
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Educational package based on the
MIPS architecture for FPGA platforms

João Luís Silva Campos Pereira

Thesis submitted under the course of:

Integrated Master In Electrical and Computer Engineering

Major in Telecomunications

Tutor: Professor José Carlos dos Santos Alves

June 2009

c© João Pereira, 2009

Resumo

O paradigma do ensino tem vindo a evoluir como resultado da constante evolução tecnológica.
As recentes evoluções, tanto na implementação de tecnologias digitais como na tecnologia de
informação tornam possível um processo de aprendizagem mais activo por parte dos estudantes.
Além disso, o acesso ao conhecimento é na sua maioria suportado por sistemas computacionais
capazes de processar grandes quantidades de informação. Esta competência requer, entre outros
componentes, processadores de elevado desempenho.

A arquitectura MIPS 32bit teve origem no trabalho realizado por uma equipa liderada por
John Hennessy, tornando-se em 1984 numa arquitectura pioneira de CPUS de tipo RISC. Jun-
tamente com o seu sucesso no mercado embutido, a arquitectura MIPS 32bit tem vindo a ser
largamente utilizada como caso de estudo em Arquitecturas de Computadores por todo o mundo.
Nesta dissertação a arquitectura MIPS 32bit foi estudada de modo a que os processares pudessem
ser correctamente implementados.

Alguns trabalhos anteriormente existentes já incluem simuladores de processadores MIPS e
até implementações de processadores MIPS baseadas em hardware. No entanto, este trabalho
refere-se ao desenvolvimento de uma implementação fiel das três versões de processadores ref-
erenciadas em “Computer Organization and Design - the hardware/software interface”, de John
Hennessy e David Patterson, com o intuito de implementar exactamente as mesmas funcionali-
dades referenciadas no livro. O projecto visou a implementação na Spartan3 XC3S200 presente
num kit de desenvolvimento de baixo custo frequentemente usado em fins didácticos em gradu-
ações em Engenharia Electrotécnica e de Computadores.

O trabalho desenvolvido compreende ambos os processadores de um ciclo por instrução e de
mais de um ciclo por instrução, assim como, uma versão pipeline com mecanismos que evitem
irregularidades na execução. Estes processadores foram integrados com módulos de controlo adi-
cionais, incluindo contadores de eventos realizados, e com a interface desenvolvida em software
para interagir com os referidos processadores.

i

ii

Abstract

The teaching paradigm has been evolving as a result of the constant technological developments.
Recent developments, either in the digital implementation technologies and in information tech-
nology make possible a more active learning process by the students. Furthermore, the access
to knowledge is mainly supported by computer systems, capable of processing large amounts of
information. This competence requires, among other components, high performance processors.

The MIPS 32bit architecture started with the work performed by a team led by John Hennessy
and thus became a pioneer in RISC CPUs in 1984. Along with its success in the embedded market,
MIPS 32bit is being widely used as a case of study in computer architectures around the world.
In this dissertation, the MIPS 32bit architecture was studied so the processors could be properly
implemented.

Some previously existent works already comprise MIPS processors simulators and even MIPS
based processors implementations in hardware. However, this work addresses the development of
a truthful implementation of the three processors versions referenced in “Computer Organization
and Design - the hardware/software interface”, of John Hennessy and David Patterson, to imple-
ment exactly the same functionalities addressed in the reference text book. The project targeted
the Spartan3 XC3S200 which is a low-cost development kit commonly used for teaching purposes
in Electrical and Computer Engineering graduations.

The developed work comprehends both single clock and multi clock cycle per instruction
processor, as well as, a pipeline version with hazard evading mechanisms. These processors were
integrated with additional control modules, including performed event counters, and the software
interface developed to interact with the referred processors.

iii

iv

Acknowledgments

This thesis was the consummation of a rich learning period. There were many people who pos-
itively contributed to this thesis achievement. To these people I want to thank you for your con-
tribution either in a more technical level inherent to the project development, or in a second stage
level providing the proper support.

Therefore, I start by thanking to my family, to my Father, Mother and Brother for encouraging
me and for all the economic effort and affective support provided through my entire life.

A very special thank you goes out to my dear Vanessa for the given motivation and support.
She patiently tolerated the absence of my person during the project development as well as during
the thesis writing when I retreated to long days with my computer.

I would like to express my gratitude to my tutor, Professor José Carlos Alves for the devoted
time to my project along with all the recommendations and provided directions towards the project
development.

A word of appreciation to Professor João Canas Ferreira is legitimately expressed to acknowl-
edge the enduring suggestions towards the inclusion of features to the developed system.

The burden of writing this thesis was substantially mitigated by the support and humor of my
lab mates; Alfredo Moreira, Carlos Resende, João Rodrigues, João Santos, Nuno Pinto and Pedro
Santos. Thank you for your recommendations and good company.

I would also like to thank to my “brother in arms” Renato Caldas for the suggestions, and for
the enthusiasm shown during the project realization.

Finally, I would like to thank to Tim Parys from the University of Rhode Island and to Se-
bastian Kuligowski respectively for the Configurable Assembler and the Java serial Port drivers
which undoubtedly spared considerable time.

To each of the above mentioned, I extend my deepest appreciation.

João Luís Silva Campos Pereira

v

vi

“The major difference between a thing that might go wrong
and a thing that cannot possibly go wrong

is that when a thing that cannot possibly go wrong goes wrong,
it usually turns out to be impossible to get at and repair.”

Douglas Adams

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Work summary . 2
1.4 Document Overview . 3

2 Background 5
2.1 Relevant Literature . 5
2.2 Computer Architectures used for Teaching . 6

2.2.1 MIPS 32bit Architecture . 6
2.2.2 DLX Architecture . 9

2.3 Hardware Platform . 9
2.3.1 Spartan 3 . 10

2.4 Software Platform . 11
2.4.1 JAVA . 11
2.4.2 Eclipse . 12

2.5 Related Projects . 12
2.6 Concluding Remarks . 15

3 System Specifications 17
3.1 Development Methodology . 17

3.1.1 The Hardware . 17
3.1.2 Software . 19

3.2 System Abstraction Model . 19
3.3 MIPS Instruction Set . 20
3.4 Implemented Processor Models . 22

3.4.1 Unicycle . 23
3.4.2 Multicycle . 26
3.4.3 Pipelined . 30

3.5 Event Counters . 36
3.6 Concluding Remarks . 37

4 Implementation and Results 39
4.1 Hardware . 39

4.1.1 Serial Manager . 40
4.1.2 Memory . 41
4.1.3 The Register File . 44
4.1.4 Program Counter . 44

ix

x CONTENTS

4.1.5 The Control Manager . 44
4.1.6 The Unicycle processor . 47
4.1.7 The Multicycle processor . 49
4.1.8 The Pipelined version processor . 51
4.1.9 Event Counters . 56
4.1.10 Performance evaluation . 57
4.1.11 Implementation with 32bit counters . 58

4.2 Software . 60
4.2.1 JAVA Graphic User Interface . 60
4.2.2 MIPS Language Assembler . 62

4.3 Concluding Remarks . 62

5 Conclusions and Future Work 65
5.1 Objectives Accomplishment . 65
5.2 Future Work . 66

A Figures 67

References 73

List of Figures

2.1 MIPS Set extensions, based in [1]. 7
2.2 Byte addressable Memory, based in [2]. 8
2.3 Spartan-3 Family Architecture. [3]. 10
2.4 JVM and JIT Compiler [4] . 12

3.1 System Abstraction Model. 20
3.2 Unicycle, based in [2]. 23
3.3 Multicycle, based in [2]. 28
3.4 Multicycle FSM. 31
3.5 Pipeline versus Unicycle. 32
3.6 Pipeline basic design, based in [2]. 33
3.7 Control signals transition in pipeline, based in [2]. 34
3.8 Pipeline version with forwarding mechanisms, based in [2] 35

4.1 Serial Manager operation example. 40
4.2 Finite State Machine of the Serial Manager block. The comments in italic refer to

state transition conditions. 41
4.3 Command execution of the Instruction Memory write command. The values of

“counter” refer to each command execution state and the comments in italic refer
to state transition conditions. 42

4.4 Command execution of the read of the Instructions Type counter. The values of
“counter” refer to each command execution state and the comments in italic refer
to state transition conditions. 43

4.5 Register file and associated multiplexers. 45
4.6 Register file wrapper which includes the contents of figure 4.5. 45
4.7 Control Manager ports. 46
4.8 Control Manager finite state machine. 46
4.9 Control Manager auxiliary states. 47
4.10 Unicycle control signals during the execution of two instructions. 48
4.11 Muticycle control signals. 50
4.12 Pipeline control signals, A. 52
4.13 Pipeline control signals, B. 53
4.14 Pipeline hazard avoiding mechanisms, based in [2]. 55
4.15 Setup Interface. 61
4.16 Unicycle interface. 62

A.1 Serial Manager. 68
A.2 Unicycle interface. 69
A.3 Multicycle interface. 70

xi

xii LIST OF FIGURES

A.4 Pipeline version interface. 71

List of Tables

3.1 R-Type Instruction, [2]. 21
3.2 I-Type Instruction, [2]. 21
3.3 Jump Instruction, [2]. 21
3.4 Adopted Instruction Set. X stands for “don’t care”, n.a. stands for not applicable.

Based in MIPS Instruction Set [2] . 22
3.5 Control Unit table. x stands for “dont’t care”. Based in [2] 24
3.6 ALU Control table. X stands for “don’t care”. Based in [2] 25
3.7 Instructions length, based in [2]. 26

4.1 Unicycle processor used resources and maximum frequency 48
4.2 Multicycle processor used resources and maximum frequency, post place and route. 51
4.3 Pipeline processor used resources and maximum frequency, post synthesis. . . . 54
4.4 Pipeline processor used resources and maximum frequency post place and route. 56
4.5 Processors frequency. 57
4.6 Processors performance case of study. 58
4.7 Unicycle processor used resources and maximum frequency with 32bit counters

(XC3S400). 58
4.8 Multicycle processor used resources and maximum frequency with 32bit counters

(XC3S400). 59
4.9 Pipeline processor used resources and maximum frequency with 32bit counters

(XC3S400). 59

xiii

xiv LIST OF TABLES

Abbreviations

ARM Advanced RISC Machine
CISC Complex Instruction Set Computer
COD Computer Organization Design
CPI Clocks per Instruction
CPU Central Processing Unit
DVD Digital Video Disc
FEUP Faculdade de Engenharia da Universidade do Porto
GUI Graphical User Interface
HD DVD High Density Digital Video Disc
I-Type Immediate Instruction Format
IP Intelectual Property
MIPS Microprocessor without Interlocked Pipeline Stages
FPGA Field Programmable Gate Array
RISC Reduced Instruction Set Computer
R-Type Register-Register Instruction Format
SoC System on Chip
SPARC Scalable Processor ARChitecture

xv

xvi ABBREVIATIONS AND SYMBOLS

Chapter 1

Introduction

The computer has become an essential tool in the support of the modern teaching methods, man-

aging knowledge at a time when the information is expanding exponentially. The increasingly

computation needs among Personal Computers, Servers and Embedded systems demand for more

capacity in matter of program execution speed. The computer architecture is a key factor in the

computer performance and is subject of study in many universities over the world.

Computer architecture is a major subject in current Electrical and Computer Engineering grad-

uations in its importance in providing to the students the know-how of the processors operation and

processor design. In such a technical field of study, the hands-on experience is considered to be a

fundamental pedagogic technique for motivating students to understand new topics. Furthermore,

learning the hardware organization and the physical limitations associated to the implementation

of real processors can help students to understand the hardware foundations of modern computers

and consequently foster the development of new processing systems.

