fase logarítmica em to-
das as estirpes estudadas leva-nos a concluir que todas possuem enzimas lí-
ticas (autolisininas) que são capazes de hidrolisar o peptidoglican das suas
paredes celulares, como acontece em outras bactérias Gram positivo (12).

4 - Aspectos ligados às actividades biológicas

4.1 - Provas bioquímicas

Para a classificação das várias estirpes do Geodermatophilus, Luedemann
(54) serviu-se das características morfológicas e das actividades biológi-
cas dos vários isolados. Destas actividades estudou, não só a utilização de
diversos carbohidratos e hidrólise do amido, mas também a hidrólise da gela-
tina e da caseína. O estudo da utilização dos carbohidratos como processo
de diagnóstico diferencial entre as várias estirpes de Geodermatophilus
foi considerado por Luedemann como prova importante e digna de confiança pa-
ra fins taxinómicos (54).

Tendo em vista o estudo de algumas novas estirpes ainda não incluídas
nos grupos criados por Luedemann e igualmente saber o comportamento da es-
tirpe 22-68 (Ishiguro e Wolfe) e da estirpe B-15 (Ahrens e Moll) que vários
autores admitem ser um novo elemento do género Geodermatophilus, sem con-
tudo apresentarem qualquer prova bioquímica justificativa, estudamos todas
as estirpes sob o ponto de vista bioquímico segundo critérios apontados por
Luedemann. Naquela óptica, de todas as estirpes indicadas neste trabalho,
a única estudada por Luedemann e por nós próprios foi a estirpe G-17. Nenhu-
ma das outras é referida no trabalho de Luedemann a não ser a G-7 que é indicada por aquele autor como morfologicamente idêntica à estirpe G-20.

A leitura da utilização dos carbohidratos feita pela comparação do crescimento no tubo controlo (meio básico) revestiu-se de certas dificuldades, dado o seu carácter subjectivo. Daí na já citada estirpe G-17 não ter havido concordância entre os nossos resultados e os apresentados por Luedemann. Quanto à produção de ácido e porque a viragem de côr do indicador de pH nem sempre se fez de um muito modo muito evidente, os nossos resultados para alguns carbohidratos também se afastam dos encontradas por Luedemann.

Todos os restantes resultados também sobre a estirpe G-17, são coincidentes com os apresentados por Luedemann. A única exceção diz respeito à redução dos nitratos visto não termos verificado tal redução ao contrário do que afirma aquele autor.

Como comentário final a estas provas bioquímicas talvez se possa dizer que as diferenças de comportamento entre as estirpes que Luedemann considera como sub-espécies não são menores que entre aquelas e as estirpes 22-68, já reconhecida como pertencente ao género _Geodermatophilus_ e a estirpe B-15 seria candidata à inclusão no referido grupo taxinómico. Adiante discutiremos este facto e outros.

4.2 - Actividades hemolíticas.

O crescimento nos meios de agar sangue e a pesquisa da acção hemolítica por degradação completa dos pigmentos hematícos (hemólise beta) foi estudado por Luedemann (54) com a finalidade de separar as estirpes do _Geodermatophilus_ recém isoladas, do grupo de bactérias pertencentes ao género _Dermatophilus_. As várias estirpes do género _Geodermatophilus_ não crescem no meio de agar sangue ou crescem com dificuldade e não produzem qualquer hemólise. Pelo contrário as bactérias do género _Dermatophilus_ crescem bem nesse meio produzindo uma hemólise beta.

Os resultados obtidos em todas as estirpes incluindo a B-15 são concordantes com os encontrados por Luedemann.
5 - Aspectos ligados à microscopia electrónica

5.1 - Cortes ultrafinos.
5.1.1 - Invólucros bacterianos.
5.1.1.1 - Camada mucóide.

A presença de um revestimento extracelular rico em polissacarídeos foi descrito em várias células de eucariotas (animais e vegetais) e ainda em células procarióticas (91). Estudos realizados em vários microrganismos que incluíram reações de coloração, imunologia e microscopia electrónica, têm revelado a existência de substâncias de superfície, para fora da parede celular, de natureza variável, embora em muitos casos de natureza polissacarídea (91). Bennett (6) propôs a designação de glicocális para aquela substância de superfície, "extracelular sugary coating", termo que vem a ser retomado por Costerton e cols. (17) em recente artigo de revisão, em que é focada particularmente esta questão ao nível das células bacterianas. Costerton e cols. (18) tinham definido glicocális como "tangled fibers of polysaccharides or branching sugar molecules that extend from the bacterial surface and from a felt-like 'glicocalix' surrounding an individual cell or colony of cells". Esta definição segue de perto, conforme podemos verificar, a que havia sido dada anos atrás por Bennett (6). Segundo Costerton e cols. (17) os glicocálices podem ser divididos em dois tipos: camadas S e cápsulas. As camadas S são constituídas por fiadas de sub-unidades de glicoproteínas à superfície da célula e as cápsulas são formadas por matéria fibrosa que é susceptível de variar na sua espessura e características o que permite a sua classificação em: rígida ou flexível, integral ou periférica. Seguindo os critérios desta classificação, o material de superfície encontrado nas células das bactérias que estudamos poderia ser definido como uma cápsula flexível, periférica. O termo glicocális de Costerton e cols. não tem sido aceite por todos os autores e ainda recentemente Geesey (35) propôs uma nova designação "extracellular polymeric substances (EPS)". Estes polímeros extracelulares teriam a mesma composição e funções que são atribuídas ao glicocális que por sua vez também inclui o conceito de cápsula e camada mucóide. Trata-se de uma área ainda confusa e para a qual parece ainda não haver unanimidade de opiniões como referem Bowles e March (8). Daí
termos optado pela designação clássica de camada mucóide para a substância de superfície encontrada nas bactérias que estudamos.

Gordon e Edwards (41) em estudos ultraestruturais de uma bactéria pertencente à família das *Dermatophilaceae* (*Dermatophilus congolensis*) mostram a presença de abundante material para fora da parede celular (ver Fig. 19 e 20 da ref. 41) que designaram como material capsular gelatinoso. Este material, cuja natureza afirmam desconhecer, tem o aspecto fibrilar. As fibras são pouco abundantes e espaçadas nas zonas periféricas da célula e mais densas nos espaços intracelulares.

Para aqueles autores o material capsular tinha origem na progressiva desagregação da camada externa da parede celular. Richard e cols. (85) em trabalho realizado sobre o *Dermatophilus congolensis* indicam igualmente a presença de material de superfície, embora nada adiantem sobre a sua possivel natureza.

Luedemann (54) usando o microscópio óptico para estudar algumas estirpes de *Geodermatophilus* afirma que não existe naquelas bactérias qualquer material capsular que possa ser evidenciado pela observação microscópica de preparações com tinta da China. Ahrens e Moll (1) usando também o microscópio óptico, referem a presença de uma cápsula de espessura média na estirpe B-15.

As nossas observações em microscopia electrónica de cortes ultrafinos revelaram a presença sistemática de uma camada mucóide, embora quantitativamente diferente em todas as estirpes estudadas.

