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Resumo

Nos últimos anos, tem-se assistido a um aumento dos acessos a câmaras, especialmente pela sua
incorporação sistemática em smartphones. Em adição, com o aumento da largura de banda de
rede e um grande compromisso mundial com a mídia social online, hoje enfrentamos uma enorme
quantidade de dados multimédia.

Trabalhos relevantes sobre a área muitas vezes esquecem as limitações inerentes dos dispos-
itivos móveis, resultando numa clara necessidade de técnicas mais adequadas para estes disposi-
tivos. Nesta ordem de ideias o principal objetivo deste trabalho é investigar o uso de descritores
de keypoints de representação binária no contexto do reconhecimento e recuperação de revistas de
moda.

No contexto da recuperação de imagens baseada em conteúdo, uma abordagem popular para a
descrição das imagens é modelo bag of keypoints que utiliza um vocabulário aprendido a partir de
um conjunto de descritores de keypoints produzindo assinaturas globais de imagens, quantizando
cada descritor de keypoint extraído de uma imagem. Para a geração do vocabulário o modelo bag
of keypoints baseia-se normalmente em alguma variante do algoritmo de agrupamento de dados
k-means, que é bem definido apenas para dados de valor real. Na base de uma discussão apro-
fundada sobre as diferentes questões relacionadas ao uso de dados binários no modelo bag of
keypoints, neste trabalho é proposto e validado um sistema de recuperação de imagens baseada
em conteúdo utilizando descritores binários. Os resultados mostraram que os descritores binários,
embora simples e compactos, são muito discriminativos e têm um papel a desempenhar nos sis-
temas de recuperação de imagens utilizando a abordagem bag of keypoints, uma vez que atingem
precisões semelhantes do que descritores tradicionais.

Esse trabalho levou ao desenvolvimento de uma execução robusta e eficiente que após op-
timizações tem o potencial de melhorar os sistemas visuais em cenários de pesquisa do mundo
real.
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Abstract

Recent years has seen the rise of cheap and ubiquitous access to cameras, especially by its sys-
tematic embedding into smartphones. In addiction, with the increase of network bandwidth and a
large worldwide commitment to online social media, we face today a huge amount of multimedia
data.

Relevant works on the area often miss the inherent limitations of mobile devices resulting in a
clear need of more adequate techniques. In this order of ideas the main purpose of this work is to
investigate the use of binary keypoint descriptors in the context of fashion magazines recognition
and retrieval.

In content-based image retrieval a popular approach for images description is the bag of key-
points model which using a vocabulary learned from a set of local keypoint descriptors produces
global image signatures by quantizing each local keypoint descriptor extracted from an image.
For the vocabulary generation the bag of keypoints model typically relies on some variant of the
k-means clustering algorithm which is well defined only for real-valued data. In the basis of a thor-
ough discussion about the different issues regarding the use of binary data in the bag of keypoints
model, in this work is proposed and validated a content-based image retrieval system using bi-
nary descriptors. The results showed that binary descriptors, while simple and compact, are very
discriminative and have their role to play in image retrieval systems using the bag of keypoints
approach since they achieve similar accuracy than traditional descriptors.

This work led to the development of a robust and efficient implementation that after optimiza-
tions has the potential to improve visual search systems in real world scenarios.
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Chapter 1

Introduction

A large number of computer vision applications, such as visual search, object recognition or 3D

reconstruction are based on finding correspondences between images. This is a challenging prob-

lem that can be solved by representing image patches, in a way that is invariant to viewpoint

changes and different imaging conditions, finding the correspondences in the resulting represen-

tation space. The representation of an image patch, referred to as a keypoint descriptor, can be

typically modelled as a multi-dimensional vector of floating-point or binary values. In addition to

robustness to various image transformations, keypoint descriptors should also possess a high dis-

criminative power, allowing to find its correct match with good probability even in a large database

of keypoints. The keypoint matching problem has received considerable attention as evidenced by

the large number of publications on this topic, such as [5, 10, 4, 2, 6, 7, 8, 9] to name a few.

Despite the significant progress that been made, it remains a very active research area, because of

the continuously changing and ever more demanding nature of the applications built that rely on it

and since most of the proposed solutions are mainly designed for standalone machines with high

processing power and few memory limitations.

1.1 Motivation

With the proliferation of camera-enabled mobile devices (e.g. phones and tablets), there is an ever

growing need for Computer Vision technologies deployed on portable devices that have limited

computational power and storage space. The increasing content of visual data along with the need

to access this data from any point in the world and as quickly as possible requires extremely fast

processing. This new scale of processing has driven several recent works that propose binary de-

scriptors [6, 7, 8, 9], which reduce memory usage and allows for significantly faster processing

due to the efficient computation of the Hamming distance (a proper metric to compute distances in

the binary space). Besides this, they are typically built as a concatenation of simple intensity com-

parisons which results in an extremely short computation time. Binary descriptors have quickly

become an attractive alternative to floating-point descriptors, especially for real-time applications

run on low-end handheld devices.
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2 Introduction

However, maintaining a large number of local feature descriptors to represent the image con-

tent, even if binary, is not scalable due to the prohibitively high dimensionality of the resulting

representation which grows linearly with the number of local descriptors and their dimensionality,

becoming overly expensive to compute similarities between image representations in large scale

databases. A lot of research has been focused on providing working solutions to address this prob-

lem in the multi-dimensional space of floating-point vectors [11, 12, 13, 14]. Surprisingly few

works, however, focus on this problem in the case of binary descriptors. It is therefore necessary

to investigate if the solutions available for the floating-point vectors can be used to produce feature

encoding schemes in the binary descriptors case.

1.2 Context and Goals

Being able to describe an image based on its regions using an effective and efficient representation,

robust to various imaging conditions and viewpoint changes, is crucial for a variety of Computer

Vision applications. Among the most important ones are:

Wide baseline image matching. Matching a pair of images taken from substantially different

viewpoints, known as wide baseline matching, is an important component of 3-D reconstruction

systems. It is usually carried out by first detecting salient regions in each of the images, fol-

lowed by a matching step which based on the distance in the region descriptor space (e.g. by

nearest-neighbour matching). This brings up the importance of having a discriminative local fea-

ture descriptor, i.e. the distance between the descriptors of regions corresponding to the same

part of a scene should be smaller than the distance between descriptors of regions coming from

different parts of the scene.

Large-scale visual search. Due to the existence of search engines like Google1, the idea to

search the web from a set of words is, nowadays, a natural way to discover the world and to

answer several questions. However, with image capturing devices being in abundance, the users

become more and more interested in querying the internet not only with textual hints but also with

visual data. In fact, a visual image can convey an idea or an emotion more effectively than words.

Thus, there is a significant demand to provide solutions for visual search which can be defined as

retrieving information, both in textual and visual domains, in response to a visual query, e.g. in the

form of an image. A conventional approach to visual search is based on the text retrieval scheme.

It relies on the representation of images using visual words, which are obtained by quantizing im-

age local descriptors. Figure 1.1 presents a screenshot of a representative example of a large-scale

visual search application, namely images.google.com. From an image queried by the user a set of

high relevant images are retrieved. Also, a new class of applications which use the camera phone

1www.google.com



1.2 Context and Goals 3

Figure 1.1: images.google.com retrieves visually similar images from an image queried by an user.

to initiate search queries about objects in visual proximity to the user has emerged. Such applica-

tions can be used, e.g., for identifying products, comparison shopping, finding information about

movies, CDs, buildings, shops, real estate, print media, artworks and fashion. Some good exam-

ples of such systems include Google Googles2, Amazon Shopping3, CamFind4 and ASAP545.

This work tackles the problem of visual recognition of specific pages from fashion print magazines

in a large collection of images. The main goal is to retrieve the correct page and some relevant

information about the contents of it using only a query image taken by user. Visual recognition of

specific fashion magazines pages is a complex problem due to the fact that there are sometimes

very similar pages, contributing to the increase in the system’s likelihood to confuse the correct

page with no relevant pages. Besides this, the image must be retrieved quickly and accurately,

despite some imaging conditions such as scale, lighting and partial occlusions. In this thesis a ro-

bust and efficient method to retrieval of specific pages of fashion magazines, is proposed. During

the development of the method several combinations of keypoints detectors and binary descriptors

were tested in order to ascertain which of the combinations is best suited to this specific problem.

Furthermore, given the extensive research on binary descriptors in the scientific community, such

a comparison was made with standard techniques.

2 https://support.google.com/websearch/answer/166331?hl=en
3https://play.google.com/store/apps/details?id=com.amazon.mShop.android.shopping&hl=en
4 http://camfindapp.com
5http://www.asap54.com



4 Introduction

1.3 Contributions

This thesis addresses the problem of learning discriminative image representations. This means

the representation of images or their regions as floating-point or binary vectors in the vector space.

Such representations are the basis of several computer vision frameworks, since the latter rely on

a suitable representation of the image data they are dealing with. Since the floating-point feature

descriptors are older than the binary ones, having been used in numerous applications, it is nec-

essary to understand if the methods used for applications using real valued vector representation

are susceptible to be used also in applications using binary representations. Thus, this thesis pro-

vides an analysis of the multi-dimensional space generated by binary descriptors and a robust and

efficient method for visual search based on a compact representation of images, referred as image

signature. More precisely the contributions of this thesis are the following:

• An extensive study of several state-of-the-art feature detection and description techniques.