Among the existent computer architectures, the 32bits MIPS is considered the architecture of

choice for didactic purpose by the prestigious Universities around the world in this field of study.

The MIPS 32bit was a pioneer in the CPUs RISC development, being nowadays present in many

consumer electronics and embedded systems.

This thesis addresses the computer architecture book “Computer Organization and Design - the

hardware/software interface”, of John Hennessy and David Patterson, which is a work of reference

on Computer Architectures also used in many universities worldwide [2].

Aiming at educational purposes, the scope of this work is to develop hardware implemented

processors targeting low complicity and low cost FPGA boards, which are of common use in

Universities for practicing digital design. This is an open source design that the students may

freely modify in order to add new functionalities or adapt to their requirements.

1

2 Introduction

1.1 Motivation

The tendency nowadays in the training of the engineers is to make use of recent technologies for

better understanding and consolidation of knowledge [5]. The previous observation combined

with the importance of computer processor advances in modern society bears the aim of this work.

It consists in creating an educational package to support the teaching of Computer Architectures

introductory courses as a complement to the previously referenced book. This way, students can

improve and extend their knowledge in computer architecture and, at the same time, develop

skills and acquire experience on the draft of digital reconfigurable systems (FPGAs). The chosen

architecture is MIPS 32bit whose CPUs formed the basis of embedded Processors field since the

1980s until now. To overcome this, the work proposes the development of a set of processors that

follow the models addressed in the referenced text book.

1.2 Objectives

Taking out the motivation that led to this work, the general objective was defined as to develop

a low-cost educational package targetable to low-cost FPGA boards. This package consisted of

processors models studied in the book previously referred, as well as, software tools and their

documentation. More detailed objectives are set as:

• develop a single clock cycle per instruction Processor, a multi clock cycle per instruction

Processor and a Pipelined Processor version, all in hardware 1;

• develop a Computer-FPGA interface capable of control the processor’s clock and provide

random access to registers and memory;

• develop counters to monitor performed events, such as number of clocks, executed instruc-

tions types, data accesses and memory accesses;

• develop a JAVA Software Graphic User Interface to interact with the FPGA;

• develop a MIPS language assembler;

• develop a support for a Cache Memory;

• writing of the thesis and all the manuals in English;

1.3 Work summary

The developed work includes the integration of two different systems towards the conception of

simple and easy to understand processor models. The three proposed processor versions were

1from now on, the single clock cycle per instruction Processor, as well as, the multi clock cycle per instruction
Processor will be respectively called Unicycle and Multicycle

1.4 Document Overview 3

successfully implemented and comprehend a basic MIPS instruction set. The third processor

version complies pipeline hazards resolution techniques, which can be optionally enabled from the

interface. As a complement to the processors design, the events performed during the processor

runtime can be identified and enumerated. An instruction set dedicated assembler was created in

order to spare the tedious and manual assembly language translation, into processor recognizable

operational codes. The user interaction with the processors is assured by a Java based graphic user

interface, providing total access to both processors and counters inherent storage elements, as well

as, to the processors operational modes.

1.4 Document Overview

This work describes the development of hardware Processors implemented in a FPGA board, as

well as, the development of the Processors correspondent software interface. This Dissertation is

composed of five chapters. In Chapter 2, the MIPS 32bit Architecture, as well as, the referenced

Book are reviewed and discussed. In the same chapter are specified both hardware and software

platforms, respectively the FPGA used for the project and the software development tool. In the

end of the very same chapter, relevant related projects will be addressed. Chapter 3 shows the

methodology employed to develop the modules, the used Instruction Language and the specifica-

tion of the developed modules. Chapter 4 describes the performed implementation and presents the

results obtained. In Chapter 5 a review is made about the accomplished objectives and suggestions

for improvement are presented.

4 Introduction

Chapter 2

Background

This chapter presents the literature considered relevant for this work, the development of the MIPS

architecture and discusses the main tools used to carry out the work performed. At the end of the

chapter, similar educational projects are addressed.

2.1 Relevant Literature

The most important Literature obviously is the referenced book "Computer Organization and De-

sign - the hardware/software interface", of John Hennessy and David Patterson [2]. Some other

books such as "Computer Architecture and Organization", of John P. Hayes [6] or "Computer Ar-

chitecture - concepts and evolution", of Gerrit A. Blaauw and Frederick P. Brooks, Jr. [7] can be

read for complementary perspectives.

Throughout the book, the author follows two approaches. A more theoretically oriented for

the readers whose only purpose is to understand the Processor information flow and another one

more technical and detailed approach for those with higher ambitions, like understanding the pro-

cessors hardware details. As it will be seen, some programming methods can be improved by

understanding all the processes taken place in the processor operation. Not all the MIPS opera-

tions are described in the reference text book, however, suggestions presented by the Author were

used in order to implement some of them. The most relevant reading chapters are the second, the

third and the fourth chapters which address the computer language, both Unicycle and Multicycle

processors and the Pipelining implementation technique.

For a better historical evolution survey the reader can consult “See MIPS Run”, of Dominic

Sweetman [1], and in order to take note of related projects in this field of study the reader can also

consult “Arquitectura de computadores - dos Sistemas Digitais aos Microprocessadores”, of Guil-

herme Arroz, José Monteiro and Arlindo Oliveira [8], as well as “Arquitectura de computadores”,

of José Delgado and Carlos Ribeiro [9].

5

6 Background

2.2 Computer Architectures used for Teaching

Nowadays, there are a few Computer Architectures used in Didactic environments. If a web search

is performed, the most common ones are 32bit MIPS, 16bit Motorola 68K and the mobile devices

architecture leader, 32bit Arm. Well known reference teaching institutions, such as the Carnegie

Mellon University, the University of California in Santa Barbara, the University of California in

Berkeley and the Massachusetts Institute of Technology adopt the use of MIPS Architecture, with

the referenced COD (Computer Organization and design)text book when concerning the lecture of

computer architectures courses, it was considered the most useful and appropriate for this work.

Therefore, in this section it will be approached the 32bit MIPS Architecture and a similar one

(DLX) whose purpose is not commercial, like in MIPS case, but didactic.

2.2.1 MIPS 32bit Architecture

In 1984, MIPS Computer Systems was founded becoming a pioneer in the CPUs RISC develop-

ment. It developed one of the first commercial RISC (Reduced Instruction Set Computer) micro-

processors whose properties included small and highly-optimized instructions rather than more

complex instructions as in CISC (Complex Instruction Set Computer). RISC processors have a

CPI (clock per instruction) of one cycle and usually incorporate a larger number of registers to

prevent large amounts of interactions with memory [1]. The company was purchased buy Silicon

Graphics, Inc. in 1992, and was spun off as MIPS Technologies Inc. in 1998. MIPS Tech-

nologies, Inc. is the world’s second largest semiconductor design IP worldwide company with

more than 250 customers around the globe [10], with 100 M MIPS CPUs shipped in 2004 into

embedded applications. Today, MIPS powers many consumer electronics and MIPS designs are

used in SGI’s (Silicon Graphics Incorporated) computer product line, founding broad application

in embedded systems including digital television, broadband access, cable set-top boxes, DVD

recorders, HD DVDs and VoIP. Windows CE devices, Cisco routers, the Nintendo 64 console, the

Sony PlayStation 2 console, and the Sony PSP handheld system use MIPS processors. The MIPS

cores scalability, performance and low power consumption meet the increasing demand for sophis-

ticated digital devices. The architecture is similar to that of other recent CPU designs, including

Sun’s SPARC, IBM and Motorola’s PowerPC, and ARM-based processors [11].

The MIPS Architecture has evolved through the years of existence as a compromise between

program demanding and hardware resources. From the MIPS I, in 1985, to the modern MIPS

32/64 architecture, some remarkable improvements concerning the registers width and numbers

representation took place. Since the instructions set extensions were inclusive, each new architec-

ture version included the former levels, meaning that a processor can run binary programs from

previously implemented instruction sets [1]. Illustrated in figure 2.1.

The MIPS I instruction set comprehended the simplest and basic instructions to what would

become a well performed and important RISC architecture. Some of those instructions are present

in the instruction set used in this work. The MIPS I processors shipped to market were the R2000

and the R3000. The R3000 took the advantage of a more advanced manufacturing process along

2.2 Computer Architectures used for Teaching 7

Figure 2.1: MIPS Set extensions, based in [1].

with some well-judged hardware enhancements, giving a substantial improvement in execution

speed. Some pioneers embedded applications such as high-performance laser printers and type-

setting equipment used R3000. The second set (MIPS II) added load linked, store conditional

and branch likely instructions. Although it has not passed beyond the preproduction is the clos-

est set to the modern MIPS32. A couple years later, in 1990, to fulfill the programs growth and

consequently longer registers necessity, MIPS became the first 64 bit RISC architecture to reach

production with the R4000 processor. That was the MIPS III era. The two following instruction

sets (MIPS IV and MIPS V) respectively added the floating point units and the Single Instruction,

Multiple Data parallelism technique (SIMD). While the MIPS IV was implemented in two new

processors (the R10000 and the R50000), the MIPS V just represented improvements to the previ-

ous sets, being present nowadays in MIPS64. Presently, the MIPS32 and MIPS64 are respectively

supersets of MIPS II and MIPS IV.

MIPS uses both 32bit and 64 bit architecture but our concern to this work will be only the

32bit, which comprehends 32 registers, each 32 bits wide (a bit pattern of this size is referred

to as a word). This way the register addresses are 5 bits long and the data inputs and outputs

are 32-bits wide. More than 32 registers might seem better, however, more registers mean more

decoders and multiplexers to select individual registers making the design more expensive than

using ram, which is cheaper and denser than registers. Nevertheless the registers should be used

as much as possible for the simple reason they are faster than ram. Nowadays most compilers can

wisely use registers and minimizing ram accesses but in the past using registers intelligently was

a programmer concern [2].

It was previously stated that the registers should be used as much as possible, meaning that

sometimes the use of ram is inevitably. Arithmetic operations occur only on registers, however, to

have data on registers, data transfer instructions must occur. Data transfers occur very often when

the computer has to represent complex data structures, such as arrays and structures. The data

transfer instruction that copies from the ram to the registers is called Load (LW as Load Word),

8 Background

while the data transfer in the opposite way, from registers to ram, is called Store (SW as Store

Word). Loads and stores use indexed addressing to access ram because, and here comes another

important architecture property, the memories are byte-addressable. This means that each memory

address is 8 bit referenced, which combined with the 32 address lines result in a 4 Gbyte address

space. Therefore, given that a 32 bit word can be occupied by 4 bytes each word must start at

address multiple of 4 (0, 4, 8, 12,) also called alignment restriction.

Figure 2.2: Byte addressable Memory, based in [2].

An example of a MIPS instruction can be:

add $s0, $t0, $t1 ,

where the instruction “tells” the processor to compute the sum of the values in registers $t0 and

$t1 and store the result in register $s0. In section 3.3 the Instruction Language will be described

in more detail [12].

As it was referenced in the previous chapter the basic concept in the development of the

MIPS Architecture was to dramatically increase performance with less die area through the use

of pipelining technique. Pipelining consists in partially overlap instructions in order to increase

performance by "breaking" the instructions process in a series of stages linked between them.