Deve-se a Luft (59) a ideia de usar o vermelho de ruténio em microscopia electrónica destinada a evidenciar mucopolissacarídeos ácidos extra celulares existentes em várias células animais (59 e 60). Mais tarde surgiram modificações à técnica inicial de Luft apresentadas por Pate e Ordal (81) e Cagle e cols. (14).

A primeira tentativa que fizemos, tendo em vista revelar a natureza da camada superficial destas bactérias, foi realizada utilizando o vermelho de ruténio segundo os métodos descritos por Luft (59 e 60) e as modificações introduzidas por Pate e Ordal (81) e Cagle e cols. (14). Embora os resultados ob-
tidos não fossem muito homogéneos, mesmo naquelas estirpes reconhecidamente produtoras de abundante material polissacarídeo, é de salientar que o método descrito por Cagle e col. (14) foi aquele que nos forneceu resultados positivos mais consistentes.

Conforme descrito nos resultados, verificamos que frequentemente após a utilização do vermelho de ruténio se verifica uma agregação do material de superfície. Este facto é interpretado como uma condensação do material polissacarídio ocorrendo durante a desidratação. A presença daquela agregação é sugestiva, conforme afirma Costerton (17), de que o glicocálice bacteriano não contém suficiente proteína para resistir à condensação. Pensamos que este facto será de ter em linha de conta na interpretação das imagens que obtivemos nas estirpes que estudamos.

Embora o componente polissacarídio do material de superfície core bem pelo vermelho de ruténio, conforme afirmam alguns autores (58, 59 e 60), nossos resultados não são tão evidentes, o que nos leva a concluir que aquela técnica é bastante menos sensível que o método de Thiéry. Com efeito as reacções observadas com este método foram uniforme e consistentemente positivas nas camadas superficiais das células de várias estirpes, o que nos leva a afirmar que polissacarídeos são parte integrante da constituição da camada mucóide nestas células.

Sobre o papel que poderá desempenhar a camada superficial em relação aos agregados das células cocóides é de presumir que este material pela sua viscosidade poderá ser responsável pela união dos vários agregados entre si. Explicação análoga a esta é apontada por Silva e cols. (114) a propósito das células de Micrococcus mucilaginosus. A aderência, por nós observada, dos agregados celulares à parede do balão quando da cultura em caldo, mesmo com agitação, terá provavelmente a mesma explicação.

5.1.1.2 - Parede celular.

Encontramos nestas estirpes a esperada estrutura de parede celular de bactérias Gram positivo. A sua espessura, medida nas microfotografias electrónicas de cortes ultrafinos, apresenta valores entre 15 e 60nm, estando dentro dos limites (15-80nm) indicados para a grande maioria das bactérias Gram positivo (36).
Embora as modificações nas condições culturais determinem variações na espessura da parede celular das bactérias Gram positivo, não tivemos que entrar em linha de conta com esta situação visto termos usado sempre o mesmo meio de cultura (YDC-NZ) padronizado para este estudo comparativo. Conforme salientam Glauert e Thornley (36), a idade da cultura é factor importante a ter em linha de conta, visto que a parede celular vai aumentando a sua espessura com o envelhecimento celular. Este facto foi por nós verificado, pois as paredes celulares das células cocóides dos agregados que constituem a fase final do ciclo de crescimento são sempre mais espessas que quaisquer outras paredes celulares em qualquer outra fase do ciclo.

A espessura da parede celular parece ser independente do método de coloração usado, coloração simples (só citrato de chumbo) ou dupla (acetato de uranilo e citrato de chumbo), pois não encontramos diferenças apreciáveis quando usamos um ou outro método.

Ahrens e Moll (1) referem terem encontrado por vezes dificuldades na preservação da parede celular da estirpe B-15, facto que não observamos com qualquer das fixações empregues para aquela estirpe.

Ishiguro e Wolfe (54) ao estudarem a ultraestrutura da forma C (células cocóides) da estirpe 22-68 descreveram a existência de pelo menos duas camadas na sua parede celular. A camada interna membranosa que chamam t (transparente) com uma espessura compreendida entre 9-11nm e a camada externa f (fibrosa) de 29-32nm só observada em alguns cortes e que não se mostrava bem contrastada pelos métodos de coloração usados (coloração dupla pelo acetato de uranilo e citrato de chumbo). Parece-nos não ser admissível chamar membranosa a uma estrutura que nada tem a ver com membranas e por outro lado também não nos parece correcta a interpretação dada por aqueles autores sobre a camada fibrosa. Quanto a nós, a estrutura apresentada como camada fibrosa da parede celular (Fig. 17 e 18 da ref. 49) diz claramente respeito ao material constitutivo da camada mucóide. Igualmente a zona transparente (tz) indicado em algumas microfotografias por Ishiguro e Wolfe (49) corresponde, no nosso entender, à presença de material mucóide entre as células.

Embora na maioria das imagens se possa verificar que a parede celular destas bactérias é, regra geral, homogénea, facilmente visualizável e consti-
tuído por uma única camada de espessura variável, ocasionalmente podemos observar a existência de outra camada mais externa praticamente electrone-transparente e cujo limite exterior é marcado apenas pelo início da camada mucóide. Este achado ocasional era previsível dado o aspecto da septação na divisão celular. Este facto havia sido já assinalado em paredes celulares de outros géneros da Família das Actinomycetales (5 e 110).

Para fora da parede celular existe sempre em maior ou menor quantidade uma camada mucóide como atrás ficou referido. A observação de cortes ultrafinos após oxidação pelo peróxido de hidrogénio ou ácido periódico vem uma vez mais mostrar a diferença entre a parede celular e a camada mucóide. Tal como foi demonstrado para outras bactérias Gram positivo, a oxidação determina uma perda de densidade da parede celular (104), facto que foi igualmente observado nestas bactérias. Por outro lado, a mesma técnica não determina qualquer alteração detectável do aspecto da camada mucóide.

5.1.1.3 - Membrana citoplasmática e mesossomas.

Chapman e Hillier em 1953 (15), usando o microscópio electrónico e a técnica dos cortes ultrafinos, dão-nos as primeiras imagens de uma bactéria de Gram positivo (Bacillus cereus) fixada pelo tetróxido de ósmio segundo os métodos correntemente usados para a preservação das células eucarióticas (79). Esta fixação não preservou de modo satisfatório algumas das estruturas bacterianas nomeadamente a membrana citoplasmática, que não chega mesmo a ser visualizada, embora a sua existência tivesse sido já postulada em termos fisiológicos e de microscopia óptica. No seu trabalho pioneiro, Chapman e Hillier (15) afirmam "In none of the pictures is there any discrete entity that could be identified as the cytoplasmatic membrane" e mais adiante salientam ainda "A striking feature of the results obtained in this work is the absence of any structure which can be identified really as a cytoplasmatic membrane".

Shinohara e cols. (99) em 1958 descrevem estruturas membranosas (mesossomas) no Mycobacterium tuberculosis utilizando uma fixação em que não entravam nem cálcio nem o acetato de uranilo. É admitido hoje que se deve à diferente composição química da membrana citoplasmática daquela bactéria e de outras (Mycobacterium phlei e Nocardia asteroides) a não exigência de
cálculo e acetato de uranilo durante a fixação, para uma boa preservação das suas membranas citoplasmáticas. Este mesmo facto já não é observado nas bactérias pertencentes ao género *Bacillus*.