• A performance evaluation of Open Source Computer Vision Library (OpenCV) implemen-

tations of several keypoints detectors and descriptors effectively yielding the best solution

to that specific problem.

• A new approach to integrate the binary descriptors in the bag of keypoints representation.

• A prototype visual search system for fashion print magazines. The system takes a picture

from a user as input, returning the corresponding magazine and page together with relevant

information about the contents of the pages.

1.4 Document Structure

This dissertation is divided into six main chapters, the first of which is the Introduction. Chapter 2

offers an overview of the state of the art methods and technologies used to solve problems in this

context. Chapter 3 an extensive overview of the state of the art in the field of keypoint detectors

and descriptors is provided. In Chapter 4 the solution approach that has been performed within

the context of this dissertation is explained, based on the study demonstrated on Chapters 2 and 3.

Chapter 5 exposes the test environment and main results that were obtained following the imple-

mentation of the application. Finally, on Chapter 6, some conclusions are made and some future

work is defined.



Chapter 2

Related methods and techniques

Print magazine recognition is essentially an content-based image retrieval (CBIR) task with many

challenges caused by the large variation of imaging conditions. It is closely related to many

computer vision problems and tasks ranging from image description to object recognition. In this

chapter the basic concepts about image retrieval are presented, focusing on the standard image

retrieval scheme.

2.1 Image retrieval

Image retrieval is the task of searching, finding and retrieving the most similar images from a

database to a given query image. As the images grow in complexity and diversity, retrieving the

right images in large scale catalogues, or databases becomes a difficult challenge. The task is chal-

lenging for two main reasons. Firstly, the system should retrieve occurences of the query object

despite all the difficult imaging conditions seen in real-world images. These include changes as

scale, viewpoint, lighting and partial occlusions. Secondly, the system should scale to very large

image corpora while still producing good retrieval results, and being able to rapidly return results

to the user (i.e. ∼ 1 second per query).

As already mentioned, searching images according to their semantic content is a very challeng-

ing problem since the system is ideally robusto to several factors such as resolution, illumination

variations and occluded objects. A number of approaches had tacked the problem of retrieval un-

der these difficulties with some success, but they became truly scalable and robust when the link

was made to text retrieval techniques. While global features are known to be limited in face of

these difficulties, which describe a picture in a holistic way (eg. one histogram represents a signa-

ture for the whole image), keypoint descriptors provide a way to describe several salient patches

within the images, demonstrating great discriminative power. The cardinality of the set of key-

point descriptor vectors depends on the detected points in the picture, resulting in a huge number

to cope with for the large-scale retrieval system.

Nowadays, the most popular approach is the bag of keypoints model, first proposed by [11].

The idea is to first quantize local descriptors into “visual words” and represent each image as

5



6 Related methods and techniques

a vector of words, mimicking the text-document search paradigm. Effectively, such approach

departs from one popular indexing scheme used in systems using text documents search, where

the word occurences in a phrase are moduled as a histogram over a pre-existing vocabulary of

words, named Bag of Words model. Then text-retrieval systems can mimic, applying scalable

indexing and fast search on this vector space. Bag of keypoints has shown good performances not

only for the retrieval [15] task but also for other vision tasks like object recognition [16], image

classification [12, 17].

2.2 Keypoint-based image description

Due to the increase in resolution of digital images and since they are high dimensional complex

data structures, computationally efficient ways of representing images with smaller dimension

have been studied so that certain types of image processing techniques can be used. In the field

of image retrieval various approaches have been proposed to make content-based image represen-

tations. First, most of the approaches were based on overall image representations also known as

global features such as color histograms and their variations. This type of approach has been used

successfully at least in applications where the images have distinctive colours as the user’s main

interest is the total composition of the image as a whole, rather than one foreground object, for in-

stance. Global representations of the image do not distinguish foreground with the background of

the images, mixing both parts of the information, limiting the usefulness of systems based on these

approaches to cases with clean background or cases which require prior segmentation routine to

extract the object of interest from the input image.

One of the main problems of global features is that most images come from the real world and

thus contain non-distinctive parts (e.g. uniform colour patches) contributing to the representation

of the image in global approaches. It becomes then very useful to extract only meaningful parts of

the image; in other words, their aim is to retrieve only a small amount of very discriminative image

areas. A common way in computer vision to fulfil this purpose is to find locations containing a

lot of usefull and desciminative information, and then to describe them using their local pixel

neighbourhood. Such locations are generally called keypoints, and their description is generally

referred to as descriptors or keypoint descriptor. The keypoint-based image description is thus

a set of keypoints and their descriptors. The problem of the high dimensionality of standard

representation is solved because the descriptors are low-dimensional structures (arbitrarily). In

this work we will settle our analysis at this type of image representation.

2.2.1 Keypoint detection

As explained above, the first requirement of keypoint-based image representation is to find dis-

criminative image patches. This process is commonly known as keypoint detection and has been

solved using several approaches [18, 19, 20, 5, 4, 3, 21] to name a few. The common goal of the

several developed techniques is to find semantically meaningful object parts. The keypoint detec-

tors select points in the image based directly on the underlying intensity patterns. These detected
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points are ideally discriminative points in the image and have a certain amount of invariance to

image transformations. This means that given two images of certain objects taken from different

conditions (e.g. viewing angle, illumination, etc), the detector should be able to locate the same

keypoints in both images. Optimal keypoint detectors should detect keypoints that are [2]:

• repeatable: Given two images of the same object or scene, taken under different viewing

conditions, a high percentage of the keypoints detected on the scene part visible in both

images should be found in both images.

• local: The keypoints should be local, so as to reduce the probability of occlusion and to

allow simple model approximations of the geometric and photometric deformations between

two images taken under different viewing conditions.

• distinctive: The intensity patterns underlying the detected keypoints should show a lot of

variation, such that they can be distinguished and matched.

• sufficient: The number of detected keypoints should be sufficiently large, such that a rea-

sonable number of salient patches are detected even on small objects. However, the optimal

number of keypoints depends on the application. Ideally, that number should be adaptable

over a large range by a simple and intuitive threshold.

• accurate: The detected keypoints should be accurately localized, both in image location, as

with respect to scale and possibly shape.

• efficient: Preferably, the keypoint detection in a new image should allow for time-critical

applications.

Clearly, the importance of the properties described depends on the actual application and set-

tings, and compromises need to be made. Repeatability is the most important quality for a keypoint

detection technique and is required in all application scenarios [2]. It directly depends on the other

properties like invariance, robustness, etc. Depending on the application, increasing or decreasing

the number of keypoints may result in higher repeatability.

In the next chapter the most important techniques in the literature to detect keypoints are

summarized.

2.2.2 Keypoint description

Having detected keypoints in the image, the next step is to represent them in a way that is invariant

to unwanted image transformations. This task is commonly referred as feature description and

it consists in encoding certain properties of the image in the local neighborhoods centered at the

detected keypoints into a vector, referred as descriptor. Several characteristics can be desired for a

good keypoint descriptor. First, the size (i.e. dimensionality) of the descriptor need to be bounded

to a sufficiently small value, in order to keep the benefits of the keypoint-based image represen-

tation, and to be able to match features efficiently. For matching purposes, the description should
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be descriptive enough to allow a good discrimination but, at the same time, robust to variations

in its neighbourhood. Robustness typically refers to invariance to in-plane rotation, scale, affine

or perspective transformation, compression noise, etc. As seen in the previous section, scale and

rotation information can be provided by the detector.

2.2.3 Keypoint matching

A simple approach for pairwise image matching consists in linearly comparing their descriptors

and counting how many of them match each other. Descriptors can be compared by threshold-

ing the distance between them which can be computed using some distance measure such as Eu-

clidean, Manhattan or Cosine distance. An alternative criteria to evaluate the quality of a matching

candidate was proposed in the original SIFT matching scheme were it was introduced the notion

of ratio threshold, a measure where a pair of features is considered a match if the distance ratio

between the closest and second closest matches is below some threshold t:

t >
d(D,D′nn)

d(D,D′2nn)
(2.1)

where D is the descriptor to be matched and D′nn and D′2nn are the nearest and the second near-

est descriptors from the model database, with d(D1,D2) denoting the Euclidean distance between

two descriptors, D1 and D2. An empirically determined threshold value of t = 0.8 is typically

used. According to [5] the ratio threshold is effective for general recognition because correct dis-

criminative keypoints often have the closest neighbor significantly closer than the closest incorrect

match.

2.3 Bag of keypoints model

The Bag of keypoints model was originally introduced in Computer Vision by [11] where the aim

was detecting objects in a video sequence. To that end it reformulates the CBIR problem as a text

retrieval one where the documents are the images in the database and the analog to a word in text

documents is a visual word, a set of neighboring pixels sharing a texturing pattern. The process

starts by extracting keypoint descriptors from a collection of database images, which are then

quantized into visual words, and finally text search methods are used to retrieve similar images to

a given query image. An optional re-ranking step based on geometric constraints is performed on

the top "closest" results.