Each stage performs a small part of the overall instruction processing while the instruction flows

through the datapath. The stages should be perfectly balanced so that each stage takes approxi-

mately the same time. The reason for this, concerns the fact that the machine clock cycle is defined

by the longest stage execution time. The pipelining paradox is that, for each instruction, the time

since the start of the first step until the last one is complete is not shorter than a non-pipelining

approach, but when executing several instructions continuously the performance increases so that

for the same amount of time the pipelined version surpasses the non-pipelined. The high perfor-

mance is achieved by parallel processing of multiple instructions at the same time, each in different

stages of the pipeline. It is therefore a key processing technique which was introduced in the RISC

architectures, being later adopted by CISC architectures [2], [13], [1]. There are, however, some

limitations concerning pipelining instruction execution called hazards, which can be grouped in

three different types. The Structural Hazards concern the hardware flaw in supporting the combi-

nation of instructions, set to execute in same clock cycle. The Data Hazards, which occur when an

2.3 Hardware Platform 9

instruction cannot be executed in the right clock cycle due to the needed data not being available

at that time. Some forwarding techniques can be implemented, as we will see in sub-section 3.4.3,

to avoid these kind of situations, still, some cases are inevitable. Finally, Control Hazards refer to

the issue of the instruction not being executed in the appropriate clock cycle, due to the fact the

fetched instruction is not the needed one [2].

2.2.2 DLX Architecture

DLX Architecture is a generic open source 32bit RISC architecture oriented for didactic purpose.

In DLX, the complex instructions are simulated in software, by the use of the simple instructions

performed by the architecture. It is very similar to MIPS architecture with some evident influ-

ences from competing architectures such as DEC VAX, IBM /370 and Intel 8086. Like MIPS,

DLX bases its performance on the use of an instruction pipeline and supports the same 3 in-

structions types (R-Type, I-Type and Jump), yet with some differences in the instruction fields

organization. While in the MIPS Instruction Set, the shift amount is set by a reserved 6 bit field

called shamt, in the DLX Instruction Set there is no shift amount field, and the function field is

11bit wide. This difference allows DLX Set to perform dynamic shift operations, meaning that the

amount of shifts can be provided not only by a constant but also by a register value. The differ-

ence present in the I-Type Instructions is defined by the feature of the DLX Set to allow the load

destination register (1) type as unsigned byte, float or double. Both architectures provide byte, half

word and word memory loads/stores. The Jump instruction specification is the same as in MIPS

Instruction Set since, both architectures allow linked and not-linked jumps (2), as well as the two

types of jump destination address. The program counter relative address and the register content

address [14], [15].

2.3 Hardware Platform

The FPGAs are integrated circuits consisting of configurable logic blocks (CLBs), I/O pads, and

routing channels. These routing channels consist of reconfigurable interconnections, which can

be local connections, like links between CLBs neighbors, or global connections that can connect

CLBs on opposite sides. These CLBs are logic structures which comprise the majority of the die

area of a FPGA. Design specification can be done using schematic capture or RTL synthesis tools,

using standard HDL languages such as Verilog and VHDL. In order to program the FPGAs, an

application circuit must be mapped into an FPGA with adequate resources. FPGAs avoid the high

initial cost, the lengthy development cycles, and the inherent inflexibility of conventional ASICs.

Adding to that, the FPGA programmability permits design upgrades in the field with no hardware

replacement necessary [16], [3], [17], [18].

The concept when the FPGA technology appeared was to build an array of general-purpose

logic blocks which could be programmed to produce any possible logic configuration. Since this

1or origin register in case of a store.
2jump linkage is defined as the storing of the return address in case system call attendance

10 Background

Figure 2.3: Spartan-3 Family Architecture. [3].

approach was limited in its ability to handle more complicated designs, big evolution has taken

place on the last 15 years with improvements and market share dominated by Xilinx and Al-

tera. These devices have been constantly evolving in capacity and logic density, being generally

used in systems that take advantage of performing multiple tasks simultaneously, optimizing the

consumption and space required, with lower operating frequencies than processors. Some of the

major evolution steps concern the inclusion of special-purpose resources along with the config-

urable FPGA fabric. With this evolution arises the complexity of finding an optimal mapping of

the design, since fabric logic is flexible but not efficient for all design structures. Fortunately, syn-

thesis tools do a great job on managing the trade-offs inherent to resource allocation and timing

constraints. These tools allow a more congruent design verification flow, due to the ease of mod-

eling at the RTL level. Sometimes logic on the critical path of a design is best implemented within

fabric logic, while in other occasions, only the use of special resources allow the design to meet

performance goals. Other modern FPGAs common resource much more area efficient is built-in

multipliers, which can be much faster than a corresponding circuit built with fabric logic. Some

architectures, likewise endue dedicated DSP blocks containing a multiply-accumulate function

along with pipeline registers, in order to increase performance [19], [20].

The resource management and special resource mapping have become a current issue, since

the options available have increased, becoming more challenging for present designers [19].

2.3.1 Spartan 3

The Spartan 3 family (introduced in 2005) uses 90nm process technology and staggered I/O pads

with the lowest cost per gate and lowest cost per I/O of any FPGA [16]. It is one popular low cost

FPGA used in numerous educational boards and is ideal for applications that have restrictions on

power consumption. It contains some platform features such as embedded 18x18 multipliers, up

to 1.8Mb of block RAM, and embedded 32-bit and 8-bit soft processors [3].

Without being the most actual and equipped FPGA board, the Spartan3 XC3S200 comprises

4.320 Logic Cells and 200K Logic Gates, being the choice when considering the development

of the processors on a low-cost platform. Among the four different types of connectors (40-pin

2.4 Software Platform 11

expansion connectors; VGA; RS-232; PS/2) the RS-232 was the chosen to support the Computer-

FPGA connection. The main objective is not to achieve the maximum frequency but to target the

project to the FPGA available in the most used Xilinx educational boards, the Spartan3 Starter kit.

As the project development is not very demanding concerning the clock frequency needed, the

design bottleneck was the available resources.

For this work implementation and required designs, the use of multipliers was not necessary

since there is no multiplication required. However, the Block RAMs represented a major advan-

tage in resource allocation efficient, being the chosen method to implement the memories, which

are integral part of the processors models. Both Unicycle and Pipelined version required an In-

struction Memory and a RAM, while the Multicycle required only one Memory (more details

about the Processors versions will be presented in section 3.4). The choice of mapping the memo-

ries on the Block RAMs was based on theirs size and consequently the fabric logic available on the

FPGA. Another important block ram utility was the option to map some ROM logic into the Block

RAM. This was a fundamental choice taken in the extra implementation of the Multicycle version

(32bits counters) in section 4.1.11 so this processor version could be implemented on the Spartan

3 XC3S400All the design was performed at RTL level optimized for Xilin FPGAs avoiding the

need for boards with external memory.

2.4 Software Platform

The software inherent to this work is supposed to support the development of the hardware de-

scription and design processes, as well as the development of the JAVA Graphic User Interface.

Through this section it will be presented and discussed the programming language used to develop

the User Interface capable to interact with the developed hardware Processors.

2.4.1 JAVA

The language Java is a platform-independent, high-level object-oriented programming language

developed by Sun Microsystems and commonly used in standard enterprise programming. Some

of its major advantages are the existence of free tools, a vast base of knowledge, and a large

community of developers. As a result of being built to include a high level of security, the Java

program execution succeeds the bytecode verification and the memory leaks are contained within

the JVM.

Java Language was mostly influenced by C in its syntax, by C++ in its object orientation and

by Smalltalk in its “almost accomplished” portability. Java was created, but with a simpler ob-

ject model to eliminate language features that cause common programming errors. The platform-

independent feature enables Compiled Java code to run on most computers and Operative Systems

including UNIX, the Macintosh OS, and Windows. Although its major strength is portability, its

weak point is the execution speed which is commonly similar or even slower than, for example,

C++. In Java, the source code files need to be compiled into a format called bytecode and then

be executed by a Java interpreter. There are two different methodological interpreters; the Java

12 Background

Virtual Machine (JVM) and, the most recent, Just-in-time compiler. The JVM converts on-the-fly

the bytecodes by calling on a set of standard libraries, such as those provided by Java Standard

Edition (SE) or Enterprise Edition (EE), while the just-in-time (JIT) compilers convert all of a

Java program from JVM bytecode to native code as the program starts up. The JVM is a sim-

ulation of a processor which looks to java bytecodes as native as a processor looks to compiled

code [21], [22], [23]. Both interpreters operation is illustrated in figure 2.4.

Figure 2.4: JVM and JIT Compiler [4]

2.4.2 Eclipse

The Eclipse Software Development Kit (SDK) is a free Java Development Tool which provides

superior Java editing with on-the-fly validation and code assistance. It allows the use of VE (Visual

Editor) open source editor through a plug-in system, being one of the most complete Integrated

Development Environment for Java Developers. The Visual Editor was of extreme importance

when concerning the Application Java Interface development. The choice of the Eclipse SDK

version was made having in mind its stability with the most recent Serial Port Library (RXTX).

The most used and reasoned version available at the time the work started was the Eclipse SDK

3.2, which with the Callisto optional features supported the Visual Editor [24].

2.5 Related Projects

This section will present some of the great variety of simulators and hardware implementations

currently existent. Some of them have their own properties but the majority of them converge to

the same effect, being complete and very useful.

2.5 Related Projects 13

A quite similar work is dated 2003, when Mark Holland, James Harris and Scott Hauck from

the department of Electrical Engineering in University of Washington, Seattle, decided to imple-

ment a MIPS processor on an FPGA as a students learning tool. The processor implementation

equally referenced the text book, Computer Organization and Design by David A. Patterson and

John L. Hennessy. The implemented processor design executes each instruction in a single clock

cycle and comprehends a restricted instruction set. As a complement, an assembler was developed

allowing floating point operations to be mapped into the referred eight instructions set. The other

major differences to this thesis work concern the targeted FPGA class, the design methodology, the

not so portable debugging tool and the communication between the FPGA and the computer. The

project was developed for the XESS-XSV board which comprehends a XILINX Virtex XCV300

FPGA and SRAMs used to map both processor memories. The debugging tool was developed us-

ing Visual Basic language and the mentioned communication is supported by a parallel port [25].

In Faculty of Engineering of University of Porto (FEUP), the teaching of computer architec-

ture courses under the graduation of Informatics and Computing Engineering adopts a similar

project (nanoMIPS). The project allows the students to study the MIPS 32bit architecture by the

interaction with hardware implemented in FPGAs. It relates to a multi clock cycle per instruction

processor which operates with a 50MHz frequency, executes a basic set of seven instructions (and,

or, add, sub, slt, nor) and interfaces with the board peripherals. The data is written in the im-

plemented Processor registers through the use of switches and can be consulted in the 7 segment

displays.

One relevant project for this dissertation project was a Processor created for didactic purpose

only, named PEPE (Processador Especial Para Ensino; Special Processor For Teaching, in En-

glish). PEPE’s creators were professors from Instituto Superior Técnico, whose objectives were

teaching the processors general characteristics through a didactic oriented, simpler and complete

processor instead of using a commercial one whose finality was optimized performance only.

Therefore, the developed processor is set up on a 16bit simple architecture with a JAVA based

simulation software which allows not only programming and execution but also to simulate a

computational system environment wrapping the processor. In the referred work, is also men-

tioned the possibility to install a software application in a commercial microcontroled based board

to run the processor [9].

Another relevant and similar to the previous project is the P3 (Pequeno Processador Pedagógico

- Small Pedagogic Processor, in English) and P4 (Pequeno Processador Pedagógico Pipelined).