As diferenças na composição química das membranas, especialmente no que diz respeito aos fosfolipídeos foi considerado por Ikawa (47) como de grande interesse do ponto de vista taxinómico.

A grande melhoria na preservação da célula bacteriana, nomeadamente do seu material nuclear foi conseguido após o estudo sistemático de vários parâmetros que podem influenciar a qualidade da fixação. Este trabalho realizado em 1958, deve-se a Ryter e Kellenberger (88) e foi feito quase exclusivamente sobre uma bactéria Gram negativo - a *Escherichia coli*, levando à primeira fixação com base no tetroxido de ósmio, que preservou satisfatoriamente o DNA bacteriano. Embora a técnica preconizada por Ryter e Kellenberger (RK) tenha também permitido uma visualização da membrana da bactéria, superior à conseguida pelos processos anteriores, pouco se ficou a saber sobre a influência dos vários parâmetros estudados por aqueles autores, sobre as membranas bacterianas.

O estudo dessa influência foi levado a cabo por Silva e cols. (101, 103, 105, 107, 110, 112, 114, 116 e 120), sobre a membrana citoplasmática e mesossomas em bactérias Gram positivo e mais recentemente os mesmos aspectos foram encarados em relação a bactérias Gram negativo (118).

O perfil triplo assimétrico da membrana citoplasmática encontrado nas bactérias Gram positivo estudadas por aqueles investigadores, formado por uma banda externa mais espessa e mais densa, parece corresponder, na opinião daqueles autores, à imagem de melhor fixação. De facto, o perfil simétrico é visto em várias situações de lise bacteriana espontânea ou induzida, mesmo quando a fixação usada origina o aparecimento, em células normais, do habitual perfil assimétrico da membrana citoplasmática (93, 105, 108, 115, 117 e 121).

5.1.1.3.1 - Fixação RK/AU

O perfil da membrana citoplasmática e a configuração dos mesossomas apresentaram aspectos diferentes quando usamos algumas das variações possí-
veis do método RK ou quando usamos a coloração simples pelo citrato de chumbo ou a coloração dupla pelo acetato de urânio e citrato de chumbo.

O método de RK completo originou nestas estirpes o aparecimento de perfis assimétricos na membrana citoplasmática e mesossomas complexos do tipo vesicular, o que está em concordância com o que está descrito para outras bactérias (101, 102 e 107). A única exceção é representada pela estirpe B-15 cujas membranas apresentam um perfil simétrico e mesossomas do tipo lamelar. Duas circunstâncias poderão explicar esta situação: teor baixo de cálcio no fixador e/ou uma maior sensibilidade das membranas citoplasmáticas da estirpe B-15.

Os doseamentos realizados no meio de cultura recém preparado, no meio de cultura adicionado de cálcio nas concentrações habituais do fixador RK e no meio de cultura após períodos de incubação idênticos aos praticados para a preparação da fixação, mostraram que os valores do cálcio não apresentam grandes variações. É pois de presumir que os sinais revelados pela estirpe B-15, indicadores de baixa de cálcio, se devem mais a uma maior sensibilidade de das suas membranas âquele íon, de que propriamente a uma baixa de cálcio.

Esta baixa de concentração do íon cálcio no fixador foi já descrita a propósito de trabalhos no Streptococcus faecalis (107) e Sporosarcina ureia (112). No primeiro caso aquela baixa era determinada pela precipitação do cálcio pela ação do iôn fosfato presente no meio de cultura e no segundo caso pela acção do carbonato de amoníaco produzido pela hidrólise da ureia quando a Sporosarcina ureia era cultivada no meio com triptófano e ureia.

Na fixação RK sem pré-fixação, o aspecto da membrana citoplasmática nestas estirpes é sobreponível ao descrito em outras bactérias (102, 107 e 106), isto é, encontramos um perfil assimétrico. Quanto aos mesossomas embora haja indicação na literatura de que são simples e pequenos, a verdade é que por vezes observamos nestas estirpes mesossomas complexos (vesiculares ou mistos).

Na fixação RK com pré-fixação mas sem pós-fixação pelo acetato de urânio, algumas bactérias representativas da ordem das Actinomycetales tem um comportamento diferente, no que diz respeito à preservação das suas membra-
nas, relativamente ao que está descrito para outras bactérias. De facto, parece que a membrana citoplasmática e os mesossomas da *Nocardioides*, espécies de *Streptomyces* e *Mycobacterium phlei* não são grandemente afectados pela omissão da pós-fixação (103). Experiências semelhantes realizadas nas várias estirpes não foram conclusivas dadas as diferenças do seu comportamento.

5.1.1.3.2 - Fixação GA/RK/AU

O emprego de aldeídos para a fixação em microscopia electrónica data dos trabalhos de Luft (56) e Sabatini e cols. (90). Esta fixação foi ensaiada por Silva e cols. (106, 108 e 120) sobre várias bactérias, nomeadamente *Bacillus cereus*, *Nocardioides* e *Streptococcus faecalis*. Nestas bactérias, aqueles autores encontraram membranas citoplasmáticas assimétricas e mesossomas simples e pequenos de modo análogo ao que acontecia após a utilização da fixação RK sem pré-fixação. Os nossos resultados são diferentes, não só no perfil da membrana citoplasmática que é predominantemente simétrico (assimétrico quando a coloração é feita só pelo citrato de chumbo), como no aspecto dos mesossomas que são, regra geral, do tipo complexo (lamelares).

5.1.1.3.3 - Fixação pelo KMnO₄/AU

A fixação pelo KMnO₄ a 0,6 e 1,0%, seguida pela acção do tetróxido de ósmio e acetato de uranilo (RK) em *Bacillus cereus* e *Nocardioides* revelou sempre uma membrana citoplasmática contínua, mas nunca mesossomas (107). Factos semelhantes foram observados por Fitz-James (25) em células de *Bacillus medusa*. Quando o KMnO₄ é usado em concentração de 0,01% seguido de OsO₄ e acetato de uranilo, os mesossomas apresentam-se complexos, do tipo vesicular, em células de *Bacillus cereus* (108).

Embora a técnica que empregamos não inclua a acção do tetróxido de ósmio e diga respeito ao uso do KMnO₄ nas concentrações de 0,6 e 5% seguido de pós-fixação com acetato de uranilo, a verdade é que também não observamos mesossomas. Quanto à membrana citoplasmática só foi observada em alguns casos e nestes, o seu perfil era simétrico e manifestamente descontínuo. Pensamos que esta disparidade de resultados se deve à falta do
tetróxido de ósmio como principal fixador de lipídeos, na membrana citoplasmática.