The general method to create a bag of keypoints model is derived from the initial bag of words

(BoW) model. That is, first a vocabulary needs to be constructed. This is generally done using

keypoint-based representation of images. The general method to create a vocabulary (also called

codebook) of size n (i.e. the number of visual words) is the following:

1. Detect keypoints and extract descriptors from a set of images.

2. Apply a clustering method to find k representatives in the keypoint descriptor space.
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3. The set containing the k representatives is defined as the vocabulary.

Recently, hierarchical clustering has been used instead of flat clustering and have been shown to

yield to good performance [15]. In this context, the codebook is sometimes called a Vocabulary

Tree.

The bag of keypoints representation of an image I given a vocabulary V is then created using

the following steps:

1. Detect keypoints and extract descriptors in I using the same keypoint detectors and descrip-

tors than the ones used to create the visual vocabulary.

2. Find the visual words corresponding to each keypoint descriptor by assigning its closest

visual word in V using a nearest neighbour search.

3. Create an histogram of the visual words in I with respect to the codebook V .

4. The normalized histogram is the bag of keypoints representation of I (also referred as image

signature).

2.3.1 k-means clustering

Clustering is an unsupervised learning technique of machine learning typically used in the bag of

keypoints model.

The method of k-means clustering (or simply k-means) takes unlabeled input data and gives

as output a k-partition of the data. The k partitions, here called clusters, are disjoint and non-

hierarchical. Thus, each data sample is labeled as belonging to one of the clusters. Given a k

number of clusters and a set of n data points χ ∈ Rd .The number k of centers C should be chosen

so as to minimize the potential function:

φ = ∑
x∈χ

min
c∈C
||x− c||2 (2.2)

The k-means algorithm is a simple and fast algorithm for the clustering problem, although it offers

no approximation guarantees at all and is highly dependent of the initialization of the clusters. The

standard algorithm was first proposed in [22] and has also been introduced in [23], which is why

the algorithm is generally referred to as Lloyd’s algorithm (or Lloyd-Forgy algorithm).

k-means algorithm (Lloyd-Forgy)

• Initialization: Initialize k vectors, which refer to the cluster centers C = {c1,c2, . . . ,ck}.

• Assignment step: For each {i ∈ 1, . . . ,k}, set the cluster Ci to be the set of points in χ that

are closer to ci than they are to c j for all j 6= i.



10 Related methods and techniques

• Update step: For each {i ∈ 1, . . . ,k}, set ci to be the center of mass of all points in Ci:

ci =
1
|Ci| ∑

x∈Ci

x (2.3)

• Alternate between assignment and update step until C no longer changes.

Figure 2.1: K-means algorithm representation. Data points are shown as dots, and cluster centers
are shown as crosses. (a) Original dataset. (b) Random initial cluster centers. (c-f) Illustration
of running two iterations of k-means. In each iteration, each data point is assigned to the closest
cluster center (shown by “painting” the data points with the same color as the cluster center to
which is assigned); then each cluster center is moved to the mean of the points assigned to it.
Source: [1].

Figure 2.1 shows a typical representation of the algorithm. For the initialization problem a

new algorithm k-means++ was proposed in [24]. The method provides a distribution of initial

cluster centers which allows the algorithm to converge quickly to a clustering with small error

(with respect to the optimal clustering).



Chapter 3

Keypoint detectors and descriptors

This chapter presents the main methods to detect keypoints in an image. After that, several key-

points descriptors used in the literature are also presented.

3.1 Keypoint detectors

Depending on the keypoint type detected, detectors can be organized in two mainclasses, namely

corner-like detectors and blob-like detectors. Below are presented several examples for each class

in chronological order of appearance in the literature.

3.1.1 Corner detectors

The expression corner detection is commonly used in computer vision but has a specific meaning.

The detected points by corner detectors correspond to points in the 2D image with high curvature.

These do not necessarily correspond to projections of 3D corners. Corners are found at various

types of junctions, on highly textured surfaces, at occlusion boundaries, etc. For many applica-

tions, this is sufficient, since the goal is to have a set of stable and repeatable keypoints [2]. In this

section some of these algorithms are summarized.

Harris detector. The Harris detector [18], also known as the Harris operator is one of the first

successful attempts to localize discriminative points in an image. It proposes to use a measure of

cornerness, defined as the response strength of the following operation:

R = det(A)− k trace2(A) (3.1)

where A = ∑
u,v

w(u,v)

 I2
x IxIy

IxIy I2
y
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and w(u,v) is an uniform or Gaussian weighting function and the x and y subscripts indicate differ-

entiation. A is usually referred to as the second-moment matrix of the image computed in a rectan-

gular window around the pixel under consideration and k≈ 0.04 helps to distinguish between lines

and corners. Finally local maximum supression in a 3×3 neighborhood is applied. Despite Har-

ris’ efficiency and ability to compute and localizing corners well under rotation (see Figure 3.1), it

has been critisized for its poor repeatability under viewpoint and scale changes [19]. To overcome

this, several extensions of Harris detector have been proposed, one of the most successful ones be-

ing Harris-Laplace [25] and Harris-Affine detectors [20]. The Harris-Laplace operator introduces

scale invariance by using the Harris function (see equation 3.1) to localize points in each level of

the scale-space representation and then selecting points for which the Laplacian-of-Gaussian at-

tains a maximum over scale, allowing the detection of stable feature points across different scales

and image resolutions. The Harris-Affine detector instead of detecting circular neighbourhoods,

iteratively estimates elliptical affine regions in order to obtain affine invariant corners. This ap-

proach provides a better estimate of the object shape, regardless of transformations caused by

viewpoint changes.

Figure 3.1: Harris corners on rotated images. Source: [2]

FAST. Features from Acellerated Segment Test (known as FAST) is an algorithm proposed origi-

nally by [3] to identify corner based keypoints. FAST was designed to be very efficient and suitable

for real-time applications of any complexity. The segment test criterion operates by considering a

circle of sixteen pixels around the corner candidate p. The original detector classifies p as a corner

if there are a set of n contiguous pixels in a circle around it which are all brighter than the intensity

Ip of the candidate pixel plus a threshold t, or all darker than Ip - t (Figure 3.2). Additionally, the

authors presented a machine learning approach to create decision trees that allow FAST to classify

a candidate point with only a few pixel tests, speeding-up the detection process. Althouth FAST

is only a detector, it is proven to be quite reliable and used in the upstream for lots of descriptor

generating processes. FAST-based keypoint detection is widely used because of its computational
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properties, however, this type of features are not very robust in the presence of noise as stated by

their authors [3] because of the lack of an orientation component. To address the weaknesses of

FAST, several approaches have been proposed [21, 7, 8] as will be discussed below.

Figure 3.2: FAST detection method: pixel p and the corresponding circle of 16 pixels used to test
if p is a point of interest. Source: [3]

AGAST. In the Adaptive and Generic Acellerated Segment Test [21], the performance of FAST

is increased by changing the way in which the decision tree is created. Instead of using a fixed

decision tree to classify a point as is used in the original idea, AGAST uses a more complex

method, which is built by choosing one of the pixels to test and posing one question (whether the

pixel is darker, similar or darker). The response is used to decide the next pixel and question to

pose. This turns the process of searching for a corner into a process of traversing a binary tree.

Consequently, the configuration space increases by the addition of two more states: “not brighter”

(b̄) and “not darker” (d̄). Based on [3], Mair et al. defined the state of a pixel relative to the nucleus

n, denoted by n→ x, is assigned as follows:

Sn→x =



d, In→x < In− t (darker)

d̄, In→x 6< In− t ∧ S′n→x = u (not darker)

s, In→x 6< In− t ∧ S′n→x = b̄ (similar)

s, In→x 6> In + t ∧ S′n→x = d̄ (similar)

b̄, In→x 6> In + t ∧ S′n→x = u (not brighter)

b, In→x > In + t (brighter)

(3.2)
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where S′n→x is the preceding state, I is the brightness of a pixel and u means that the state is still

unknown. This results in a binary tree representation, as opposed to a ternary tree, allowing a

single evaluation at each node. With their experiences, Mair et al. showed that, in a controlled

scenario, a speed-up of almost 50% can be achieved with respect to FAST.

ORB detector. A drawback of FAST and AGAST is that they do not produce scale-invariant

keypoints. To address this weakness the authors of ORB [7] proposed a scale-invariant FAST

extension which they called Oriented FAST (also referred as ORB detector). Since FAST does

not produce multi-scale keypoints, they employed a scale pyramid of the image, detecting FAST

keypoints (filtered by the Harris response, see equation 3.1) on each level of the pyramid. For

example, for a target of N keypoints, they first set the threshold low enough to get more keypoints

than the target N ordering them according to the Harris measure, and then, the top N keypoints are

picked. The detector was also modified to estimate the orientation of a keypoint by computing a

simple but effective measure of corner orientation, the intensity centroid [26] providing that way

rotation-invariance.

BRISK detector. Similar to ORB detector, in Binary Robust Invariant Scalable Keypoints de-

tector [8] (an AGAST extension) the scale-invariance is obtained by searching corners not only in

the original image plane, but also in the scale-space. Mimicking the SIFT scale-space analysis,

in BRISK, the AGAST detector is executed for each pyramid layer separately and non-maxima

suppression is applied in the scale-space: the point p is classified as a corner only if its score s is

greater than all its neighbouring pixels in the same layer and in the layer above and below.