These processors were also developed by Professors from the Instituto Superior Técnico with the

major differences of been implemented in hardware on a FPGA and having a second generation

processor instruction language. Both the processors were developed with a 16 bit RISC archi-

tecture in order to explore all the pipeline potential in the P4 implementation. These processor

projects also include their respective simulators and specific assembly language. The more rele-

vant processor properties are the use of a stack and the interaction with external peripheries such

as interrupt buttons, an LCD display, LEDs and 7 segment-displays [8].

A Flexible MIPS soft Processor was created in a Master Thesis by a Massachusetts Institute

14 Background

of Technology student whose purpose was to develop a flexible microprocessor architecture based

in high-performance computing technologies. The flexibility of the processor architecture resides

in the possibility to modify and extend the instruction set and the Processor´s functional units.

As it is described in the student’s thesis, the microprocessor was implemented on a FPGA board

and the user can add and edit functional units by specifying the architecture parameters to suit

the processor structure. The processor is compatible with the standard MIPS ISA, and supports

pipelining configuration [26].

Especialização e Síntese de Processadores para Aplicação em Sistemas de Tempo-Real (Spe-

cialization and Synthesis of Processors for Real-Time Systems Applications, in English) is a Ph.D.

thesis which addresses the development of architectures and synthesizable models of a determin-

istic, multitasking, pipelined processor and the respective coprocessor for real-time operating sys-

tem support. Among other aspects, the author describes an implementation of a configurable

32bit MIPS based pipelined processor and provides a metric analysis support of FPGAs targetable

implementations consisted of MIPS processors [27].

A paper, whose only access was to the abstract via internet, describes an educational system

aimed at providing a course of computer architecture for graduate students called ARCHO. It is

composed by both teacher and student oriented modules providing a system, named ARCAL, to

support the study of theoretical concepts and a simulator, named APE, to support the laboratory

activities [28].

One particular MIPS Processors Simulator is WebMIPS, which is accessible from the Web and

has been used by the Faculty of Information Engineering in Siena, Italy in a computer architecture

course. One advantage provided by this user friendly simulator, when comparing to the other

existing ones, concerns the fact it is Web based not needing any installation process, being capable

of uploading and assembling MIPS code provided by the user, as well as running a pipelined

version in costume steps [29].

Most simulators as spim are very simple and do what is expected from a simulator; run MIPS32

assembly language programs, most of the time with the inclusion of a debugger. They do not

handle exceptions and interrupts because the architecture has changed over time. spim is available

for MAC OS, Linux and Windows but with specific execution files [30].

The last MIPS related project considered relevant is MARS. MIPS Assembler and Runtime

Simulator was developed by Missouri State University and is a more advanced simulator that has

an improved graphical interface and more features comparatively with most simulators. It allows

registers and memory values access similar to a spreadsheet, floating point registers and cache

performance analysis tool. This project has the particularity of been developed with the JAVA

language [31].

DLX Gold project consisted of a 32bit pipelined DLX microprocessor capable of handling

single precision FP operations. It makes use of the Class 1 architecture for FP operations, having

an independent unit for addition, multiplication, and division. Additionally, the project considered

dynamic scheduling to handle the parallel execution of instructions by the use of the speculative

Tomasulo Algorithm. The algorithm provides the execution of sequential instructions that would

2.6 Concluding Remarks 15

normally be stalled due to certain execution dependencies. This project has the particularity of

being designed for asic implementation [32].

FPGA Implementation of DLX Microprocessor with WISHBONE SoC Bus is a successful

project case of the open source DLX architecture implementation. The objective of the work was

to use the DLX microprocessor implemented with a Wishbone bus interface in a SoC (System-

on-Chip) design, fostering design reuse by alleviating System-On-Chip integration problems. The

main reason for using DLX concerns economical aspects. It allows saving money by avoiding the

use of licensed IP core in the ASIC design. The target of the work is the use in a smart camera

SoC [33].

Many 32bit MIPS simulators were not mentioned here, (for example, the J-MIPS, the MIPSIM

and more recently MIPSIM2 [34]) but the generality of present simulators features were mentioned

in this section.

2.6 Concluding Remarks

Throughout this chapter some literature was suggested, it was provided a simple and useful de-

scription of the used architecture, as well as the system platforms involved during project devel-

opment. At the end of the chapter, the projects which were considered relevant to the system

development and its requirements identification, were presented. Next chapter will introduce the

development methodology, as well as the system specifications.

16 Background

Chapter 3

System Specifications

This chapter starts by presenting the procedure followed during system implementation, continues

by describing the system abstraction model, details the Instruction Set Architecture used in this

work and concludes by presenting the processor models, which are the focus of this work.

3.1 Development Methodology

The work was divided in several tasks, some of them executed simultaneously. Specifically, the

Java interface followed a parallel implementation process with the processors and their wrapping

modules, so program tests could be performed. The Graphic User Interface is one key component

of the system by enabling the processor operation. The development of the GUI in java provides

platform independence, since it runs on a JVM.

3.1.1 The Hardware

The hardware was developed, targeting a FPGA device using a top down design methodology. The

modules were described using the hardware description language Verilog. The modules functional

verification and simulations were performed using ModelSim whereas the synthesis, the mapping

and the place and route were performed in Xilinx ISE 9.2i tool. A final verification phase was

performed by executing a test program in the implemented processors.

It is relevant to mention that the functional verification achieved with ModelSim was done only

for the processor core. The additional accessory models (event counters), whose implementation

was relatively elementary, were tested during the final verification phase. Since the modules to im-

plement were processor versions, it is reasonable to test all the executable instructions one by one.

However, the tests were beyond a single test to each instruction and it was adopted the bubble sort

algorithm to test a representative set of instructions. For this purpose, a set of random words was

stored in the data memory in contiguous addresses. During the algorithm execution, the numbers

were sequentially loaded to registers, compared two at a time and then orderly stored back to the

17

18 System Specifications

RAM by its content weight. The program created for this test comprehended ADDs, ADDIs, ORs,

SLTs, LWs, SWs, BEQs, BNEQs, and JUMPs comprising a mix of 50% Arithmetic operations and

12,5% of loads, stores, Jumps and Branches. A complete instruction set is explained in section 3.3.

One possible implementation for the Bubble Sort algorithm can be described as:

Listing 3.1: Bubble sort algorithm

p r o c e d u r e b u b b l e S o r t (A : l i s t o f words p r e s e n t i n RAM) :
do

swapped := f a l s e
f o r (i = 0 to i = l e n g t h (A) − 2)

i f A[i] > A[i +1] then
swap (A[i] , A[i +1])
swapped := t rue

end i f
end f o r

whi l e swapped
end p r o c e d u r e

Algorithm implemented in MIPS 32bit ISA:

Listing 3.2: Bubble sort program

l i n e 0 ; nop
l i n e 1 ; and s2 , s1 , s2 ; c l e a r f l a g used t o n o t i f y swaps
l i n e 2 ; and t 2 , s1 , t 2 ; c l e a r RAM addr
l i n e 3 ; or t2 , t3 , t 2 ; s e t RAM addr = 0 x00000004
l i n e 4 ; lw t0 , t2 , 0 x0000 ; load f i r s t word
l i n e 5 ; lw t1 , t2 , 0 x0004 ; load second word
l i n e 6 ; s l t t5 , t0 , t 1 ; s e t t 5 = 1 i f t 0 < t 1
l i n e 7 ; beq t4 , t5 , 0 x0007 ; branch t o l i n e 1 5 i f swap needed
l i n e 8 ; add t2 , t3 , t 2 ; increment RAM addr by 0 x00000004
l i n e 9 ; add s3 , t4 , s3 ; increment i t e r a t i o n i n d e x
l i n e 1 0 ; bne s4 , s3 , 0 x f f f 9 ; branch t o l i n e 4 i f i t e r a t i o n n o t end
l i n e 1 1 ; and s3 , s1 , s3 ; c l e a r i t e r a t i o n i n d e x
l i n e 1 2 ; beq s2 , t4 , 0 x f f f 4 ; branch t o l i n e 1 i f swap pe r fo rmed
l i n e 1 3 ; h a l t ; s t o p h e r e
l i n e 1 4 ; nop ; do n o t h i n g
l i n e 1 5 ; sw t1 , t2 , 0 x0000 ; s t o r e second word i n t o f i r s t word a d d r e s s
l i n e 1 6 ; sw t0 , t2 , 0 x0004 ; s t o r e f i r s t word i n t o second word a d d r e s s
l i n e 1 7 ; or s2 , t4 , s2 ; s e t swap f l a g = 1
l i n e 1 8 ; jmp 8 ; jump t o l i n e 8
l i n e 1 9 ; nop ; do n o t h i n g
l i n e 2 0 ; nop ; do n o t h i n g

3.2 System Abstraction Model 19

Listing 3.3: Registers initial content

t0 v a l u e i s don ’ t c a r e t5 v a l u e i s don ’ t c a r e
t1 v a l u e i s don ’ t c a r e s1 v a l u e i s 0 (used t o c l e a r)
t2 v a l u e i s don ’ t c a r e s2 v a l u e i s 0 (swap f l a g)
t3 v a l u e i s RAM f i r s t word add r s3 v a l u e i s 0 (c o u n t e r)
t4 v a l u e i s 1 s4 v a l u e i s 6 (i t e r a t i o n number − 1)

The communication with the Java Interface is assured by a low speed connection. A public IP

Core was used for implementing the serial interface and a custom module was developed to handle

the commands sent by the software interface.

3.1.2 Software

A graphical application was developed to provide interaction with the processor and the event

counters modules. The purpose of the GUI is to allow the read/write access to the storage elements

and control the program execution. This interface was developed in Java language through the use

of Eclipse SDK, which required a Java Runtime Environment (JRE) to be executed. The Java

source code was structured in different levels to make the visual classes independent from the

lower level classes. Some extra functions were created to support data manipulation regarding the

interface visual classes specifications, as can be seen in 4.2.1.

3.2 System Abstraction Model

In order to provide a better perspective of the global system, figure 3.1 illustrates an abstraction

model of the system.

The system is constituted by two distinct platforms, the PC and the FPGA board, physically

linked by a serial communication channel. The choice for the serial port as the communication

link lies in the fact of being available in the targeted development board and being easy to use

either in hardware and software. In the Software platform, both Java GUI and serial port drivers

used by the Java Application run on a Java Virtual Machine allowing independence of the host

computer operating system presented in section 2.4.1.

From the hardware point of view, the serial communication is handled by the suart block,

which is the most adjacent hardware block to the serial port. The block serial manager is respon-

sible for managing all the information flow between the inside blocks and the software application.

A control block, Control Manager, was created to manage the processor execution over a flexible

number of clocks. The necessary commands to enable the processor execution are transmitted

from the serial manager. In section 4.1.5, it can be seen that the control block function is be-

yond steps/clocks management, as a result of the memories implementation into the block rams

and some individual particularities imposed by each Processor version. The Wrapper includes

the processor and the associated event counters, providing reading and writing of the processors

20 System Specifications

Figure 3.1: System Abstraction Model.

registers and memories, as well as access to the event counters. The errors in case of unrecognized

opcode are handled in the error module by displaying error messages in the leds displays.

3.3 MIPS Instruction Set

MIPS 32bit is a RISC architecture with fixed length instructions. Although there are three different

instruction types, some similarities can be found in the size of the instructions and in the number

of the fields. Each type is assigned a distinct set of values for the opcode field so the instructions

can be properly treated by the hardware. The instruction set selected for this work is the basic

MIPS set present in the reference text book. It is composed by arithmetic and logic operations,

shifts, compares, conditional and unconditional jumps and data transfers between memories and

registers. The data transfers between memory and registers (loads and stores) are the particular

instructions which allow the processor to access the external data memory.