5.1.1.3.4 - Fixação pelo FA/GA/RK/AU

Este tipo de fixação foi utilizado por Silva e Macedo (113) que a consideraram como uma boa técnica de fixação para células Gram positivo, atendendo sobretudo a várias ordens de razões: possibilidade de permanência de longos períodos no fixador; rápida penetração pela ação do formaldeído; boa capacidade de "cross-linking" do glutaraldeído; ação do tetróxido de ósmio sobre os lipídeos; ação do acetato de uranilo como auxiliar, para a preservação das membranas e DNA, e finalmente a ação estabilizadora do cálcio nas membranas bacterianas. Usamos este método nas experiências que levaram à formação dos protoplastos para isolamento do "core". Os resultados obtidos por aqueles autores em diversas bactérias nomeadamente Nocardioides, Mycobacterium aurum e Mycobacterium tuberculosis mostraram membranas citoplasmáticas contínuas e assimétricas. Resultados semelhantes foram obtidos com as bactérias aqui apresentadas.

5.1.2 - Compartimento intracelular.

5.1.2.1 - Nucleóide.

Conforme salientamos em 5.1.1.3 foi a partir da introdução da fixação RK que a preservação de várias estruturas bacterianas se começou a fazer em condições consideradas satisfatórias e naquelas está especialmente incluído o DNA. Após o trabalho inicial de Ryter e Kellemberger (88) outros se seguiram, sendo dignos de especial referência os de Kellemberger (52) e Schreil (97). O aspecto fibrilar do DNA bacteriano é observado após a fixação RK mesmo sem haver tratamento com acetato de uranilo, desde que aquela fixação fosse cuidadosamente seguida (52, 87 e 97).

Os resultados que obtivemos ao nível do nucleóide, nas estirpes bacterianas que estudamos, foram sobreponíveis aos encontrados por aqueles autores. A observação de certa agregação do DNA que ocorre nas estirpes G-9, G-17 e B-15 após a fixação RK não seguida de pós-fixação pelo acetato de uranilo, poderia dever-se ao baixo teor de cálcio no fixador, hipótese que neste caso está excluída.
O aspecto fibrilar do DNA foi também observado nas nossas estirpes após a fixação pelo permanganato de potássio, o que aliás está de acordo com os resultados obtidos por outros autores, nomeadamente Mercer (67) e Tokuyasu e Yamada (130).

5.1.2.2 - Ribossomas.

A oxidação sobre cortes ultrafinos de bactérias têm vindo a ser feita exporadicamente, por vários autores como Franklin e Gramboulan (34) (Escherichia coli), Nass e Nass (78) (E. coli) e Ryter e Piéchaud (89) (estirpes de Moraxella). O primeiro estudo pormenorizado daquele efeito sobre células bacterianas foi realizado por Silva (104) em bactérias Gram positivo (Bacillus cereus e Bacillus megaterium). Os resultados que obtivemos, empregando as técnicas indicadas por aquele autor, são de um modo geral sobreponíveis aos encontrados no Bacillus cereus e Bacillus megaterium no que concerne ao aumento de contraste dos ribossomas e uma diminuição de densidade da matriz no citoplasma bacteriano.

5.1.2.3 - Inclusões intracitoplasmáticas.

A presença de inclusões intracitoplasmáticas não é circunstância rara em organismos procarióticos (100, 112 e 125). Estas inclusões são de vários tipos, mas entre os materiais de reserva não azotados há que considerar dois quimicamente diferentes: poliésteres do ácido beta-hidroxibutírico e polímeros da glicose, armazenados sobre a forma de amido, substâncias semelhantes ao glicogénio ou outros. Como afirma Stainier (125), uma dada bactéria só possui, como regra geral, apenas um daqueles dois tipos de material de reserva, embora tenham sido já descritas algumas exceções como é o caso de certas espécies de bactérias azuis esverdeadas (Blue-green) e as bactérias ditas "purple". Recentemente Emeruwa (23) descreveu a presença simultânea de poli-beta-hidroxibutirato e polissacarídeos em células de Nocardia asteroides, Nocardia brasiliensis e Nocardia oitidis-caviarum, o que levou aquele autor a admitir a hipótese de que a acumulação simultânea daqueles materiais poderá ser uma característica comum àquele gênero bacteriano. Também se verifica a presença simultânea de lipídeos e polissacarídeos em células de Mycobacterium tuberculosis e Mycobacterium aurum (M. T. Silva, comunicação pessoal) e esporadicamente foram mostradas imagens daquelas duas
inclusões em outras bactérias, \textit{Bacillus cereus} (22 e 104) e \textit{Bacillus megaterium}, (104) embora não tenham sido valorizadas pelos seus autores.

Os dois únicos trabalhos publicados, dizendo respeito à ultraestrutura das estirpes 22-68 e B-15, mostram nas microfotografias a presença de inclusões citoplasmáticas, sem no entanto os seus autores nos indicarem a sua natureza química.

Ishiguro e Wolfe (49) admitem uma certa semelhança nas inclusões encontradas na estirpe 22-68, descritas como caracteristicamente esféricas e de tamanho uniforme, com os grânulos polissacarídeos encontrados na \textit{Stigmatella aurantiaca} (84 e 134). A interpretação dada por Ishiguro e Wolfe (49) não nos parece correcta pois a inclusão a que se referem (Fig. 8, 16, 17, 26, 27, 28 da ref. 49) tem o aspecto próprio de inclusões de PHB. Salientamos, no entanto, que a má qualidade das imagens daqueles autores, não permite uma boa definição das estruturas em causa.

As nossas observações em cortes ultrafinos realizados nas diversas estirpes mostrou que as inclusões intracitoplasmáticas são de três tipos diferentes (inclusões lipídicas, polissacarídicas e "core"), podendo algumas vezes ocorrer simultaneamente.

As inclusões lipídicas e as inclusões polissacarídicas estão sempre presentes em simultâneo em todas as estirpes (27) por isso serão mais exemplos a juntar aos anteriormente apontados.

Como diz Stanier (124), a síntese do ácido poli-beta-hidroxiacetínico ou de poliglicoses é uma forma da célula bacteriana acumular carbono numa forma osmoticamente inerte. No primeiro caso, representa ainda um modo de neutralizar um metabólito ácido, dado que os grupos carboxil do ácido-beta-hidroxiacetínico serão eliminados através da formação de ligações ester entre as sub-unidades do polímero. A célula pode pois acumular grandes quantidades deste material de reserva sem as consequências desastrosas que lhe poderiam advir da acumulação intracelular de quantidades equivalentes de glicose livre ou ácido beta-hidroxiacetínico.
5.1.2.3.1 - Inclusões lipídicas.

A coloração pelo sudão negro, descrita por Burdon (13), é uma técnica que tem servido para evidenciar a presença de inclusões lipídicas em bactérias. A aplicação daquela coloração nas diversas estirpes que estudamos foi demonstrativa da existência de inclusões sudanófilas em todas elas.

A correlação entre a presença das inclusões lipídicas e a existência de quantidades apreciáveis de polímeros do ácido beta-hidroxi butírico foi estabelecida por Lemoigne e cols. (53) em várias espécies de Bacillus. Baseados neste facto aqueles autores concluíram que aquele polímero era o constituinte principal daquelas inclusões, ponto de vista mais tarde confirmado pelos trabalhos de Weibull (139) e Williamson e Wilkinson (142). Estes dois últimos investigadores fizeram um estudo químico de grãos lipídicos isolados e demonstraram que no Bacillus cereus e Bacillus megaterium, eles eram constituídos em cerca de 90% por ácido poli-beta-hidroxi butírico (PHB).