3.1.2 Blob detectors

Historically, blob detectors were at first motivated by the lack of scale invariance of early corner

detectors. Then the scale-space idea that is at the heart of most blob detectors developed, got back

to corner detectors, spawning the scale-invariant corner detectors. Informally, a blob is a region of

a digital image in which some properties are constant or vary within a prescribed range of values.

DoG One of the most-known blob detectors is the Difference of Gaussian (DoG) function. It

is an approximation of a more complex and computationally expensive, but also effective blob

detector, named Laplacian of Gaussian (LoG). LoG operator is defined as a trace of the Hessian

matrix. Given a point x = (x,y) in an image I, the Hessian matrix H(x,σ) in x at scale σ is defined

as follows:

H(x,σ =

Lxx(x,σ) Lxy(x,σ)

Lxy(x,σ) Lyy(x,σ)

 (3.3)
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where Lxx is the convolution of the Gaussian second order derivative ∂ 2

∂x2 g(σ) with the image I in

point x, and similarly, Lxy(x,σ) and Lyy(x,σ). In real world applications however, an approxima-

tion of this operator - DoG - is typically preferred. Introduced by Lowe and coupled with the SIFT

descriptor [27], DoG operator avoids computing second-order derivatives inherent in the LoG op-

erator by calculating differences between Gaussian-blurred images at different scales. The authors

proposed to use a scale-space pyramid where each consecutive image is a smoothed version of the

preceding and the transition from one octave to the next corresponds to downsampling the image

by a factor of 2. Figure 3.3 shows the process of applying the DoG operator. Generation of the

image scale space is very efficient, since the pyramid is build from the bottom to the top and each

consecutive image is a Gaussian smoothed version of the preceding image. Additionally, images

Figure 3.3: Overview of the DoG blob detection. Source: [2]

at higher octaves are subsampled versions of the original and therefore Gaussian blurring can be

applied even faster. Once the scale-space representation is computed, candidate points are defined

as local maxima/minima in that which are typically identified by comparing a sample point to its

eight neighbors in the current image and nine neighbors in the scale above and below. The final

set of keypoints is usually obtained by applying non-maximal suppression on the candidate points.

DoH The determinant of Hessian (DoH) is another blob detection method that can be derived

from the Hessian matrix (see equation refeq:hessian). Instead of approximating the trace of Hes-

sian as it is done in DoG, the DoH operator looks at its determinant. Although the performance

of DoH in terms of scale selection was proven superior to this of DoG [28], its popularity can be

mainly traced to the success of the SURF [4] keypoint detector which ingeniously approximates

DoH using integral images1 to reduce the computation time. To provide scale-space invariance,

the DoH operator, similarly to the Harris-Laplace corner detector, should be coupled with the ap-

propriate Laplace operator across the scale direction. Nonetheless, the SURF detector suggests

using the determinant of Hessian not only in the spatial domain, but also across the scales. More

precisely, Bay et al. propose to use box filters to roughly approximate Gaussian kernels as shown

1integral images are used as a quick and effective way of calculating the sum of values (pixel values) in a given
image, allowing for the fast implementation of box type convolution filters.
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in Figure 3.4 and use the resulting approximations to generate the scale-space pyramid. This step,

when combined with integral images [29], leads to over five-fold speedup in comparison to the

DoG operator with virtually no performance loss, since there are many more important sources of

noise present in the detection pipeline.

Figure 3.4: Left: discretized and cropped gaussian second order partial derivatives Lyy (y-
direction) and Lxy (xy-direction). Right: the respective approximations using box filters.
Source: [4]
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3.2 Keypoint descriptors

The keypoint descriptors were traditionally floating-point, as they generally encode normalized

difference of gradients (i.e. orientations). In the section below a first look at some of the classical

ones is done and then more recently developed binary descriptors are explained.

3.2.1 Real-valued descriptors

SIFT Scale Invariant Feature Transform (SIFT) local feature descriptor was introduced by David

Lowe in 1999 [27]. Although many competing algorithms have been proposed since then, SIFT

still stands out as it provides a fairly stable performance regardless of the application and image

registration conditions. Moreover, it has become a de facto standard descriptor for matching ob-

jects and scenes underlying various applications, such as visual search or panorama stitching. In

this section the key concepts behind the SIFT descriptor are presented. Although theoretically,

computation of local feature descriptors can be independent from feature detection step, Lowe

proposes to build SIFT descriptors for features detected with the DoG detector, described in de-

tail in the previous section. The rationale behind this decision is the goal of obtaining scale and

rotational invariance of the resulting representation. Since DoG provides a fairly stable set of can-

didate feature points across different scales, the scale invariance is guaranteed for the candidate

features. Orientation invariance, however, has to be provided separately. This requires an effective

method of assigning a repeatable orientation to the feature points. To that end, SIFT takes the key-

points, along with the detected scale and selects from the scale-space pyramid the image L(x,y)

that corresponds to the closest scale to the keypoint’s actual scale. For a given feature point at

location (x,y) and scale s, the gradient magnitude m(x,y) and orientation θ (x, y) are precomputed

using pixel differences, as follows:

m(x,y) =
√
(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)−L(x,y−1))2, (3.4)

θ(x,y) = arctan

[
L(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)

]
. (3.5)

Orientation values θ (x, y) around the feature location are used to form a 36-bin histogram which

covers 360 degrees. Each sample added to the histogram is weighted by the corresponding gradient

magnitude m(x,y) and a Gaussian around the keypoint to smooth the noisy magnitudes estimates.

Finally, peaks of the orientation histogram correspond to dominant directions of the local gradients

and the highest peak is used as the keypoint’s orientation. If there are other peaks above 80% of the

highest, additional keypoints are created and assigned the corresponding orientations. Although

this step seems redundant at first, it contributes significantly to the increased stability of SIFT.

In the last step, local gradient information is summarized into a 128-dimensional descriptor by

concatenating sub-regional histograms of gradients around a keypoint as illustrated in Figure 3.5.

After concatenating the histogram values in a single vector, the vector is normalized, to make it
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Figure 3.5: SIFT keypoint descriptor is built by first computing the gradient magnitude and ori-
entation in a region around the keypoint location. The results are then weighted by a Gaussian
window (left). These samples are subsequently summed into orientation histograms (right). The
histograms are then concatenated to form a final representation. The standard SIFT descriptor
uses a 16×16 sample array on the left and 4×4 histograms of size 36 on the right, resulting in a
128-dimensional vector which is ultimatly normalized. Source: [5]

more robust to illumination changes. The above procedure makes the descriptor scale and rotation

invariant, because the histogram is computed at the keypoint’s scale while the gradients are all

rotated into a canonical orientation depending on the keypoint’s orientation.

SURF Another well known algorithm for keypoint description is the Speeded-Up Robust Fea-

tures (SURF) [4] descriptor. It relies on integral images to approximate convolutions, which pro-

vides an appreciable improvement in efficiency (compared to SIFT for example). The descriptor

extraction algorithm of SURF works as follows:

• A weighting Gaussian function centered at the keypoint is applied.

• The general orientation is computed using sums of Haar wavelet filter responses using inte-

gral images to speed up the process.

• The patch is divided to form a square grid (oriented in the direction of the general orientation

computed in step (2)). The grid consists of 16 cells (called subregions).

• Orientations inside each cell is computed using Haar wavelet filter responses.

• A vector of 4 different sums of the orientations is computed in each cell.

• The 64 (16 x 4) values are normalized and form the SURF descriptor.

Variants such as SURF-36 (3x3 grid) or SURF-128 (extended set of features) are based on the same

method. Applications using the SURF descriptor shown that it provides invariance to illumination,
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viewpoint and contrast variations. The standard SURF descriptor is a 64-dimensional real valued

vector.

3.2.2 Binary descriptors

Binary descriptors were inspired by previous works [30, 31] that showed that image patches could

be effectively classified on the basis of a relatively small number of pairwise intensity compar-

isons [6], arising from the need to have features computed quickly and are compact in their rep-

resentation [32]. In addiction, due to their binary nature, the Hamming distance can be used as

similarity measure which is also very efficient to compute. These features make them an attractive

solution for many modern applications, especially for mobile platform where both the computing

and memory resources are limited. The existing binary descriptors are fitted with common basic

properties:

• the descriptors are built from a set of pairwise intensity comparisons being each bit in the

descriptors exactly the result of a comparison.

• a fixed sampling pattern is used (except for a possible scaling and rotation).

• the Hamming distance is used as similarity measure.

Although the binary descriptors present common points, each of them has unique properties to

achieve their design goals. Recently the number of efforts (or approaches) to provide methods to

directly calculate binary descriptors from local image patches has increased given the aforemen-

tioned advantages of this type of descriptors. Below some of the main differences between binary

descriptors are detailed.