The contemporary 32bit MIPS processors possess a vast instruction set with byte, half word,

word and double word size memory access operations comprehending complex arithmetic opera-

tions and floating point format.

A detailed explanation about the three instruction types is discussed in tables 3.1, 3.2 and 3.3.

• the arithmetic-logical instructions (R-Type) The R-Type instruction consists of six instruc-

tion fields. The opcode field is common to all instruction types and defines the operation

to be taken by the processor when executing the instruction. The rs and rt fields concern

respectively to the first and second register source operand, while the rd field indicates the

3.3 MIPS Instruction Set 21

opcode rs rt rd shamt funct
6 bit 5 bit 5 bit 5 bit 5 bit 6 bit

Table 3.1: R-Type Instruction, [2].

destination register to where the arithmetic-logical result will be stored. The shamt field

holds the number of bits to perform in case of shift operation, which is defined in the funct

field as in all arithmetic and logical operations.

• memory reference instructions such as load and store (I-Type)

opcode rs rt constant or address
6 bit 5 bit 5 bit 16 bit

Table 3.2: I-Type Instruction, [2].

Since all instructions have the same length, three types of instructions had to be implemented

in order to perform operations of different nature. The I-type instructions are frequently

associated to data transfers between memory and registers. However, due to the necessity of

having a field with the constant value, the arithmetic and logical operations with immediate

values, such as beq, bneq and addi, also belong to this instruction type. Differently from the

previous instruction type, in I-Type the field rt has two meanings. In the case in which the

instruction concerns immediate instructions or a load instruction, the rt field specifies the

destination register. In the case of a store, the rt field specifies the source register. The rs

field is the complementary of the rt register, meaning that in case of a store it contains the

destination memory base address and in case of immediate instructions or a load instruction

it specifies the source memory base address. The I-Type targeted memory address is the

sum of the address field plus the correspondent register content. The branch if equal and

the branch if not equal are a special kind of I-Type since they perform flow control. These

branch instructions are executed upon a met condition and the address to be branched to is

the sum of the program counter with the constant field. This happens in order to provide a

branch to any address within a 232 range (memory size) since the 16 bit field address would

only allow branchs within a 216 range.

• jump instruction

opcode address
6 bit 26 bit

Table 3.3: Jump Instruction, [2].

22 System Specifications

The jump instruction is the simplest one with no need for conditions verification. The pro-

cessor when executing this instruction, simply updates the Program Counter with the 26 bit

address specified in the respective field.

As can be seen in table 3.4, the instructions presented in this work are some of the basic

initial MIPS instructions. This reduced instruction set is thought to be enough to provide the

understanding of the mechanisms inherent to the MIPS architecture. The instruction set com-

prises arithmetic operations as add, sub, addi (add immediate) and slt (set less then), the logical

operations and, or, nor, sll (shift left logical), srl (shif right logical), the conditional branch in-

structions beq (branch if equal), bneq (branch if not equal), the data transfers instructions lw (load

word) and sw (store word) and finally the unconditional jump instruction. The nop instruction is

not referenced in the instruction set although it is performed by the processor. The shift operations

(sll and srl) were established as a one bit shift instead of the original variable bit shift. In order to

distinguish these operations from the originals, the opcode is different, being respectively 1 and

62 (the bitwise not). The reasons that led to the implementation of the one bit shifting instructions,

instead of the original variable bit shifts, refer to the absence of correspondent hardware descrip-

tion in the reference text book and to the fact that, from the ALU from of view, the one bit shifting

instructions are faster to perform.

Name Format opcode rd rt rd shamt funct address
add R-Type 0 reg reg reg X 32 n.a.
sub R-Type 0 reg reg reg X 34 n.a.
and R-Type 0 reg reg reg X 36 n.a.
or R-Type 0 reg reg reg X 37 n.a.

nor R-Type 0 reg reg reg X 39 n.a.
slt R-Type 0 reg reg reg X 42 n.a.
sll R-Type 0 reg n.a. reg X 1 n.a.
srl R-Type 0 reg n.a. reg X 62 n.a.

addi I-Type 8 reg reg n.a. n.a. n.a. constant
lw I-Type 35 reg reg n.a. n.a. n.a. address
sw I-Type 43 reg reg n.a. n.a. n.a. address
beq I-Type 4 reg reg n.a. n.a. n.a. address

bneq I-Type 5 reg reg n.a. n.a. n.a. address
jump J-Type 2 n.a. n.a. n.a. n.a. n.a. address

Table 3.4: Adopted Instruction Set. X stands for “don’t care”, n.a. stands for not applicable. Based
in MIPS Instruction Set [2]

3.4 Implemented Processor Models

In this section, the processor versions will be presented and discussed. There will be performed

a simple and basic explanation since the objective of this work is not to rewrite the reference text

3.4 Implemented Processor Models 23

Figure 3.2: Unicycle, based in [2].

book. However, and in case of being the first contact of the reader with this architecture, a further

reading of reference text book is advised. For the reader understanding interest, the Unicycle will

be firstly approached expecting to be the basis for the following processors explanation.

3.4.1 Unicycle

The Unicycle stands for a single cycle per instruction and its design is basically composed of a

Program Counter, a Register File, a Control Unit, a ALU and two memories. There are some sup-

plementary arithmetic and logical blocks inherent to the processor operation and control flow. All

the blocks are asynchronous except the PCounter. In each performed clock cycle, the PCounter is

updated with the address of the instruction to be executed. In the same clock cycle, the instruction

is executed and a new value is supplied to the PCounter input. This action allows the PCounter to

be updated with the instruction expected to be executed in the following clock cycle. Figure 3.2

illustrates the Unicycle design.

From the left to the right, as the instruction execution takes place, it can be observed the

PCounter, the Instruction Memory where the instructions are stored, the bank of the registers,

the ALU whose role is to perform the arithmetic-logical calculations and, at the end of the dat-

apath, the data Memory. In the previous chapter it was explained the three groups in which the

24 System Specifications

instructions are classified. All these instructions have two steps in common, preceding the rest

of the specific actions needed to complete each instruction execution. The first of the common

steps consists of providing the PCounter content to the Instruction Memory address and conse-

quently instruction fetch. The second step consists of reading the registers. All the instructions,

besides jump, require a read from the register file and an ALU operation. For the present instruc-

tion set, the immediate type instruction addi, the load instruction lw and the arithmetic shifts sll

and srl require only one register read whereas the rest of the instructions require reading two reg-

isters. The data transfer instructions require the ALU for address calculation (the ALU adds the

register content with the address field content) whereas the arithmetic-logical instructions perform

the correspondent function with the content present at the two ALU inputs.

Signal R-format lw sw branche branchNe jump
RegDest 1 0 x x x x
ALUSrc 0 1 1 0 0 x

MemtoReg 0 1 x x x x
RegWrite 1 1 0 0 0 x
MemRead 0 1 0 0 0 x
MemWrite 0 0 1 0 0 x

Branche 0 0 0 1 0 x
BranchNe 0 0 0 0 1 x
ALUOp1 1 0 0 0 0 x
ALUOp0 0 0 0 0 1 x

Jmp 0 0 0 0 0 1

Table 3.5: Control Unit table. x stands for “dont’t care”. Based in [2]

After the ALU stage, the load and store instructions need to access the memory to respectively

read and write. The store instruction finishes the execution, whereas the load instruction needs

additional write-back step, storing the loaded value into the register file. The arithmetic-logical

instructions finish the same way as the load instruction, yet, without performing any memory ref-

erence. The branchs complete their execution after the equality test performed in the ALU, by

selecting the next PCounter content. The jump instruction does not need any additional processing

after the instruction decode, but a simple 2bit shift of the address field. This shift is commonly

performed in all address calculation concerning the byte addressable memory present in the MIPS

architecture. Differently from the branchs address calculation, where the address is obtained rela-

tively to the present PCounter, the jumps perform a PCounter update with the value present in the

instruction address field. The presented data flow is controlled by a module, which coordinates the

processor modules. The Control Unit, a pure combinational block, decodes the instruction opcode

and enables the necessary signals so the memories, the register file and necessary multiplexers can

perform the requested operations. The control can be defined as:

• RegDst, which selects the register file address source. This control signal is necessary since

the instruction set comprehends more than one instruction type. For example, in the R-Type

3.4 Implemented Processor Models 25

instructions, the write register input most be supplied with the Instruction [15 - 11] bits,

while in the I-Type load instruction, the correct bits to be handed are Instructions [20 - 16];

• Jump, which selects the destination address to be available at the PCounter input;

• BranchNe and Branche, along with the ALUZero signal, enable the address branch propa-

gation;

• MemRead, enables data memory read;

• MemtoReg, selects the input data for the register file write data port;

• ALUOp, along with the instruction function field determines the operation to be performed

by the ALU;

• MemWrite, enables data memory write;

• ALUSrc, defines the value to be provided to one of the ALU inputs. This ALU input

requires two different sources due to the arithmetic operations performed with both R-Type

and I-Type.

• RegWrite, enables the register file write;

The ALUOp and the instruction funct field are propagated into the ALU control block to be

decoded, so the ALU control signals can be set. The encoding of the three control signals can be

observed in table 3.5, and 3.6.

Instruction ALUOp function field desired action ALU
Operation control input

lw 00 X add 0010
sw 00 X add 0010

addi 00 X add 0010
branchE 01 X subtract 0110
branchNe 01 X subtract 0110

add 10 100000 add 0010
subtract 10 100010 subtract 0110

and 10 100100 and 0000
or 10 100101 or 0001

nor 10 100111 nor 1100
slt 10 101010 set on less than 0111
sll 10 000001 shift left 0011
srl 10 111110 shift right 0100

Table 3.6: ALU Control table. X stands for “don’t care”. Based in [2]

Some changes were performed to the reference text book design to support the execution

of BranchNe instruction. These modifications can be observed at the top right area of the figure 3.2.

26 System Specifications

Instruction Instruction Register ALU Data Register
Total

Class memory read operation memory write

R-Type 200 50 100 0 50 400ps

Load word 200 50 100 200 50 600ps

Store word 200 50 100 0 0 550ps

Branch 200 50 100 0 0 350ps

Jump 200 0 0 0 0 200ps

Table 3.7: Instructions length, based in [2].

Two logic gates, a nor with one negative input and an or, were added to the original design in order

to support the BranchNe operation. The output select signal of the multiplexer, which supplies the

PCounter input, is set by the signal derived from the logic gates. When the ALU Zero value is "0"

and the control BranchNe value is "1" the multiplexer outputs the branch calculated address.

3.4.2 Multicycle

The reason that led to evolve to a new architecture conception is based in the Unicycle timing

inefficiency. Table 3.7 presents, hypothetical propagation delays required for each hardware block

to perform the desired operation. In the Unicycle version, the clock period is determined by the

time of the longest instruction, which is the load word and takes 600ps. The inefficiency problem

can now be easily realized: the quicker instruction,(jump), should take only 200ps to be performed,

but as a result of the hardware design, it must take the same time as the rest of the instructions,

600ps. The perfect approach would consider a variable clock so each instruction could be executed

without overhead. If a mix of instructions (25% loads, 10% stores, 45% ALU instructions, 15%

branches and 5% jumps) is considered, the average time per instruction would be [2]:

600×25%+550×10%+400×45%+350×15%+200×5% = 447.5ps

instead of the fixed 600ps provided by the Unicycle. However, such a design comprising a

variable-speed clock would be extremely difficult to implement.