As inclusões de PHB estão presentes em grande número de bactérias Gram negativo e Gram positivo (19). Nestas últimas, são de salientar os importantes trabalhos realizados por Slepecky e Law (122) em bactérias do gênero Bacillus.

A observação ultraestrutural de células intactas, pela técnica dos cortes ultrafinos, indica a presença de múltiplas áreas dispersas pelo citoplasma bacteriano, de baixa densidade electrónica e de contornos geralmente regulares. Pensamos que o contorno regular, o aspecto vazio e a presença de uma "membrana" são características gerais que correspondem à inclusão de PHB (27). A citada "membrana" que envolve estas inclusões e que foi evidenciada nas várias fixações ensaiadas, tem uma espessura de cerca de 4nm o que está dentro dos valores 2,0 a 4,0nm encontrados por outros autores (4, 51 e 138) em outras espécies bacterianas.

A existência de uma "membrana" de folheto único rodeando as inclusões de PHB foi de facto assinalada em diversas bactérias, mas em todos os trabalhos a "membrana" só foi visível em células em lise (104), células que sofreram tratamento com agentes membrano-activos (83 e 122) ou grãos lipídicos isolados. Neste último caso para se proceder ao isolamento das inclusões lipídicas houve necessidade de sujeitar as células a diversos tratamentos que lhes determinaram a sua lise.
Para além da técnica dos cortes ultrafinos que evidenciaram a "membrana" das inclusões lipídicas em células não intactas, outras técnicas foram usadas, como a réplica do carbono, usada no *Bacillus cereus* e *Bacillus megaterium* (62) e a crio-fractura, empregue no *Bacillus cereus* (21), mas em nenhum deles foi revelado de modo inequívoco a presença da "membrana" em células intactas. Penso que podemos afirmar que será esta a primeira vez que foi visualizada uma "membrana" de folheto único em células intactas em bacterias Gram positivo pelo método dos cortes ultrafinos.

Considerando os resultados apresentados por Silva e cols. (115) parece ser possível admitir que "membranas" de folheto único que envolvem o esferossoma em células vegetais e as "membranas" das inclusões de PHB das bactérias, possam ser constituídas por uma camada única anfipática formada por fosfolípidos ou fosfolipídeos e proteína em que os grupos hidrofílicos ficam voltados para o lado citoplasmático e os grupos lipofílicos para o lado lipídico das inclusões. Embora Shively (99) afirme que a "membrana" constitutiva dos grãos de PHB seja constituída inteiramente por proteína não fornece qualquer evidência em suporte desta sua afirmação.

5.1.2.3.2 - Inclusões polissacarídicas.

As inclusões polissacarídicas nas células das várias estirpes estudadas, surgem-nos tal como acontece em muitos organismos procarióticos, como áreas citoplasmáticas isoladas ou em agregados sem contornos definidos e nunca delimitadas por qualquer membrana. As inclusões polissacarídicas não são visíveis ao microscópio óptico e a descrição acima feita diz respeito à observação de cortes ultrafinos, em microscopia electrónica.

Cortes ultrafinos de bactérias obtidas da mesma cultura e fixadas pelo método RK seguido ou não por uma pós-fixação pelo acetato de uranilo foram estudadas e comparadas. Nas células tratadas pelo acetato de uranilo as áreas em discussão apareceram com uma franca diminuição da sua densidade electrónica quando comparada com zonas idênticas de células em que esse tratamento havia sido omitido.

Os trabalhos de Vye e Fishman (135) realizados em células eucarióticas chamam a atenção para o facto de em vários tecidos a parcial remoção e
modificação morfológica do glicogênio, traduzida por uma certa agregação, ser devida aos efeitos do pH de uma solução de acetato de uranilo quando usada antes da desidratação. Este aspecto foi de grande interesse numa primeira tentativa de interpretação da natureza das inclusões polissacarídeas. Com efeito, a solução de UO_2^{++} em tampão RK apresenta um pH cerca de 5, sendo esta solução ácida capaz de extrair parte do glicogênio. Pensamos pois que esta extração, explicada pela acção do pH da solução de acetato de uranilo, se venha a traduzir na diminuição da densidade electrónica nos cortes ultrafinos.

A confirmação de que de facto as inclusões eram polissacarídeas foi feita através do método de Thiéry (127). Este autor desenvolveu a sua técnica com base em trabalhos anteriores de Hanker e cols. (45) e Seligman e cols. (98). A principal modificação proposta por Thiéry em relação ao trabalho de Seligman, reside na substituição dos vapores de OsC_2 pela acção de sais de prata, nomeadamente o proteinato de prata.

Thiéry aplicou a sua técnica a um bacilo Gram negativo, a *Escherichia coli* e mais tarde Petitprez e Derieux (82) ensaiarem o mesmo método sobre cortes ultrafinos de *Escherichia coli*, *Bacillus cereus* e *Mycobacterium phlei*. Nos nossos trabalhos seguimos os ensaios destes últimos autores, não só nos tempos como também nas várias fases da técnica. Salientamos no entanto que embora Petitprez e Derieux tivessem desidratado o seu material em acetona e o tivessem incluído em araldite, os nossos resultados, obtidos em bactérias desidratadas em etanol e incluídas em Epon e Spurr, podem ser considerados sobreponíveis.

Não verificamos quaisquer características particulares na deposição de grãos de prata no citoplasma bacteriano das várias estirpes estudadas.

5.1.2.3.3 - "Core"

A designação de "core" foi usada por Cohen e cols. (16) para definir uma estrutura linear que ocorre em formas de transição e protoplastos de *Streptococcus faecalis*. Mais tarde aquela mesma estrutura foi encontrada igualmente em todos os estreptococos pertencentes ao grupo D da classificação de Lancefield (63 e 64). O mesmo nome foi usado por nós para uma outra estrutura que embora não idêntica, apresenta no entanto semelhanças, e que está presente em várias estirpes do *Geodermatophilus* (31) e também na única
Uma revisão relativamente extensa de Shively (100) que sumariza os conhecimentos actuais sobre inclusões nas células procarioticas não inclui qualquer referência a estruturas semelhantes a "cores" o que poderá levar-nos a pensar que se trata de inclusão pouco frequente ou até rara entre os procariotas. A primeira referência à presença de "cores" no *Geodermatophilus obscurus* (estirpe G-7) foi feita na legenda de uma fotografia de um trabalho nosso anteriormente publicado (Fig. 1 ref. 29). Esta microfotografia mostra um corte longitudinal de um "core" na parte central de uma célula filamentososa e também em corte transversal de outro "core" numa célula cocóide.

Nenhum dos trabalhos anteriormente realizados sobre a ultraestrutura destas bactérias (1 e 49) faz referência à existência do "core" embora na publicação de Ishiguro e Wolfe (49) se possa ver de um modo muito claro um corte longitudinal de um "core" na parte central de uma célula cocóide com duas gémulas. Em células intactas do *Geodermatophilus* e *Blastococcus* o "core" parece uma estrutura homogénea, mas em cortes tratados com peróxido de hidrogéneo é evidente que são compostos por fibras paralelas. Este é aliás o mesmo aspecto que pode ser observado em "cores" no interior de protoplastos (Fig. 73 e 74) ou em "cores" isolados (Fig. 76 e 77).