BRIEF The Binary Robust Independent Elementary Features (BRIEF) descriptor proposed

by [6] is the simplest binary descriptor but is a good example that meets the common principles set

out above. In [6] several ways of selecting the set of sampling points were presented (Figure 3.6a)

but the authors suggest the use an isotropic Gaussian distribution centered at the feature location as

sampling pattern as it is more advantageous. It is important to mention that generally the BRIEF

descriptor can take three different sizes depending on the number of selected points (eg. 128, 256,

512). By itself BRIEF is neither scale nor rotation invariant which opened the door to the authors

of [7] who proposed an extension of BRIEF providing rotation invariance and more robustness to

noise, which will be explained below.

ORB The Oriented FAST and Rotated BRIEF (ORB) descriptor, proposed in [7], came as a

faster and more efficient alternative to common real valued descriptors such as SIFT and SURF and

overcoming the lack of rotation invariance of BRIEF (as shown in Figure 3.7). In contrast to what

happens in BRIEF descriptor, the sampling pattern employed in ORB always uses 256 pairwise

intensity comparisons applying machine learning techniques to maximize the descriptor’s variance
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(a) BRIEF (b) ORB

(c) BRISK (d) FREAK

Figure 3.6: Sampling schemes for the different binary descriptors. Sources: [6, 7, 8, 9]

and to minimize the correlation under orientation changes getting the optimal set of sampling pairs

(as can be seen in Figure 3.6b).

BRISK The Binary Robust Invariant Scalable Keypoints (BRISK) descriptor proposed by Leuteneg-

ger et al. [8] as a dramatically faster alternative to SIFT and SURF with comparable matching

performance. To describe the features, the authors turn away from the random or learned patterns

of BRIEF and ORB, and instead use a symmetric sampling pattern. Sample points are positioned

in concentric circles surrounding the keypoint, with each sample point representing a Gaussian

blurring of its surrounding pixels. The standard deviation of this blurring is increased with the

distance from the center of the feature (Figure 3.6c). In order to compute the global orientation

of the keypoint, BRISK uses a set of long range pairs. The sampling pattern is then rotated in the

direction of the estimated orientation and the descriptor built using a deterministic set of 512 short

range pairs.
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Figure 3.7: Image matching done using Oriented FAST and rotated BRIEF. Green lines denote
matches, while red circles denote unmatched points in both images. In this case, there is a visible
viewpoint variation. Source: [7]

FREAK The Fast Retina Keypoint (FREAK) descriptor proposed by [9] also provides scale

and rotation invariance, however its pattern is based on Gaussians. As its name suggests, it is

biologically inspired on the retinal pattern of the human eye. In practice, FREAK improves upon

the sampling pattern and method of pair selection that BRISK uses. Thus, for computing this

descriptor, 43 weighted Gaussians at locations around the keypoint are evaluated. As can be seen

in Figure 3.6d, overlappings are considered in order to compute average values related to some

points. Moreover, the patterns are much more concentrated near the keypoint that leads to a

more accurate description of the keypoint. To speed up the matching process, the actual FREAK

algorithm also uses a cascade for comparing these pairs, and selects the 64 most important bits in

the beginning of the descriptor. Just like BRISK, FREAK leads to a 512 bit binary descriptor.

3.3 Performance evaluation

The recently growing popularity of keypoint detectors and descriptors has been followed also

by a growing interest in exploring the performance of the various options available in this field

since keypoint matching performance is extremely important for many computer vision areas. Ini-

tially [20] proposed a new approach to detect affine and scale invariant keypoints and presented a

comparative evaluation of different keypoint detectors using the repeatability criterion introduced

by [33] to evaluate the stability and accuracy of detectors. They also provided a keypoint detector

evaluation dataset to test the effect of blur, illumination, scale/rotation, and perspective changes

in interest point detectors which was used in this project to perform some groundtruth tests. The

following year, [10] presented an evaluation , this time comparing the performance of different lo-

cal descriptors in the presence of real geometric and photometric transformations and introducing

two important metrics: recall and 1-precision. Recently [32] performed a comparative evaluation
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of binary descriptors (eg. BRIEF, ORB and BRISK) analyzing the performance of several detec-

tor and descriptor pairings. They concluded that a binary descriptor will suffer in performance

when it takes into account a transform not present in the data and that both detector and descriptor

should be invariant to the same set of transforms. Later [34] extended Heinly et al. evaluation by

including the latest binary descriptor, FREAK.



Chapter 4

Proposed system for content-based
image retrieval

This chapter presents implementation details for the robust and efficient visual search system for

fashion magazine recognition and retrieval. The logical architecture, and the main algorithms are

described using pseudo-code and diagrams. At the end of the chapter, some conclusions are drawn.

4.1 Logical architecture

As a content-based image retrieval system implementation the typical architecture is followed

with some changes to achieve the specific objectives. This system can then be divided into three

different phases:

• Vocabulary generation

• Database building

• Query image retrieval

These steps can also be defined as offline and online steps. First, in the offline steps a vocabulary

is constructed from a set of images of fashion print magazines. After that, an image signature

is created for all the magazine pages to be introduced in the database. In the online step it is

thus necessary to create - accordingly - an image signature to the query entered by the user (i.e.

using the same methods as for the database pages) and search for the nearest images. All steps

are sequential and dependant on previous steps. They constitute the logical architecture of the

developed system and will be detailed below.

Vocabulary generation

1. Sample images

2. Feature extraction

23
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3. Clustering

A great number of keypoint descriptors extracted from a large corpus of representative images

from print fashion magazines are used to populate the keypoint descriptor space with keypoint

descriptor instances. Next the sampled keypoint descriptors are clustered in order to quantize the

space into a discrete number of k visual words. This pipeline is illustrated in Figure 4.1.

Figure 4.1: Representation of the vocabulary generation pipeline.

Database building

1. Database images

2. Feature Extraction

3. Quantization

4. Inverted Index

After generating the vocabulary to be used, a database containing the fashion print magazines to

be later available for the actual visual search, is created. To do this, it is necessary to generate

an image signature for each image page of the fashion print magazines. After that the image

signatures are indexed efficiently using an inverted index strategy. Figure 4.2 shows the main

steps of this pipeline.

Query image retrieval

1. Query image

2. Feature Extraction

3. Quantization

4. Index search

5. Re-ranking
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Figure 4.2: Representation of the pipeline used for building the database.

6. Validation

The last and most important step is where the interaction between the system and the user is made.

When a user submits a query image in the system, an image signature is created (using the same

methods described in the previous step) and then a similarity search is performed using the effi-

cient inverted index created in the previous step. Through experimental tests, it was verified that

the correct match is almost always within the group of best rated pages (top N ranked pages) de-

spite not always be the best rated page (top 1) . Thus, we analyze a set of top ranked pages and

a brute force matching is applied on the descriptors of these pages (that would be computation-

ally prohibitive to use for all pages, but using a relatively low number N can be computationally

affordable). Figure 4.3 shows the pipeline used in this step.

Figure 4.3: Representation of the pipeline used in query retrieval.

4.2 Solution approach

In this section, the main parts of the application are discussed. A bag of keypoints algorithm was

implemented in two different versions: one baseline version and a naive approach using binary

keypoint descriptors. For the baseline approach, SIFT was used for the keypoint detection and

description, then clustering the floating-point vectors using k-means to generate the vocabulary

with the k-means++ initialization. For the naive binary approach ORB detector was used, coupled
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with different descriptors and the clustering method used for this case is a k-means extension

designed to cluster binary data which will be explained in the next section together with other

fundamental steps of this work.

4.2.1 Vocabulary generation in the binary space

After the feature extraction procedure already explained, keypoint descriptors require an additional

quantization step to be transformed into global and fixed-lenght representations of the image, an

image signature. The classic approach is to employ k-means clustering using Euclidean distance

between feature vectors, and this has proved to be effective, even if computationally demanding

during the vocabulary generation with the sampling keypoint descriptors. Unfortunately when

dealing with a vector of binary descriptors, Euclidean distance is not the metric of choice, because

averaging binary vectors is undefined. Therefore, the notion of geometry mean must be redifined

for data of this nature. The closest equivalent to the geometric mean in the binary space is to take

the component-wise median, which is equivalent to maximum voting for each component. In the

assignment step, data samples are assigned to their closest cluster using Euclidean distance. For

this step, it is sufficient to replace the metric by the Hamming distance. In the update step, the

centroid is computed using the geometric mean of all points currently associated to the cluster.

[35] proposed an approach for using binary keypoint descriptors as input to the bag of key-

points model called k-majority which was used as basis to generate the binary visual vocabulary,

presented in the following pseudo-code:

Algorithm 1 K-majority algorithm
1: Given a collection D of binary vectors
2: Randomly generate k binary centroids C
3: while centroids not changed do
4: for d ∈ D do . Assign data to centroids
5: cd ← argmin

c∈C
HammingDistance(c,d)

6: end for
7: for c ∈C do . Majority voting
8: for d ∈ D|cd=c do
9: v accumulates d votes

10: end for
11: c′← ma jority(v)
12: end for
13: end while

The algorithm presented takes as input a set of D binary vectors and seeks for a number k of

centroids, that will become the visual vocabulary for the bag of keypoints model. Initially, these k

centroids are initialized randomly (line 2). On each iteration, each binary vector is assigned to the

closest centroid (lines 4-6). The next step (lines 7-12) is the majority voting step: for each cluster

c, every binary vector d belonging to it is taken into consideration. Every bit of an accumulator

vector v is increased by 1 if the corresponding bits in d is 1. At the end, the majority rule is used to
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form the new centroid c′: for each element vi in v, if the majority of vectors voted for 1 as bit value

in vi, then c′i takes 1, otherwise c′i takes 0. The algorithm iterates until no centroids are changed

during the previous iteration.