In the Multicycle processor version, the Unicycle inefficiency does not occur, since the in-

struction is broken into several shorter steps being executed one step per clock cycle. Each step is

restricted to at most one ALU operation or one register access, or one memory access. The clock

period of the Multicycle is therefore determined by the longest step, which in this instruction set

takes 200ps. These steps will be addressed after the Multicycle architecture presentation so it can

be easily understood by the reader.

The Multicycle Processor architecture is quite different from the Unicycle. As can be illus-

trated in figure 3.3 the control signals are not exactly the same, there is a single memory and,

besides the ALU, there are no supplementary arithmetic blocks for address computing. Since

3.4 Implemented Processor Models 27

there are no supplementary arithmetic blocks, the ALU must perform all the arithmetic operations

as well as, the next address calculation. This, required the presence of a 4 way multiplexer at

the ALU lower input. The use of less complex hardware to perform the same instruction set rep-

resents another advantage when comparing to the Unicycle. Due to the existence of only single

memory it must be shared by instructions and data, requiring an multiplexer at the memory address

input. Another difference is the existence of registers between combinational blocks. This register

set comprehends the Instruction register, the Memory data register, both registers A and B and a

register at the end of the ALU, namely ALUOut. The necessity of using these registers resides in

the fact that each clock cycle can accommodate at most one functional operation, and therefore,

the data produced by any of the functional units (memory, register file or ALU) must be tempo-

rary stored. In the upper part of the schematic it can be observed an or gate, an and gate and a

multiplexer. The multiplexer does not appear in the reference text book design, since no branchNe

instruction was described. As can be seen, when the branchNe signal is set, the multiplexer selects

the not ALUZero signal, which will consequently enable the PCWriteCond control signal. Like

in the Unicycle, the PCounter has three different sources. The output of the ALU is PC + 4 during

fetch condition, the ALUOut which contains the address in a branch case and the lower 26 bits of

the instruction register, shifted two bits to the left 1 and concatenated with the upper four bits of

the incremented program counter (jump case).

The capability to execute instructions in a different number of clock cycles, as well as the

ability to share functional units within the execution of a single instruction, requires more than

temporary registers. It additionally requires a control unit performing as a finite state machine.

The control unit implements eleven control signals which and can be set as [2]:

• RegDst, selects the register file address source;

• RegWrite, enables the register file write;

• BranchNe, and Branche, necessary for the branch execution;

• MemRead, enables data memory read;

• MemtoReg, selects the input data for the register file write data port;

• ALUOp, along with the instruction function field determine the operation to be executed by

the ALU;

• MemWrite, enables data memory write;

• ALUSrcA, selects the source for the upper ALU input. If asserted selects the register A

content, if deasserted selects PCounter content;

• ALUSrcB, selects the source for the lower ALU input. If 002 selects the register B value, if

012 selects the constant 4, if 102 selects the lower 16 bit of the instruction register (branch)

and in the case of being 112, it selects the lower 16 bit shifted left by two bits (jump).
1in decimal system equals multiply by 4

28 System Specifications

Figure 3.3: Multicycle, based in [2].

3.4 Implemented Processor Models 29

• PCSource, two bit signal which selects the PCounter source. If 002 the output of the ALU

(PC+4) is selected, if 012 the source is the ALUOut register (branch target address) and if

102 the jump address is supplied to the PCounter.

• IorD, selects the source to the memory address input. When asserted, the ALUOut register

is selected (in case of memory accesses), when deasserted the PCounter is selected (ordinary

fetch).

• IRWrite, enables the instruction register write;

• PCWrite, enables PCounter write;

• PCWriteCond, along the result of the ALUZero, enables the PCounter write (branch);

The control signals value is determined by the current execution stage. The instructions exe-

cution requires up to five different steps, although the number of steps needed for each instruction

is variable. The mentioned steps and the correspondent micro-instructions are detailed as [2]:

• Instruction fetch;

IR <= Memory [PC] ;
PC <= PC + 4 ;

• Instruction decode and register fetch;

A <= Reg [IR [2 5 : 2 1]] ;
B <= Reg [IR [2 0 : 1 6]] ;
ALUOut <= PC + (s ign−e x t e n d (IR [15−0]) << 2) ;

• Execution, memory address computation, or branch completion;

ALUOut <= A + s ign−e x t e n d (IR [1 5 : 0]) ; ; memory r e f e r e n c e

o r

ALUOut <= A op B ; ; a r i t h m e t i c − l o g i c a l i n s t r u c t i o n

o r

i f (b r a n c h e and (A == B)) PC <= ALUOut ;
i f (branchNe and (A != B)) PC <= ALUOut ; ; b r a n c h s

o r

PC <= {PC [3 1 : 2 8] , (IR [2 5 : 0] , 2 ’ b00) } ; ; jump

30 System Specifications

• Memory access or R-type instruction completion;

MDR <= Memory [ALUOut] ; ; memory r e f e r e n c e

o r

Memory [ALUOut] <= B ; ; memory r e f e r e n c e

o r

Reg [IR [1 5 : 1 1]] <= ALUOut ; ; a r i t h m e t i c − l o g i c a l i n s t r u c t i o n

• Memory read completion;

Reg [IR [2 0 : 1 6]] <= MDR; l o a d

The first two steps of the instructions execution are shared among all the instructions, while

the rest of the steps are specific to each instruction. The finite state machine is illustrated in the

figure 3.4.

The disadvantage of using a single-cycle design is significant. However, for the instruction set

defined for this work, the Unicycle performs faster than the Multicycle.

3.4.3 Pipelined

After presenting both Unicycle and Multicycle the following processor version is a pipeline adap-

tation of the Unicycle version. The reason for adopting the Unicycle as the basis version to the

pipelined version concerns the use of two memories (an instruction memory and a data memory)

to avoid structural hazards (e.g. two unrelated write and read operations to be performed at the

same memory address and at the same time). The hazard situations present in the pipelined version

will be discussed later in this section. The principle of the pipeline design was already explained

in section 2.2.1, however a brief presentation is included in this section.

Pipelining consists, like in Multicycle, in breaking the instructions into smaller stages, yet,

with a major improvement: it allows the fetch of the following instruction before the current one

is finished. This allows continuous feed of the stages, and therefore the execution of more than

one instruction step at each clock cycle. This approach introduces some overhead to the program

execution since the instructions are longer. Nevertheless, after some clock cycles the difference is

notorious. Let the set of instructions be considered [2]:

add $t0 , $t1 , $s0 ;
lw $s5 , $t4 , 1 6 ;
sw $t5 , $s4 , 4 ;

3.4 Implemented Processor Models 31

Figure 3.4: Multicycle FSM.

32 System Specifications

The figure 3.5 shows the time necessary for the instructions to be executed. After some clock

cycles, the Pipelined design exhibits advantage to the Unicycle since the design stages are always

active, improving the data throughput over time. This example is a simplistic approach, since

there are some hazard situations that prevent the next instruction in the program flow from being

sequentially executed.

Figure 3.5: Pipeline versus Unicycle.

The pipeline design can be observed in figure 3.6. The datapath is broken into five different

stages separated by registers. The function of the registers is to store the instruction data and

control signals in each clock cycle, so the instruction stream can proceed through the pipeline. As

is illustrated in figure 3.7, the control signals content is defined at the instruction decode stage and

travels with the correspondent instruction data along the pipeline. The ALU control signals are the

same as in the Unicycle version and therefore, mentioned in section 3.4.1. The processor control

requires additional signals, such as the PCSrc, which selects the source of the PCounter, and the

ID/ID_flush necessary for the stall insertions needed after a lw.

The registers name matches the bound between two adjacent stages (IF/ID, ID/EX, EX/MEM

and MEM/WB). The stages are illustrated in figure 3.6 and can be defined as:

• Instruction fetch;

• Instruction decode and register read;

• Execute and address calculation;

3.4 Implemented Processor Models 33

• Memory access;

• Write back;

Figure 3.6: Pipeline basic design, based in [2].

The reference textbook addresses three different types of hazards, but only two types are re-

ferred in this text since the adopted design is not affected by structural hazards. Thus, the pipeline

design resultant hazards are the data hazards and the control hazards. The data hazards arise when

the result of an instruction is necessary as an operand in the following instruction. Consider the

example of two instructions inserted in the processor datapath in figure 3.6. If the second instruc-

tion execution requires a read of a register which is updated by the first instruction, it can be seen

that the second instruction is affected by a data hazard. More data hazards will be addressed as the

processor is discussed. The second type of hazard that can happen in this version, occurs when a

branch instruction is interpreted by the control. Referring to figure 3.6, suppose a branch instruc-

tion followed by any other type of instruction, consider as an example the instruction add. Since

both instructions are consecutive, when the branch reaches the instruction decode stage, the add

instruction is fetched. The branch operation depends on its on condition to be performed, which

will only be verified in the next clock cycle when at the execution stage (remember the equality

condition is verified at the ALU). Thus, when the branch instruction is at the execution stage,

the add instruction is at instruction decode stage and, therefore already in the pipeline datapath. If

the condition is positively verified the branch is taken only in the third clock cycle. This simple

exercise serves the purpose of showing that two instructions are then incorrectly performed, if

such circumstances are met.

34 System Specifications

Figure 3.7: Control signals transition in pipeline, based in [2].

A possible solution to the hazard problems is the inclusion of forwarding mechanisms, as well

as a hazard detection unit capable of managing the instruction stream flow. Still, some situations

have no solution but to stall the processor for a clock cycle via the insertion of a “bubble” in the

datapath. A bubble is one or more pipeline stages that do not contain useful instructions. The

concept inherent to these mechanisms will be addressed in this section while the implementation

details will be subject of section 4.1.8. The hazard situations can also be avoided if the program is

set, so that no sequential dependencies are verified. However, this instructions rearrangement may

increase the program execution time.

The forwarding mechanisms are managed by a unit, which detects data hazards and controls

signals in order to override the situation. Consider the example of two adjacent add instructions

with read after write data dependence. The first add instruction stores its result value in register

$s0 and the second instruction adds the register $s0 with $s1. If no forwarding is performed, the

second operation will not add the most recent value of $s0. The forwarding concept concerns

the moment in which the registers are used to operate. If, in the moment when the second add

instruction is at the execution stage, somehow the updated value of $s0 could be supplied to the

ALU input instead of the read value from the register file, the hazard would not occur. In figure 3.8

such implementation can be observed when inspecting the ALU inputs. The ALU inputs are fed

with the most recent value, which can be obtained from the instruction decode stage (normal case

without hazards), from the memory stage or even from the WriteBack stage. In the considered

example, the value to be supplied to the ALU input would come from the memory stage, since

the dependable instruction is right before the current one. Yet, if the most updated value of $s0

was present at the write_back stage, that would be the value to be supplied to the ALU. All the

forwarding mechanisms are based in this concept; to provide the dependable value at the time it

is needed. Although not exhibit in figure 3.8, another case of forwarding implementation happens

in the memory stage. Suppose two sequential instructions once more, but at this time memory

referenced. A lw instruction that updates the register $t0 with a word from the data memory fol-

3.4 Implemented Processor Models 35

Figure 3.8: Pipeline version with forwarding mechanisms, based in [2]

lowed by a sw which stores the value of $t0 in any address. As can be seen in the figure, at the

time the register $t0 is updated by the lw instruction, the sw instruction is present at the memory

stage, writing in the data memory. With the same arrangement shown in the previously example,

a multiplexer can be implemented in order to supply the memory input, and therefore provide the

value present at the MEM/WB register. The lw instruction is a problematic instruction since it

requires the processor to introduce a bubble in the instruction stream after its fetch (except if the

following instruction is a sw). The reason for this can be explained if another example is consid-

ered. Suppose that after the lw an add instruction is fetched and one operand is the destination

register of the lw instruction. The datapath comprehends one stage between the write_back stage

and the execution stage. As a result of the design implementation, the mentioned add instruction

would not be performed with the most recent value of the register, and must be stalled one clock

cycle. The stall operation is triggered by a block called Hazard detection unit.