Em trabalho recente sobre ultraestrutura de células em gemulação de um procariota pretencente ao grupo *Blastocaulis-Planctomyces* foram descritas várias inclusões entre as quais havia uma que é morfologicamente semelhante ao "core". Esta estrutura foi chamada "parallel-stacked structure" por Schmidt e Starr (96) e de acordo com aqueles autores parecia possuir uma estrutura membranosa. Parece-nos no entanto que de facto o aspecto não é membranoso mas sim fibrilar, visto ser constituído por fibras paralelas.

A presença do "core" constituído por filamentos de natureza proteica parece ser importante em relação com informação da presença de microfilamentos (37) e de proteínas semelhantes à actina (68) ocorrendo em diversas bactérias. O isolamento dos "cores" que foi conseguido em estirpes do *Geodermatophilus* e do *Blastococcus* será importante, para a caracterização completa dos filamentos que os constituem.

Os "cores" observados no *Geodermatophilus* e *Blastococcus* e as "parallel stacked structure" no grupo *Blastocaulis-Planctomyces* estão presentes.
em bactérias que apresentam o mesmo processo de reprodução - a gemulação. Embora neste momento seja especulativo tentar estabelecer uma correlação entre a gemulação e o aparecimento desta inclusão, o facto é que, por vezes, é possível observarmos um "core" penetrando na zona da gémula.

Os "cores" são pois estruturas intracitoplasmáticas, existentes em diversas estirpes de Geodermatophilus e na estirpe B-15 do Blastococcus aggregatus. O estudo citoquímico desses "cores" revelou terem constituição proteica e ausência de polissacarídeos reveláveis pelo método de Thiéry. O isolamento dos "cores" foi possível a partir da conversão de células intactas em protoplastos. Estes foram posteriormente lisados e submetidos à acção de nucleases e detergentes. Finalmente os "cores" isolados foram concentrados por ultracentrifugação e a sua observação ao microscópio electrónico, mostrou que o material proteico da sua constituição era formado por fibras paralelas.

5.1.3 - Flagelos

As chamadas células móveis são uma presença constante, embora quantitativa diferente nas várias estirpes que estudamos e surgem apenas em determinada fase do ciclo de vida, conforme descrito no respectivo capítulo de resultados. A visualização dos flagelos nestas células móveis, em cortes ultrafinos nas voltagens convencionais não é considerada satisfatória. Weibull (140) em estudos realizados num bacilo Gram negativo, Proteus mirabilis, salienta que os flagelos daquela bactéria são claramente observados a 60 Kv, em cortes de 0,5 μm de espessura, mas se a espessura do corte for aumentada até 3 μm, a resolução é pior e os flagelos são dificilmente visíveis.

Em cortes ultrafinos, não queremos deixar de indicar que nas nossas amostras fixadas em presença de vermelho de ruténio, os flagelos aparecem particularmente bem preservados, permitindo inclusivé, em cortes transversais, verificar que são constituídos por uma estrutura de secção poligonal (Fig. 63).

O número e a posição dos flagelos nas formas móveis do Geodermatophilus têm sido postos em evidência por técnicas de "negative staining". Ishiguro e Fletcher (48) observaram estirpes monoflagelares, com o flagelo em posição polar ou sub-polar e também estirpes periféricas.
Ahrens e Moll (1) na estirpe B-15 referem 1-2 flagelos por célula, com inserção polar ou a partir do lado côncavo da célula lanceolada. Ishiguro e Wolfe (49) salientam que a estirpe 22-68 apresenta 1 a 4 flagelos em posição polar, sendo 3 o número mais vezes encontrado.

As nossas observações sobre a estirpe G-7 mostraram que as células móveis de forma elíptica ou lanceolada apresentam um número de flagelos variável entre 1 a 3, e cuja inserção se fazia na fase côncava da célula.

5.2 - Coloração negativa

Esta técnica foi utilizada com a finalidade de visualizar os flagelos das células móveis, procurando esclarecer o seu número e também os seus pontos de inserção. Sobre a estirpe 22-68 as nossas observações são coincidentes com as de Ishiguro e Wolfe (49) não só sobre o número de flagelos como ainda na sua localização na célula.

Quanto às outras estirpes que estudamos, ainda não tinham sido objecto de qualquer observação por outros autores, excepto a estirpe G-17. Luedemann (54) mostra numa fotografia, uma forma móvel daquela estirpe após a utilização de técnica de sombreamento. Pensamos no entanto que daquela imagem só se poderá concluir da existência de flagelos, sendo difícil perceber-se o seu ponto de inserção.

A estirpe G-7 que foi a que melhor foi estudada por esta técnica, conforme se pode observar na fotografia 78, difere da 22-68, não só no número de flagelos como ainda na sua inserção.

5.3 - Crio-fractura

A introdução neste trabalho de resultados obtidos pela aplicação de técnica de crio-fractura pareceu-nos de interesse apesar do reduzido número de experiências realizadas sobre a estirpe G-7 do Geodermatophilus obscurus. A escolha recaiu nesta estirpe atendendo ao facto de ela apresentar formas diferentes na mesma população o que torna obviamente a sua observação mais fácil.

A técnica de crio-fractura deve-se aos trabalhos pioneiros de Steere (126), Moor e cols. (72) e Moor e Mühlethaler (71). Embora na época em que surgiram estes trabalhos já existisse um grande número de informações sobre
ultraestrutura celular com dados obtidos a partir de observação de cortes ultrafinos de material quimicamente fixado e incluído em várias resinas, o estudo comparativo dos resultados fornecidos pelas duas técnicas foi e continua a ser de grande interesse. Aquele estudo tem sido feito principalmente em microrganismos e deste assume papel de relevo uma bactéria Gram positivo, o Bacillus subtilis (77).

Apreciando os nossos resultados e comparando-os com outros obtidos no Bacillus subtilis poderemos fazer algumas considerações. Sobre os invólucros celulares não encontramos qualquer dado novo relativamente ao que foi descrito a propósito das bactérias Gram positivo, nomeadamente ao nível de membrana citoplasmática. A superfície interna do folheto interno da membrana citoplasmática possui, na estirpe G-7, numerosas granulações e a superfície interna do folheto externo apresenta apenas raros grânulos, tal como havia sido já assinalado em outras bactérias (73 e 77). A presença de pequenas vesículas mesossômicas ou mesossomas de maiores dimensões observada em outras bactérias (73, 74 e 76), também podem ser vistas nestes microrganismos.

No compartimento intracelular e concretamente sobre a área do nucleóide podemos afirmar que, embora Nanninga (75) indique que pode ocasionalmente observar de um modo vago, em crio-fractura, aquilo que poderia ser a área do DNA, em Bacillus subtilis, sem qualquer fixação prévia mas apenas na presença de 20% de glicerol, a única imagem apresentada por aquele autor é, quanto a nós, pouco convincente. Nas nossas imagens da estirpe G-7 nunca nos foi possível visualizar o DNA bacteriano.

Quanto aos ribossomas, podemos afirmar que, tal como foi apontado por Nanninga (75 e 77) em relação ao Bacillus subtilis, também não nos foi possível observar qualquer sub-estrutura no citoplasma das células da estirpe G-7.