The voting scheme, illustrated in Figure 4.4, operates as follows: 1) given a set of binary

vectors assigned to some cluster C, they are bitwise accumulated into an accumulator v such that

each of its elements represents the count of bits on that position set to 1, 2) to compute the cluster

centroid the majority rule is applied for each element vi in v.

Figure 4.4: Example of the voting scheme step used in k-majority to compute centroids from
clusters of binary data. Note: nd is the number of keypoint descriptors assigned to a cluster C.

4.2.2 Quantization

For each image the nearest visual word in the vocabulary is identified for each keypoint descriptor

extracted. This maps the image from a set of descriptors to an histogram (where each component

is the respective word number). This bag of keypoints histogram of visual word occurences is then

used to summarize the image content - the image signature.

4.2.3 Inverted index

The motivation for the inverted index is to take advantage of the sparseness of the term vectors

obtained in the quantization step. Arbitrarily if one considers that in each image there are approx-

imately 500 keypoints detected and the vocabulary size is 5 ∗ 103 terms then the resulting term
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vector will have at most 10% of its entries as non-zero entries. This propriety can be exploited

computationally, by neglecting the zero entries.

A simple approach to ranking query results is to compute the distance between the query vector

and the term vectors of each gallery image, requiring an O(N) computation in term of the number

of gallery images. The majority of those images are likely to have very few terms in common due

to the sparsity of the vectors, however. Instead, one can look at each non-zero term in the query

vector and get the list of images in which that term appears via the inverted index. While the worst

case complexity remains O(N), there is a huge speed improvement for the average case, compared

to the naive-approach of computing the distance between the query vector and the term vectors of

each gallery image. Figure 4.5 shows an illustrative example of the inverted index implemented.

Figure 4.5: Illustrative example of the efficient indexing structure developed. Left: All database
images are loaded into the index mapping visual words to image numbers. Right: A new query
image is mapped to indices of database images that share a visual word.

4.2.4 Re-ranking and validation

Since the inverted index maintains no information about the relative spatial layout of the words

per image, typically a spatial verification step is performed on the images retrieved for a given

query. However, as this step is computationally heavy it was decided to compare the keypoint

descriptors of the top N retrieved images with the keypoint descriptors of the query image using

the ratio threshold test described in 2.2.3 performing that way a re-ranking of the top N retrieved

images. To avoid the system to return false matches, a validation step had to be included. This

was again carried out by using a ratio test, defined as:

τ >
mtop↔query

m2nd↔query
(4.1)
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where mtop↔query represents the number of correct matched keypoints (matched keypoints which

pass the ratio threshold test) between the query image and the top ranked page in the re-ranking

step and similarly m2nd↔query refers to the number of correct matched keypoints between the query

image and the second best rated image. τ can be tuned according to the degree of confidence that

the system aims to achieve.

4.3 Final remarks

A custom bag of keypoints implementation using binary keypoints was described. In this method,

after quantizing each binary keypoint descriptor for both the input image and the database images

into visual words, the number of occurrences of all visual words in each image is counted to build

all frequency histograms. After that, an inverted index was built to ensure efficient search during

the query time retrieval.
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Chapter 5

Experimental Results

In this chapter are presented the performance evaluating of the image retrieval pipeline proposed

in this thesis.

By undertaking the evaluation of this algorithm, the main goal was to answer questions such as,

how does varying pipeline modules affect system behaviour?, how does vocabulary size influence

retrieval performance?, Is it possible to generate a perfect vocabulary for a certain task? To

address such questions, in this section will be explained the environment setup, the datasets, the

tests performed and the respective results.

5.1 Equipment and software used

Hardware
In proposed system the following development platforms were used:

Laptop computer i7-4500U

• CPU: Intel Core i7 4500, 4 cores @ 1.8 GHz

• Memory: 8GB RAM @ 1600 MHz

• Base system: Ubuntu 14.04 LTS 64bit

Software
The following software and libraries were used:

• GCC 4.8.2 with glibc 2.19

• Qt Creator 3.2.0

• OpenCV library 2.4.9

31
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5.2 Dataset

The Fashion Print Magazine dataset was built for this thesis from a 264 pages fashion magazine -

Vogue UK (June 2014). Figure 5.1 shows some images from the fashion magazine used to create

the Fashion Magazine dataset.

Figure 5.1: Sample pages from the Vogue UK (June, 2014) fashion magazine used to create the
dataset of photos taken from this magazine.
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For each image fashion magazine were taken 5 input photographs each with different point of

view, different perspective or imaging conditions. Thus is defined five different types of query:

• type 1 The purpose of this type of query was having a query image nearest of the "ideal

query", ie, a picture taken with care, to capture the full page of the magazine and with

minimal conditions that could affect the matching accuracy.

• type 2 In this type of queries pages from the magazine were taken with changes in rotation

and point of view.

• type 3 These types of query image should characterize the photographs taken by most users

containing moderate changes of perspective and point of view

• type 4 This type of query images are displayed with a high variance of perspective and

viewpoint variation.

• type 5 The most problematic queries widely varying lighting conditions, perspective distor-

tion, introducing background clutter and partial occlusions.

In Figure 5.2 is showed some images of the created dataset. Note that all the photos were

taken from a smartphone so that the images captured could be comparable to a normal situation in

which a user takes a picture and introduce it in the system. The different types of query generated

are used to test the system with different input images, which in turn have different difficulties

associated with the recognition.

5.3 Keypoint detectors and descriptors evaluation

This section presents a performance evaluation of several keypoint detectors and descriptor. All

tests were executed on a single core. Those introduced in Chapter 3 were used, with exception

of AGAST that has no OpenCV implementation, and BRISK detector that features some design

flaws1 in OpenCV 2.4.9 and, due to this, was discarded in the experiments. The processing time as

well as keypoint repeatabily were evaluated in different image transformations approaches. Then,

Section 5.3 focus on local descriptors performance evaluation, comparing both the real-valued

standard descriptor SIFT with the binary descriptors (all those mentioned in Section 3.2 from

Chapter 3) in terms of computational complexity and matching accuracy. The main objective of

this evaluation was to investigate whether it is possible to build an efficient and robust solution to

different forms of noise using binary descriptors.

1http://code.opencv.org/issues/3976
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Figure 5.2: Set of images taken from the Fashion Magazine dataset. In the left column is shown
the original magazine image and in the right column the respective query images. It can be seen
a great variety of conditions in the query images, for example, different perspectives and scales,
rotations, different lighting conditions, etc.
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Detector evaluation

Processing time As a first experiment, the keypoint detection processing time was evaluated.

In general, the processing time depends on two factors: i) the number N of detected keypoints,

which can be varied by suitably tuning the detection threshold of each detector; and ii) the size of

the input image. For the evaluation, 5 images ( all with size of 1024×768 pixels ) of each of the

17 categories from The Oxford Buildings Dataset2 were selected randomly forming a subset of 85

images. Each image was progressively resized from its original size to a minimum size (10% of

the original size). Table 5.1 shows the times obtained for the feature detection step in an image

of size 1024× 768 pixels. It is also shown a speed gain comparison for all the detectors using

Table 5.1: Average processing time for the feature detection in an image of size 1024×768 pixels
(N = 1000 keypoints).

Detector Proc. Time Speed gain
SIFT 2.42 s 1.0
SURF 0.96 s 2.5
Harris 0.18 s 13.1
FAST 0.01 s 199.2
ORB 0.10 s 22.9

SIFT detector as a standard. The speed gain SGD = TSIFT/TD is used to make a comparison of the

processing time of the standard SIFT detector with faster detectors, where TSIFT is the processing

time for SIFT and TD is the processing time for the other detectors. It is noted that FAST reaches

a speed increase in the order of 200 times faster than SIFT and approximately 80 times faster than

SURF. ORB, the second best rated can detect the same number of features in less 23 times of

the time it takes SIFT and is also nearly 10 times faster than the SURF detector. In Figure 5.3a

the average processing time is shown as a function of the image size. In this case, the number

of detected keypoints is kept fixed to N = 1000. For all the detectors, the processing time is a

quadratic function of the image size, which means that complexity of detection increases linearly

with the spatial resolution. The fastest algorithms are FAST and ORB, while Harris, exhibits

slightly worse performance. On the other hand, the processing time of SURF and SIFT detectors

are noticeably higher than those of all the other detectors. Then, the average processing time as

a function of the number of keypoints detected is shown in Figure 5.3. For all the detectors the

processing time T increases with the number of keypoints N. However, it is noted that FAST

and ORB present a wide proportional decline (approximately 25%, comparing the N = 1000 to

N = 2000 leap with N = 2000 to N = 3000) which suggests that the time may be constant for a

greater number of keypoints. Furthermore, these two detectors were again the most efficient.

2http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
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(a) Image scale test (b) Number of keypoints test.

Figure 5.3: Feature detection computational complexity results for the two experiments made.