The Hazard detection unit is additionally used to prevent the branch hazards. In the beginning

of this section, an example of the control hazards has been exposed. The idea used to overcome

this type of hazard is to anticipate the branch 2 condition verification, as well as its computation.

To enable that, an equality control test must be performed between the two register file outputs,

and the blocks used to perform address calculation must be placed in the instruction decode stage

rather than in the execution stage. The mentioned blocks are the 32bit adder, the sign-extend

block and the ×4 block. This procedure allows the branch consummation step to be executed

early but, as a result of the hardware design, even though the branch test is anticipated, at the time

2same situation for branch not equal

36 System Specifications

the condition is verified, the consecutive instruction has already been fetched. Thus, a decision is

taken and, if necessary, corrected after the condition verification. In the reference text book, some

ideas are suggested by the author to deal with the decision of taking or not the branch. Among the

presented suggestions, figure the branch prediction and the simple decision of always not taking

the branch. The chosen method was to not take the branch and, in case the branch condition is

confirmed as true, a stall is inserted by flushing the IF/ID register. As a result, a “bubble” will be

pushed into the pipeline and delay the program execution by one clock cycle. This penalty may

be considered acceptable when comparing with the absence of the hazard detection unit.

3.5 Event Counters

One the objectives of this work was to provide to the user the needed resources to detect and count

some event occurrences. The objective underlying the event counters is to provide total acknowl-

edge of the instructions execution process and data flow. There were considered three different

versions of processors imposing different timings and conditions in the events evaluation. Still,

the basic principle to each event counter remained unchanged. The event counters can be distin-

guished in five groups, accordingly to the action performed or to the storage element monitored:

• Clock counter

This counter is incremented every time the main clock is triggered.

• Instruction Type counter

Each instruction type (total of 8) has a correspondent counter which is incremented at the

end of each instruction execution.

• Instruction Program accesses counter

This counters group can be set to monitor up to four different addresses at the same time.

They provide the sum of the reads performed in the instruction program.

• Memory accesses counter

Similarly to the Instruction Program accesses counter, this counter provides the sum of the

reads, but also the writes, performed to the memory address ranges. The addresses set is

performed the same way as in the previous group.

• Registers accesses counter

The registers accesses counter, counts the reads and writes performed in the most commonly

used registers. The evaluated registers set is {t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2, s3, s4, s5,

s6, s7}.

All the counters are 8 bit wide 3 and are flushed in case of a reset command from the graphic

user interface. The configurable counters are additionally flushed when the correspondent address

field is set up.
3except clock counter which is 16 bit wide

3.6 Concluding Remarks 37

3.6 Concluding Remarks

This chapter presented the system specification by defining the both used platforms; the board

used for the hardware implementation and the programming language used for the Graphic User

Interface development. The instruction set was also discussed, and a brief revision to the processor

versions was performed in order to introduce some implementation aspects to be described in the

next chapter.

38 System Specifications

Chapter 4

Implementation and Results

This chapter refers to the implementation performed, and discusses the choices made in the devel-

opment of the hardware design and the software applications. Through the chapter, the operation

mode of the processor versions and associated modules will be addressed. The FPGA resources

utilization by the implementations is also matter of subject. At the end of the hardware section,

a performance test will be presented regarding the implemented processors execution time. The

reading of the previous chapter is considered important so the discussion and exposition of the

implementation can be background supported.

4.1 Hardware

The hardware design comprises three main blocks. The function of the first block (Serial Man-

ager), is to provide proper communication between the software application and the hardware. It

receives data bytes from the suart module and assures the commands and data distribution between

the software and hardware. The second block is a wrapper which includes the processor model, as

well as the event counters. Each processor model requires a specific top-level module since they

differ in design. The last block is control manager. It handles the processor operation modes by

providing the option of running a flexible number of clocks, reset the program counter and enable

the hazards resolution mode in the pipelined version. The control manager function also considers

the enable signals necessary to the proper operation of the memories and the register file. Each top

level design comprehends two clock signals. A master clock is used by the processor, whereas a

two times faster auxiliary clock was created to trigger secondary blocks. The Processors were de-

signed to achieve a maximum operation speed of 25 MHz (master clock). However, due to design

limitations, the frequency of operation varies among the processor versions. The original design

of the Processors comprise 8 bit width counters. Nevertheless, in order to allow the monitorization

of longer execution programs, another implementation considering 32 bit width counters was also

performed. The referred implementation can be consulted in section 4.1.11.

39

40 Implementation and Results

4.1.1 Serial Manager

The communication between the FPGA and the Software is assured by the serial manager (SM)

block. The serial manager can be described as a Mealy finite state machine, responsible for up-

dating the wrapper storage elements and transmitting the received commands to control manager.

Figure A.1 presents the Serial Manager ports. Among other connections, it can be found the con-

nection with the suart block. This connection comprehends two data transfer buses, namely datain

and dataout, and three flagging bits, such as load, enout and ready. Both load and ready are sig-

nals from suart whereas enout is a SM output signal to suart. When data is provided at the SM

bus input (the suart dataout), the load signal is asserted by suart and when suart is ready to receive

data it asserts the ready signal. On the opposite way, the enout signal is asserted by the SM when

the data is set at the output (the suart datain). Another group of ports concerns the transmission

of commands to the control manager block. In figure 4.1, it can be seen the CMInterrupt signal

and CMRequest bus. The CMInterrup flags a command to be transmitted through the CMRequest

bus to the control manager. The rest of the SM ports concern the data transmission to, and from,

the wrapper (e.g. writing in/reading from memories or registers).

Figure 4.1: Serial Manager operation example.

The SM FSM is synchronously reseted and the state is defined at the negative transition of

the master clock. When in the default state IDLE, if the load signal is asserted and an incoming

command is identified, the machine changes its state to COMMAND EXECUTION, figure 4.2.

Figure 4.1 illustrates an example of the data transfer protocol. In this shown example, the Serial

Manager receives a command from the software application to run the processor. As can be seen,

the data from the suart block is available at the positive transition of the clock. After receiving

both command and the number of clock cycles to run, the Serial Manager interacts with the Control

Manager in order to transmit the referred information.

Two FSM operation cases can be seen in figures 4.3 and 4.4. These examples respectively

exemplify the instruction memory write word operation and the read of the instruction type coun-

ters. As can be seen in figure 4.3, once in the command execution state, the SM initiates another

4.1 Hardware 41

Figure 4.2: Finite State Machine of the Serial Manager block. The comments in italic refer to state
transition conditions.

particular sub finite state machine. The sub state machine waits for the address of the instruction

memory position to be written and for the respective content. Once both present, they are provided

to the instruction memory inputs and the instruction memory enable signals are asserted. In the

example of figure 4.4 the data flow process is similar. However, since the instruction types counter

block comprises fourteen counters, (as many as the number of instructions present in the ISA)

the data read from the instruction types counter is an iterative process. The figures 4.3 and 4.4

represent states transition examples, considering just a part of the necessary iterations to complete

the command.

4.1.2 Memory

In section 2.3.1 it was stated that all the memories used for the processors implementation were

mapped into the Spartan3 XC3S200 18Kbit block rams. This decision concerned the size chosen

for the project implemented memories. The size chosen for the Instruction Memory and for data

RAM (in both Unicycle and Pipeline) was respectively, 1024 per 32bit and 256 per 32bit. The

chosen size for the Multicyle Memory was 1536 per 32bit. Both Unicycle and Pipelined total

memory (Instruction Memory plus RAM) amounts 40 Kbit, being 133% of the device distributed

RAM (30 Kbit), but only 18,5% of the block ram resources (which amounts 216 Kbit). The In-

struction Memory implementation comprises two read ports and one write port. One of the read

ports is part of the processor design, while both second read port and single write port refer to the

communication with the serial manager, so the data can be read and write by the GUI. The data

memory, in both Unicycle and Pipeline processors, and the Memory in the Multicycle processor

include two read ports and two write ports. The difference to the Instruction Memory lies in the

write function present on the processors data memory. The time instant in which the write ports

are accessed differ accordingly to the block that writes to the memory. Specifically, if the serial

manager writes to the memory at the positive transition of the clock, the processor writing occurs

at the negative transition of the clock. Because block rams do not support asynchronous access,

42 Implementation and Results

Figure 4.3: Command execution of the Instruction Memory write command. The values of
“counter” refer to each command execution state and the comments in italic refer to state tran-
sition conditions.

4.1 Hardware 43

Figure 4.4: Command execution of the read of the Instructions Type counter. The values of
“counter” refer to each command execution state and the comments in italic refer to state transition
conditions.

44 Implementation and Results

the memories were implemented synchronously and requiring the use of the auxiliary clock, as

well as extra control signals, all managed by the block Control Manager.

The implementation of the memories was performed using Xilinx Synthesis Technology (XST)

templates in order to be easily adjusted if amendments were needed.

4.1.3 The Register File

The register file, as in the MIPS 32bit architecture, comprehends 32 registers, each 32 bit wide.

Even though the registers considered in the referenced text book refer only to the set {t0, t1, t2, t3,

t4, t5, t6, t7, s0, s1, s2, s3, s4, s5, s6, s7}, this work includes the whole 32 bit registers set. The first

approach considered in the register file implementation included the three data ports, present in

the reference text book design, plus two additional ports for the access by the software interface.

However, since it was not necessary for the two different accesses to occur at the same time,

the inputs of the register file were multiplexed, sharing a considerable amount of resources. The

implemented register file module and the multiplexers necessary to the port sharing are illustrated

in figure 4.5. As can be observed, a multiplexer controlled by the signal ena selects the inputs to the

register file. The signals wea, addra, dina and ena are set by the module Serial Manager, whereas

the rest of the signals are set by the processor blocks. A wrapper module 4.6 was created to include

the register file and adjacent multiplexers to abstract this configuration from the processor.

4.1.4 Program Counter

The project implementation provides the possibility to update the Program Counter. This feature

allows the continuous execution of non sequential instructions. A module placed between the

processor design and the Program Counter inputs, is updated by the software application, allowing

its content to be used in the following Program Counter fetch.

4.1.5 The Control Manager

The function of the control manager is to manage the signals required for enabling the program

counter, the memories, the register file and the hazard resolution mechanisms (in the pipelined

processor). Figure 4.7 illustrates the Control Manager ports.

The control signals are the same for all the processor versions and are set according to the

processor version (the Multicycle implementation does not consider any instruction memory).

The Control Manager receives commands from the Serial Manager, which are acknowledged

at the negative transition of the master clock when the signal CMInterrupt is set. The control

manager supports two different commands; the reset (012) and run (102). Both signals refer to

the processor operation mode and are transmitted in the two least significant bits of CMRequest.

The most significant bits of CMRequest correspond to the number of clocks to perform (e.g. 0616

equals 01102 corresponding to a RUN request of 2 clock cycles, because zero value is considered

a countable cycle). The finite state machine of the control manager is illustrated in figure 4.8.

4.1 Hardware 45

Figure 4.5: Register file and associated multiplexers.

Figure 4.6: Register file wrapper which includes the contents of figure 4.5.

46 Implementation and Results

Figure 4.7: Control Manager ports.

Figure 4.8: Control Manager finite state machine.