6 - Aspectos ligados à taxinomia

A ordem das Actinomycetales é constituída por microrganismos que têm tendência para formarem filamentos ramificados que se podem fragmentar em formas bacilares ou cocóides e que podem formar esporos de vários tipos. De acordo com a última edição do Manual Bergey esta ordem está dividida em várias famílias entre as quais salientamos a família das Dermatophilaceae (39), que abrange actualmente dois géneros Dermatophilus e Geodermatophilus.

As bactérias pertencentes ao outro gênero da família *Dermatophilaceae* - *Geodermatophilus* - começaram a ser descritas a partir de 1966. Nesse ano, Ishiguro e Fletcher isolaram de solos do monte Everest um certo número de microrganismos que classificaram como espécies do gênero *Mycococcus*.

Luedemann isolou a partir de solos de áreas desérticas dos E. U. nomeadamente o deserto Amargosa de Nevada, uma série de microrganismos, dos quais estudou a morfologia e fisiologia. As características encontradas foram comparadas com a de outros organismos, especialmente os pertencentes ao gênero *Dermatophilus*. Embora existam semelhanças com estes últimos, Luedemann verifica que as suas estirpes apresentam características próprias, de modo a justificar-se a criação de um novo gênero que denominou *Geodermatophilus* e que inclua uma única espécie designada *Geodermatophilus obscurus*, por sua vez subdividida em três sub-espécies.

Ahrens e Moll isolam um outro microrganismo do Mar Báltico estudaram as características morfológicas e fisiológicas e discutiram a sua possível posição taxinómica. Embora reconheçam semelhanças com as bactérias do gênero *Dermatophilus* não se referem aos trabalhos de Luedemann e acabam por criar o gênero *Blastococcus*, onde se inclua a espécie *B. aggregatus*.

Ishiguro e Wolfe vêm mais tarde a utilizar uma das estirpes anteriormente isoladas do Monte Everest (22-68) para estudos de morfologia ultras-trutural e controle da morfogénese, incluindo-a como membro do gênero *Geodermatophilus*.
Relativamente à posição taxinómica da estirpe B-15 (*B. aggregatus*) alguns autores foram emitindo opiniões sobreponíveis, apontando para a inclu-
são da estirpe no género *Geodermatophilus*. Assim Ishiguro e Wolfe, em 1970, data da publicação do trabalho de Ahrens e Moll, em adenda final no seu ar-
tigo, afirmam que a bactéria isolada por aqueles autores no Mar Báltico po-
deria ser uma espécie de *Geodermatophilus*, atendendo à descrição da sua mor-
fogénese e à sua morfologia. Em 1971, Schmidt em artigo de revisão sobre bac-
térias protecadas, ao falar sobre *Geodermatophilus* inclui as estirpes 22-
68 e B-15 em pé de igualdade dentro do género. Ainda em 1971, Ensign também
em artigo de revisão, sugere que a bactéria isolada do Mar Báltico é prova-
velmente outro elemento do género *Geodermatophilus*.

Em 1976, Gordon (40) apresentou num simpósio realizado em Ibadan so-
bre infecções por *Dermophilus* no Homem e animais, um trabalho subordinado
ao tema "The bacteriology of Dermophilus congolensis" onde para além da
caracterização daquela espécie como membro das Actinomycetales, apresenta
as características que a distinguem do *Geodermatophilus obscurus*. É eviden-
te que também existem alguns pontos comuns aos dois géneros bacterianos co-
mo, por exemplo, a existência em ambos de ciclos de vida complexos. A ultras-
trutura tem também pontos de contacto conforme indicam os trabalhos de Gor-
don e Edwards (41), Fonseca e Edwards (30) e Ahrens e Moll (1). Semelhanças
fisiológicas também existem, como revela o seu comportamento relativamente
à catalase (1e38) ou a sua sensibilidade a antibióticos antibacterianos ou
a sua resistência a antibióticos antifúngicos como a Nistatina, Griseoful-
vina e Tonaftalato (54).

Salientemos que para além destas características comuns existem ou-
tras tão diferentes que levaram Luedemann a incluir desde o início aquelas
bactérias, não no género *Dermophilus*, mas sim no recém criado género *Geo-
dermatophilus*. Na moderna taxinomia bacteriana, a análise comparativa da
composição base do DNA expressa na percentagem relativa da guanina-citosina
tem sido usada como critério fundamental. Tendo em mente a importância des-
te critério realizamos um trabalho (92) no qual foram comparadas várias es-
tirpes do *D. congolensis* (A4, A26, A22 e A33) e várias estirpes do *G. obscu-
rus* (G4, G5, G7, e G17) – estirpes de Luedemann e 22-68 (estirpe de Ishigu-
ro e Wolfe). Os resultados obtidos que se traduziram numa diferença de 15
Mol% entre os valores de guanina-citosina do *Dermatophilus* e do *Geodermatophilus*, parecem de facto afastar a ideia anteriormente admitida de que as bactérias pertencentes ao gênero *Dermatophilus* poderiam ser derivadas do gênero *Geodermatophilus*.

O gênero *Geodermatophilus* criado por Luedemann (54), inclui a espécie tipo *G. obscurus* e ainda as seguintes sub-espécies: *G. obscurus subsp. obscurus*; *G. obscurus subsp. amargosae*; *G. obscurus subsp. utahensis*; e *G. obscurus subsp. dictyosporus*. Estas sub-espécies, segundo o critério de Luedemann, foram estabelecidas de acordo com: aspecto das colónias; características morfológicas das células; utilização de carbono e produção de ácido a partir de diversos carbohidratos; e ainda local de isolamento. Baseados nos critérios atrás apontados e tendo em conta os resultados obtidos ao longo deste trabalho somos de opinião que deverão ser incluídas igualmente como sub-espécies as estirpes 22-68 e B-15.
RESUMO E CONCLUSÕES
Ao iniciarmos em 1971 o estudo ultrastrutural de várias estirpes do *Geodermatophilus obscurus* isolados por Luedemann e que este autor havia observado através de microscopia óptica, encontramos apenas duas referências na literatura sobretudo de microrganismos e em relação com observações baseadas em microscopia electrónica. Um dos trabalhos incidia sobre a estirpe 22-68 do género *Geodermatophilus*, isolada do Monte Evereste, dizia respeito ao controlo da morfogénese daquela bactéria e incluía aspectos ultrastruturais. Quanto ao outro trabalho também com observações submicroscópicas, focava uma bactéria isolada do Mar Báltico designada como *Blastococcus aggregatus* (estirpe B-15) mas cujas características eram sugestivas de se tratar de mais um elemento do género *Geodermatophilus*.

Estes dois trabalhos de ultrastrutura então publicados eram muito restritos em termos comparativos. Os seus autores ensaiaram métodos diferentes, utilizaram nomenclaturas e alguns termos inadequados sob o ponto de vista de microscopia electrónica e nem sempre as técnicas empregues foram satisfatórias, de modo que os resultados finais nem sempre foram bons.