Repeatability The detectors are also evaluated with the repeatibility metric, defined in as

the ratio between the number of point-to-point correspondences and the minimum number of key-

points detected in a given pair of images. For the evaluation the dataset provided by Mikolajczyk3

was used. Each sequence includes a reference image and a set of images that are progressively

modified by one or more geometric or photometric transformations. In Figure 5.4 are shown the

sequences used in this test. The selected sequences are the ones that best represent the changes

expected in the real world:

• Graffiti (6 images with increasing view point angle);

• Boat (6 images with different zoom and rotation angles);

• Bikes (6 images with increasing blur);

• Cars (6 images with decreasing illumination).

To match correspondent regions in the image pairs, groundtruth homography matrices are

provided. Following the same approach as in [33], two keypoints were considered as matching

if: i) their relative position error with respect to the groundtruth is less than 1.5 pixels; ii) their

corresponding neighbourhoods are overlapped at least by 40%. The repeatability scores for the

four considered image sequences are shown in Figures 5.5a, 5.5b, 5.6a and 5.6b.

3http://lear.inrialpes.fr/people/mikolajczyk/Database/
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(a) Graffiti sequence.

(b) Boat sequence.

(c) Bikes sequence.

(d) Cars sequence.

Figure 5.4: Keypoint detectors and descriptors evaluation sequences.
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In the graffiti sequence (Figure 5.5a), the highest repeatability is achieved by ORB which sur-

prisingly has a 70% average in the first three transformations (viewpoint angles of 30%, 40%,

50%). SURF and SIFT comes after, getting worse but acceptable performance, while the repeata-

bility of FAST and Harris drastically decreases as the viewpoint angle increases.

(a) Graffiti (b) Boat

Figure 5.5: Repeatability score for image sequences with affine and perspective transformations
(viewpoint and scale & rotation changes).

As expected, the repeatability of non-scale invariant detectors (FAST and Harris) is very poor

in case of zoom transformations (see Figure 5.5b, boat sequence). Among the other detectors,

ORB and SURF exhibit the best performance followed by SIFT. Note that ORB provides the best

results for less accentuated transformations then being outperformed by SURF in the two most

abrupt ones.

The sequence of images with increasing blur (Figure 5.6a, bikes sequence) is the one that

shows better global results. Should be noted that SURF does not seem to be affected by the

increase of blur since it presents constant values of repeatability for this sequence.

For the cars sequence (Figure 5.6b the best score is obtained by the FAST detector that in

all decreasing illumination changes shows superior repeatability to 75%. Then appears ORB also

with a very high repeatability. Although Harris and SURF detectors also offer high repeatability,

SIFT performs poorly in this sequence.

Analyzing the results obtained in the comparative evaluation of the detectors there are some

important points to consider:

1. FAST is the most efficient detector followed by ORB. On the other hand, SIFT is the one

with higher computational complexity.

2. In all cases presented SURF performs better than SIFT which suggests that for the listed

situations there is no reason to use SIFT. The same applies for the FAST detector compared
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(a) Bikes (b) Cars

Figure 5.6: Repeatability score for image sequences with non-geometric transformations (in this
case illumination and blur).

to Harris. One possible explanation for this is that both SURF as FAST were constructed

based on SIFT and Harris (respectively), in a way to improve them.

3. ORB is the best performing detector for geometric transformations sequences followed by

SURF.

4. For non-geometric transformations sequences FAST provides the best results.

5. ORB is the detector that has the best average repeatability (about 60%) closely followed by

SURF.

In the Table 5.2 is also showed the average repeatability of the results for all the tested se-

quences of the Mikolajczyk evaluation dataset.

Table 5.2: Average repeatability (in percentage) obtained for different image sequences.

SIFT SURF Harris FAST ORB
Graffiti 26.32 29.07 23.86 27.31 41.33

Boat 37.19 49.02 16.15 17.7 47.87
Bikes 54.44 71.19 73.34 84.15 78.66
Cars 54.25 86.46 64.94 85.18 71.18

Total 43.05 58.94 44.57 53.58 59.76
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Descriptor evaluation

Processing Time Similar experiment was done for the calculation of descriptors. To make

the comparison fair, the same number of keypoints extracted by SURF was used. The results are

summarized in Figure 5.7.

Figure 5.7: Descriptors run time using N = 1000 keypoints detected by SURF.

Looking at the figure presented we can conclude that the binary descriptors can be calculated

much faster than a SIFT-like descriptor. BRISK and FREAK reach a 180 times speed up compared

to the standard SIFT descriptor.

Matching accuracy For this test the dataset proposed by Mikolajczyk is used again. Since

ORB detector presented the best repeatability rate in the detectors evaluation it is used to detect

keypoint for the binary descriptors (BRIEF, ORB, BRISK, FREAK). The keypoints detected are

then described using different keypoint descriptors. Then each query image is matched with the

reference using the descriptors extracted. The ratio of the distance of the best match to the second

best match for each point correspondence is taken and if this ratio is greater than or equal to 0.8

both of the matches will be ignored, if not the best match will be kept. The number of matches
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obtained by the ratio threshold test can be considered a set of best matches between the two images

tested. Figure 5.8 show the results obtained.

Figure 5.8: Average number of best matches in the Mikolajczyk sequence.

The results show that the most reliable descriptors in this situation for the sequences used

are SIFT, ORB and BRISK. Note that BRIEF, BRISK and FREAK are not designed to describe

keypoints detected by the ORB detector, however BRISK still presents acceptable results. The in-

troduction of the BRISK detector in the test can result in significant improvements in both BRISK

as FREAK.
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5.4 Brute-Force system approach

The first approach was to exhaustively compare all descriptors of an input image with the descrip-

tors of all magazine images using the Fashion Print Magazine dataset presented in the previous

section. One correspondence between query and magazine page is considered correct if present

the largest number of best matches. For this test ORB detector coupled with ORB descriptor and

BRISK are tested and SIFT is used as a baseline. For the three scenarios 500 keypoints were

detected in each image. The results are presented in Table 5.3.

Table 5.3: Correct correspondences rate for the Fashion Magazine dataset.

SIFT ORB BRISK
Correct Correspondence Rate 79.77% 84.2424% 81.5152%

Although the results presented by the combination of ORB detector and BRISK be satisfac-

tory, these results show that ORB provides the most reliable binary combination for this specific

case. These results are very positive in terms of accuracy. However, as already explained exhaus-

tively comparing descriptors of a query image with all images in the database is an inefficient task

and must be bypassed. The main objective of this test was ascertain whether binary descriptors

could be used for this specific problem effectively. The results show that the binary descriptors

in addition to being faster than the standard descriptors, can achieve similar accuracies or even

outperform their competitors.

5.5 Vocabulary generation

To generate the vocabulary two pipelines were implemented: the first using SIFT keypoints, clus-

tering the keypoints descriptors using k-means with k-means++ centroid initialization. The second

pipeline has been implemented in order to extend the bag of keypoints model for binary data. For

this, the ORB detector and descriptor was used due to previous results which showed the most sta-

ble performance. To cluster binary keypoint descriptors, k-majority (described in Chapter 4 was

used. To generate vocabularies 500 keypoints extracted from each of the 264 pages of the Vogue

UK (June, 2014) fashion magazine were used which resulted in 132000 sample keypoint descrip-

tors. After that, the keypoint descriptors were clustered using k-means for the SIFT keypoints

and k-majority for the ORB keypoints. The computational complexity in generating vocabulary

(presented in Figure 5.9a) and the accuracy achieved (presented in Figure 5.9b) for the 2 methods

were compared. The plots are generated by varying the number of clusters (K) which is a common

input element to the two algorithms.

The vocabulary generation using k-majority to cluster ORB keypoint descriptors can achieve

a speed up in the order of 3 times faster comparing to the generation using the standard SIFT

keypoints clustered by k-means.
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(a) Processing time obtained for k-means and k-
majority for different number of clusters - K.

(b) Precision obtained for different vocabularies
varying the number of clusters - K.

Figure 5.9: Vocabulary generation tests.

5.6 Vocabulary size

In the previous test were compared two approaches to create vocabularies that allowed to validate

the use of k-majority to cluster ORB descriptors. In order to ascertain what is the bag of binary

keypoints approach accuracy for larger vocabularies, the number of clusters - K - was increased.

The results are presented in Figure 5.10. The retrieval precision on the Fashion Magazine dataset

as the number of clusters, K is varied is tested. Using a high number of clusters always seems to

help, increasing the precision. However, the time required to quantize each keypoint descriptor

also increases with the number of clusters, so it is not desirable to have an unreasonable number

of clusters if system’s efficiency is a concern. This suggests that, if the computation time for the

quantization of an image is short (this obviously depends on the application), clustering using a

larger number of clusters is a good idea because it gives better retrieval precision.

Top N Precision In order to improve the precision of the retrieval system, we decided to test if in

the cases where the system does not retrieve the correct page, that page is among the best results.