Por outro lado, embora algumas sugestões tivessem sido dadas no sentido de incluir a estirpe B-15 do *Blastococcus aggregatus* no género *Geodermatophilus* não haviam sido dados passos seguros nem foram apresentadas provas evidentes para se concretizar tal ideia.

Todos estes factos foram relevantes para a inclusão no nosso estudo daquelas duas estirpes, ao lado de todas as outras isoladas por Luedemann em diversas zonas desérticas dos Estados Unidos e que iriam ser observadas pela primeira vez sob o ponto de vista ultrastrutural. Dado que o estudo comparativo das diversas estirpes era um objectivo importante deste nosso trabalho, procuramos esclarecer também alguns pontos relacionados com aspectos morfológicos, fisiológicos e biológicos.
Ao analisarmos os resultados desta investigação será legítimo extraímos algumas conclusões que, de acordo com a nossa contribuição pessoal, poderemos apresentar em dois grupos distintos:

1 - Conclusões que confirmam ou discordam de opiniões ou resultados de outros autores.

1.1 - Todas as estirpes estudadas são produtoras de pigmentos.

1.2 - Todas as estirpes possuem um ciclo de crescimento comum, embora com fases mais aparentes em algumas delas e fases que passam facilmente despercebidas noutras.

1.3 - Todas as estirpes apresentam ao longo do ciclo de vida várias formas celulares: células cocóides isoladas ou em agregados e células móveis.

1.4 - Confirmamos o mecanismo de formação de células móveis a partir de células cocóides por um processo de gemulação. Discor demos das hipóteses apresentadas por Luedemann tentando explicar aquela formação.

1.5 - Confirmamos a possibilidade de formação de mais de uma gémula a partir da célula cocóide conforme a observação de Luedemann em microscopia óptica e discordamos das afirmações de Ishiguro e Wolfe sobre este facto.

2 - Conclusões referentes a novos resultados que constituem novas observações.

2.1 - No ciclo de vida são descritas duas novas formas celulares: células filamentosas e células intermediárias.

2.2 - O mecanismo de formação das células filamentosas é um processo de gemulação semelhante ao das células móveis.

2.3 - As diversas provas bioquímicas realizadas nas estirpes 22-68 e 8-15 não revelaram maiores diferenças do que aquelas que são apresentadas entre as várias estirpes de Luedemann.
2.4 - Todas as estirpes estudadas apresentam uma camada mucóide embora quantitativamente diferente umas das outras.

2.5 - Todas as estirpes possuem uma parede típica de bactérias Gram positivo.
A parede celular da estirpe 22-68 apresenta uma estrutura semelhante a todas as anteriores sendo esclarecidas e corrigidas afirmações de Ishiguro e Wolfe sobre este assunto.

2.6 - Verificamos a presença de um perfil triplo assimétrico para a membrana celular destes microrganismos, conforme já foi demonstrado em outras bactérias Gram positivo.
A geometria do perfil da membrana citoplasmática mostrou-se dependente de fixação e da coloração.

2.7 - Notamos a existência de mesossomas de configuração diferente dependentes do método de fixação ensaiado, conforme havia sido observado em outras bactérias Gram positivo.

2.8 - Observamos nestas estirpes a presença de DNA fibrilar, naquelas fixações apontadas como as que melhor preservam o nucleóide bacteriano (RK e KMnO₄).

2.9 - A membrana de folheto único das inclusões lipídicas foi observada em células intactas. Em cortes ultrafínsos e em bactérias Gram positivo foi a primeira vez que tal observação foi feita.

2.10 - Em grande número de estirpes foi observada uma estrutura peculiar que chamamos "core". Esta inclusão foi: caracterizada citoquimicamente como de natureza proteica; isolada após formação de protoplastos e sua posterior lise; observada após isolamento, tendo revelado estrutura fibrilar.

2.11 - Algumas das estirpes apresentam três tipos de inclusões: lipídicas, polissacarídeas e "core". Todas estas inclusões podem ocorrer em simultâneo nas mesmas células da mesma estirpe.
2.12 - Os estudos realizados ao longo deste trabalho sobre a estirpe B-15 do *Blastococcus aggregatus* em relação à qual nenhum autor até ao presente havia apresentado argumentos consistentes e convincentes da sua real posição taxinómica, são a favor da inclusão daquela estirpe como mais um membro do gênero *Geodermatophilus*, provavelmente como mais uma das sub-espécies criadas por Luedemann (54). A estirpe 22-68 já colocada no gênero deverá, quanto a nós, ser também considerada uma sub-espécie da espécie *Geodermatophilus obscurus*.
SUMMARY AND CONCLUSIONS
In the present work several strains of *Geodermatophilus* isolated by Luedemann from deserts in the U.S.A were studied under the morphological and physiological points of view. For comparison the related strain 22-68 and B-15 were also studied.

The main conclusions of this study will be presented in two groups.

1 - Conclusions which agree or disagree with the results of previous studies.

1.1 - All strains studied are pigment producers.

1.2 - All strains exhibit a life cycle; in some strains some steps of that cycle are not easily found.

1.3 - All strains exhibit in this life cycle coccoid cells, either isolated or in aggregates and motile cells.

1.4 - The previously described formation of motile cells from coccoid cells by budding was confirmed; however, we disagree with the results presented by Luedemann to explain that process.

1.5 - As previously demonstrated by Luedemann by light microscopy, we found that sometimes more than one bud can be formed from the same coccoid cell; in this subject we disagree with the statements by Ishiguro and Wolfe.

2 - Conclusions which represent new data.

2.1 - Two new forms are described for the life cycle of *Geodermatophilus*: filamentous cells and intermediate cells.

2.2 - Filamentous cells are formed by budding as in the case of motile cells.

2.3 - Several biochemical tests carried out with strains 22-68 and B-15 give results similar to those obtained with the Luedemann's strains.
2.4 - All studied strains have a slime layer, although with quantitative differences among them.

2.5 - All strains have a cell wall with the ultrastructural characteristics typical of Gram positive bacteria; the interpretation given by Ishiguro and Wolfe in regard to the cell wall of strain 22-68 were corrected.

2.6 - As in the other Gram positive studied so far, the cytoplasmic membrane of all strains of *Geodermatophilus* exhibit, under usual conditions and when properly fixed, an asymmetric profile.

2.7 - Mesosomes with configurations dependent on the fixation conditions were observed in all strains.

2.8 - With Ryter-Kellemberger (RK) and KMnO₄ fixations, the nucleoid exhibit fibrilar DNA.

2.9 - We observed for the first time, in ultra-thin sections, that the lipid inclusions are surrounded by a single-layer "membrane".

2.10 - In most strains a peculiar inclusion - core - was observed; the core was found by ultrastructural cytochemistry to contain protein; following the conversion of intact cells to protoplasts and osmotic lysis, the cores were isolated.

2.11 - All strains were found to contain three types of inclusions: lipid, polysaccharide and cores; the three inclusions were sometimes found within the same cell.

2.12 - Our observations concerning strain B-15 of *Blastococcus aggregatus* support the conclusion that it should be placed in genus *Geodermatophilus*, probably as a new subspecies of *G. obscurus*; strain 22-68 already in the genus *Geodermatophilus* should be considered, as well, a new subspecies of *G. obscurus*.