For this, instead of considering that the page retrieved by the system is correct only when it is the

most similar, we assume that is correct if it is between the N most similar pages according to the

system of ranking. As shown in Section 5.4, using a brute force approach achieve good results even

if the comparison is made with all the pages of the magazine. So after selecting the top N ranked

pages, we compare them using this approach. Figure 5.11 shows the results obtained. As can be

seen in the displayed picture, assuming that the correct print fashion magazine page may be among

the top 20 ranked pages, system precision increases by more than 20%. However, as the aim was

always to choose the correct page and not the nearest set of pages, the descriptors of the top N
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Figure 5.10: Precision values obtained for several vocabularies created with ORB keypoints clus-
tered using k-majority.

pages were compared with the descriptors of the query image. It is then made a re-ranking of the

top pages taking into account the number of best matches (matches between keypoint descriptors

who pass the ratio test) of the various correspondences between the top N images and the query

image. The results obtained after the re-ranking using the brute-force approach and obviously just

counting the most similar page as correct match are also shown in the Figure 5.11. Note that for

this test the K = 6400 visual vocabulary generated in the previous step was used.

5.7 Vocabulary generalization

An important concern in the visual vocabulary is the choice of data used to construct it. Generally

the most accurate results are obtained when using the same data source to create the vocabulary

as is going to be used for the retrieval task. However, generating a vocabulary whenever new

data is indexed in the database may be inefficient. For example, to index the pages of a specific

magazine, the vocabulary made from a sample of those pages would be most accurate; using

a second magazine to form the vocabulary should still produce meaningful results, though likely

weaker accuracy. The generalization of the retrieval system is then tested using a fashion magazine
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v

Figure 5.11: Top N precision and the validation results using the brute force approach.

to generate a vocabulary of K = 6400 visual words - Cosmopolitan UK (June, 2014). Then, image

signatures are created for all the pages of Vogue UK magazine (June, 2014) using the vocabulary

generated from the Cosmopolitan fashion magazine and the system precision is tested using the

query images of the Fashion Magazine dataset. Results are shown in the Table 5.4

Table 5.4: Generalization test comparing the precision of the queries from the Fashion Magazine
dataset (Vogue UK magazine) when using a vocabulary generated from images of the same fashion
magazine with a vocabulary generated from another fashion magazine (Cosmopolitan UK).

Vogue Cosmopolitan
Precision 69.22% 56.44%

Although the results obtained using the the most generic vocabulary are worse, these results

are more stable and can be achieved for other fashion print magazines indexed. In addition the

results may be improved by using brute force re-ranking of the top N pages retrieved as shown in

the tests performed in the previous section.

5.8 Confidence System

Until this step, the fact that the system could retrieve wrong pages of fashion magazines did not

matter. However, in real world applications it is necessary to have confidence in the results returned
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to the user even if it is necessary to reduce significantly the number of times the system returns

what is intended. Thus, the purpose of this test was to achieve a strategy to validate the results

which consists in the system retrieving only the result when there is a 100% confidence that fashion

magazine page returned will be correct. Therefore there will be cases where the system despite

having a page with ranking superior than all the other pages, will not have enough confidence to

return it to the users. For this to be possible, it was used a threshold ratio between the number

of best matches between the highest ranked page by the system and the query image and the

number of best matches between the second highest rank page with the query as explained in the

Section 4.2.4. To perform these tests we used the vocabulary generated from the Cosmopolitan

UK fashion magazine with K = 6400. The results are shown in the Tables 5.5, 5.6 and 5.7.

Table 5.5: Precision obtained for different values of the confidence ratio and the top N pages used
to perform the brute force.

Ratio = 2.0 Ratio = 2.1 Ratio = 2.2 Ratio = 2.3 Ratio = 2.4 Ratio = 2.5
N = 5 65.44% 64.49% 63.26% 61.74% 60.13% 59.00%

N = 10 66.67% 65.44% 64.11% 62.41% 60.51% 59.09%

N = 15 67.80% 66.10% 64.68% 62.50% 60.51% 58.71%
N = 20 67.90% 65.81% 35.32% 37.50% 60.42% 57.86%

Table 5.6: Error percentage obtained for different values of the confidence ratio and the top N
pages used to perform the brute force.

Ratio = 2.0 Ratio = 2.1 Ratio = 2.2 Ratio = 2.3 Ratio = 2.4 Ratio = 2.5
N = 5 0.76% 0.57% 0.57% 0.57% 0.38% 0.38%

N = 10 0.38% 0.19% 0.09% 0.09% 0.09% 0.09%

N = 15 0.19% 0.00% 0.00% 0.00% 0.00% 0.00%
N = 20 0.19% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 5.7: Percentage of times the system will not have the confidence to answer to the query
inserted by the user.

Ratio = 2.0 Ratio = 2.1 Ratio = 2.2 Ratio = 2.3 Ratio = 2.4 Ratio = 2.5
N = 5 33.81% 34.94% 36.17% 37.69% 39.49% 40.63%

N = 10 32.95% 34.38% 35.80% 37.50% 39.39% 40.81%

N = 15 32.01% 33.90% 35.32% 37.50% 39.49% 41.29%
N = 20 31.91% 34.19% 35.14% 37.23% 39.58% 42.14%
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5.9 Final prototype

To develop the final prototype all parameters have been tuned so that the system did not return any

incorrect result, as it was intended. Each time a new query image is introduced into the system, a

ranking is generated taking into account the number of visual words in common between the query

image and all images in the database. If the ratio of the highest ranked page and the second best is

not less than 1.5 the highest ranked page is selected, otherwise it is held the brute force approach

in the top 10 results, ie are calculated the number of best matches between the query image and

the 10 pages that had better scores on the results returned by the inverted index. Then a re-ranking

step based on the results of the brute force approach in the top 10 results is conducted. In this case,

if the ratio between the best rated page is double or more compared to the second best rated, the

best rated page is chosen, otherwise the system does not return any page and it is assumed that the

page requested by the user does not belong to the database.

The results obtained by entering all the images from the Fashion Magazine dataset are shown

in Table 5.8.

Table 5.8: Percentage of matches between the query image and the corresponding magazine page
in the database.

Query type Correct Match (%)
1 69.70%

2 59.85%

3 67.42%

4 38.64%

5 17.42%

From the results it is concluded that the system is very robust when introduced query images

of the first three types. However, when the difficulty increases (query types 4 and 5) the number

of correct matches is reduced. Despite the reduction in the percentage of correct matches, the

prototype is still able to recognize some fashion magazine pages from challenging query images

as shown in Figure 5.12.

In order to easily demonstrate the prototype built, a proof of concept consisting in an interface

was developed to make possible to test the introduction of a picture taken by an user in the system.

Figure 5.13 shows screenshots of the developed interface.
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Figure 5.12: Some examples of query images of the type 5. The top line shows images that the
system recognizes successfully, returning the correct page despite the difficulty associated with
such images. Below examples of query images for which the system can not return a reliable
result are presented.
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(a) Interface developed for the system prototype.

(b) Sample result returned by the prototype. On the right is showed the photograph entered by the user and
on the left the search result returned by the system.

Figure 5.13: Interface developed to be used as system’s proof of concept.
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Chapter 6

Conclusions and Future Work

During this dissertation a content-based image retrieval application was developed. Several works

have focused on this specific matter. For the comparison of images in terms of similarity, fea-

tures had to be extracted from both the query image and the database image. Various feature

detectors and descriptors performed this task successfully. As demonstrated in the literature, early

approaches, such as SIFT and SURF remain as standards in terms of system accuracy, however,

newer approaches based on binary descriptors, such as ORB, BRISK and FREAK have shown to

achieve similar results of accuracy while outperforming the standard ones in terms of efficiency.

This aspect is critical when using lower powered devices, such as smartphones. To improve per-

formance even further, keypoint descriptors extracted from the images can be clustered into bags

of keypoints, and these image signatures obtained by quantizing the descriptors into visual words

can be matched directly and efficiently instead of matching the keypoint descriptors.

The binary descriptors were used to solve the problem of image retrieval. The experiments

on the fashion magazine dataset showed that, while simple and compact, the binary descriptors

are very discriminative and close in performance to much higher dimensional descriptors such

as SIFT. They especially provide a boost in the system’s computational efficiency. The results

showed that binary descriptors have their role to play in image retrieval systems using the bag of

keypoints approach since they achieve similar performance than traditional descriptors.

In order to achieve the main goal of this thesis which consisted in the development of a content-

based image retrieval application for fashion magazine recognition and retrieval, a study to deter-

mine how representative could be vocabularies built from binary keypoint descriptors were made

in the fashion magazine retrieval task. Also the factors that influence system performance using

this type of vocabularies were studied. Grounded on this ideas it was implemented a proof-of-

concept system to validate the use of binary keypoint descriptors in the bag of keypoints approach.

The results are encouraging but need continuous research in order to be refined.

51



52 Conclusions and Future Work

6.1 Future Work

To further improve results, different image matching techniques can be applied to the most similar

images (top N) to remove false positive results more effectively (images that appear as similar but

actually depict different magazine pages). A homography calculation between the query image and

the top N images in the database, using for example the Random Sample Consensus (RANSAC)

or other similar techniques, can refine the results. System scalability should be studied more

thoroughly in order to understand if it is possible to index several magazines without losing much

accuracy. Besides this the motivation to find strategies to generalize the vocabulary is large and

must then be improved Also, as it was part of the objectives of this dissertation, the end-to-end

web or mobile based application can be finalized.
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