4.1 Hardware 47

As can be observed, the state IDLE can be switched to state RUN and RESET. The machine

is kept at the RUN state until the number of steps to perform is accomplished or if a RESET is

requested. Once in the RESET state, the single possible following state is IDLE.

Figure 4.9: Control Manager auxiliary states.

The figure 4.9 illustrates a RUN command accomplishment by the control manager. The

CMRequest is represented in hexadecimal codification as 00616. The signal state is used to enable

the set of the PCounter, whereas the auxiliary states state2 and state3 are necessary to manage the

signals, which allow the memories and the register file to be accessed. The enable of the hazards

resolution mechanisms is also performed in the Control Manager and consists in setting an enable

signal present in both Hazard Detection Unit and Forwarding Unit. These signals will be properly

approached in the respective processor implementation.

4.1.6 The Unicycle processor

The implemented processors are capable of running a flexible number of clock cycles for each

received run command. In order to implement that feature, and since the memories are asyn-

chronous, a set of signals were created to enable the memories, the register file and the program

counter. These enable signals are controlled by the control manager and must be sequentially set,

accordingly to the instruction flow through the processor. The ideal unicycle processor executes

one instruction in a single clock cycle. However, this model considers that the memory access

(program and data) is fully asynchronous, either for reading and writing. Because the used block

RAMs only support synchronous access, the execution of an instruction can require up to 3 clock

transitions: increment the program counter register, read the instruction from the program mem-

ory and read/write the data memory (for lw and sw instructions). To overcome this, an auxiliary

clock was created that runs at twice the base processor clock frequency. Revisiting figure 3.2, if

a lw instruction is executed, the necessary blocks to be triggered are, by this order: the program

counter, the instruction memory, the ram and the register file. The mentioned blocks totalize four

transitions against the two available in each clock cycle. The auxiliary clock is two times faster

than the master clock which is considered the processor clock.

Figure 4.10 illustrates the time instants in which the PCounter, the memories and register file

are triggered. The figure contemplates two clock cycles execution. The instant in which the first

instruction is writing in the register file is the same instant in which the program counter of the

second instruction is updated. The positive transition of the auxiliary clock between the instruction

48 Implementation and Results

Figure 4.10: Unicycle control signals during the execution of two instructions.

memory read and the ram access is purposely not used to provide enough time to the instruction

fetch, the register file read and the ALU operation.

Table 4.1, presents the resources used in the Unicycle processor implementation.

Used Available Utilization
Slices 1710 1920 89%

Slices flip flop 1073 3840 27%

Luts 2618 3840 68%

BRams 3 12 25%

DCM 2 4 50%

Max frequency 23 MHz

Master clock frequency 10 MHz

Aux clock frequency 20 MHz

Table 4.1: Unicycle processor used resources and maximum frequency

The maximum frequency of the design is 23MHz and is defined by the critical path which

relates to the ALU validation of the branch condition. The ALUZero signal, along with the control

signals, selects the program counter source for the following instruction. As stated, the master

clock period is twice the period of the auxiliary clock, therefore the frequency adopted for the

4.1 Hardware 49

processor execution was 10 MHz. The use of two DCMs concerns the impossibility to generate

the two required clock frequencies in just one DCM.

4.1.7 The Multicycle processor

The Multicycle implementation is quite different from the Unicycle. Revisiting figure 3.3, the

control block was implemented as a synchronous finite state machine to allow the execution of the

instruction steps. The state machine follows the state machine transitions presented in 3.4. The

states codification adopted for this finite state machine can be defined as:

Common0 = 0 ; Addi0 = 7 ;
Common1 = 1 ; Addi1 = 8 ;
RType0 = 2 ; LW0 = 9 ;
RType1 = 3 ; LW1 = 1 0 ;
JMP0 = 4 ; LW2 = 1 1 ;
BEQ0 = 5 ; SW0 = 1 2 ;
BNEQ0 = 6 ; SW1 = 1 3 ;

The two states “Common0” and “Common1” are the two first steps performed by all the in-

structions whereas the rest of the steps are specific to each instruction. In the Multicycle design,

the address calculation of the memory reference instruction is performed in the ALU. This char-

acteristic is reflected in the behavior of the control signals managed by the control module.

Figure 4.11 illustrates the control signals during the execution of two instructions (add and lw).

When the value of Control_step is zero and the processor is in run mode, the memory is read before

the program counter is updated. The memory access is performed at the auxiliary clock negative

transitions and relates to issues concerning the finite state machine implementation. This change

to the original execution process sets no difference in the processor behavior since the micro-

instructions are performed at the same step. The following step of the add execution decodes the

instruction and fetches the source registers to register A and register B. In the following clock

cycle, when Control_step equals 2, the add operation is performed in the ALU and the result is

stored in the register ALUOut. The final step of this instruction concerns the write of the ALUOut

content in the destination register, which is performed at the positive transition of the auxiliary

clock. The registers A, B and ALUOut are updated at every positive transition of the master clock,

if the processor is in run mode. However, by a matter of simplicity, the registers update shown in

figure 4.11 relate only to the discussed example.

The two first steps of the lw instruction are common to the add instruction. The decode of

the instruction and the registers fetch are performed when Control_step is 9, whereas the memory

address to be fetched is calculated when Control_step equals 10. The instruction ends when the

destination register is written at the positive transition of the auxiliary clock. Even though the

program counter update, the accesses to the memory and the register file write are performed in

more than one different Control_step, the trigger instant remains unchanged.

50 Implementation and Results

Figure 4.11: Muticycle control signals.

4.1 Hardware 51

Used Available Utilization
Slices 1659 1920 86%

Slices flip flop 1198 3840 31%

Luts 3064 3840 79%

BRams 5 12 41%

DCM 1 4 25%

Max frequency 50 MHz

Master clock frequency 25 MHz

Aux clock frequency 50 MHz

Table 4.2: Multicycle processor used resources and maximum frequency, post place and route.

Table 4.2 presents the FPGA resources used in the processor implementation. The main differ-

ence to the other implemented versions concerns the block ram utilization, relating to the memory

size. In the Multicycle, the implemented memory is larger than the sum of the two memories (in-

struction memory and data memory) used in the Unicycle processor and in the Pipelined version

processor. In the Multicycle implementation, all timing constraints were met and consequently

the maximum frequency is 50 MHz. Since the auxiliary clock is two times faster than the master

clock, the processor execution frequency is 25 MHz.

4.1.8 The Pipelined version processor

The pipeline processor was based on the pipeline design present in the reference text book. Al-

though the reference text book does not address all the forwarding mechanisms necessary for a

pipeline without hazard situations, this processor implementation evades all the possible hazards.

This feature is available from the GUI where can be enabled by the user. Figure 4.12 shows the

execution of 6 clock cycles, as many as, the necessary to perform two adjacent add instructions

with read after write data dependence. When the processor is in RUN mode, the intermediate

registers are enabled so the instruction can travel through the pipeline at the master clock cadence.

The first add instruction execution starts when the Program Counter is updated with the in-

struction address 00416, whereas the second add starts at the following clock transition. The write

operations performed in the register file, before the completion of the first add instruction, con-

cerns the existence of initial values in the pipeline stages. Since the project is implemented in a

FPGA, the default initial content of the registers was set as zero, which is recognized as a nop.

The operation performed by the nop instruction is explained in section 3.3. As shown in the fig-

ure 4.12, the required register for the second add operation, is updated by the previous instruction.

Due to the forwarding mechanisms, this value is propagated to the second add execution stage in

order to avoid the hazard. If not, the resultant value of the second add would be 14016 instead of

the correct 04516.

52 Implementation and Results

Figure 4.12: Pipeline control signals, A.

4.1 Hardware 53

Figure 4.13: Pipeline control signals, B.

54 Implementation and Results

The option chosen to handle the branch decision assume that the branch instruction would not

take place making the necessary corrections in case of wrong assumption. This decision was in-

fluenced by the lack of FPGA resources required to implement the hardware necessary for branch

prediction. The control signals of the evading mechanisms concerning branch hazards are illus-

trated in figure 4.13. The BranchE_enable is set by the logical and between the branch signal from

the control unit and the EqualityTest_Equal signal. The equality test block is done at the instruction

decode stage and evaluates the equality of the two register file outputs. The signal BranchE_enable

selects the branch address (01816) to the Program Counter inputs, allowing the validated branch to

be performed at the following master clock positive transition. If the branch condition was evalu-

ated in the execution stage by the ALU, a two clock cycle delay would affect the normal program

execution. Since the evaluation is performed at the instruction decode stage, the program execu-

tion is affected by only one delay (bubble insertion). Observe that at the execution stage of the lw

instruction, the ALU is supplied with zeros (nop), and at the memory stage no data memory read

is performed. As can be seen in the figure, the lw instruction is not executed since it is “replaced”

by a nop instruction.

Figure 4.14 illustrates the implemented hazard evading mechanisms. The additional hazard

avoidance situation implemented in this work, relates to the possibility of not stalling the processor

when a lw instruction is followed by a sw. Concerning the reasons explained in section 3.4.3, the

lw instruction demands for a “bubble” to be inserted right after its execution starts to avoid data

hazards. However, since the critical stage of the sw instruction is the previously adjacent stage to

the lw write_back stage, the content to be written can be propagated to the data memory inputs.

This way, a cycle delay is avoided.

Used Available Utilization
Slices 1967 1920 102%

Slices flip flop 1403 3840 36%

Luts 3626 3840 94%

BRams 3 12 25%

DCM 1 4 25%

Max frequency 37 MHz

Table 4.3: Pipeline processor used resources and maximum frequency, post synthesis.

Tables 4.3 and 4.4 present the FPGA resources used in the processor implementation. As

can be seen in the post-synthesis results table, the design was too large for the targeted device.

However, in the place and route process, the ISE tool managed to optimize the use of the resources

so the design could be mapped into the FPGA. The performed area optimization effort is reflected

in the design maximum frequency which decreased to 28 MHz. The critical path concerns the

equality test performed in the instruction decode stage and its related signals. In that same stage,

the instruction is fetched, the register file is read and the equality test is performed. A place and

4.1 Hardware 55

Figure 4.14: Pipeline hazard avoiding mechanisms, based in [2].

56 Implementation and Results

Used Available Utilization
Slices 1864 1920 97%

Slices flip flop 1407 3840 36%

Luts 2869 3840 74%

BRams 3 12 25%

DCM 1 4 25%

Max frequency 28 MHz

Master clock frequency 12,5 MHz

Aux clock frequency 25 MHz

Table 4.4: Pipeline processor used resources and maximum frequency post place and route.

route was performed targeting a XC3S400 and the maximum frequency of the design kept the

same estimated for the post synthesis model (37 MHz).

4.1.9 Event Counters

All the processor versions include event counters. The counters implementation was kept un-

changed since the differences among the processor versions refer only to the evaluation instant of

the referred action. The counters reset is set by the general reset signal present in the design. All

the counters allow the transmission of data to the Serial Manager so the counters content can be

downloaded by the GUI. The event counters can be thereby defined as:

• Clock cycles counter

• Instruction types counter

The instruction types counter evaluates at the end of the instruction execution which in-

struction was performed and increments the respective counter. The duration time of the

instructions varies accordingly to the processor design. Specifically, the evaluation time in

the Unicycle is performed at the end of each clock cycle whereas the evaluation in both

Multicycle and Pipeline alter accordingly to the executed instruction.

• Instructions accesses counter (reads)

The referred counter is connected to both enable and address inputs of the instruction mem-

ory, so the reads performed to the Instruction Memory can be counted at the exact same

moment they are accomplished. The counter allows up to four different addresses to be

considered at the same time. The memory address to be monitored must be previously set

so the counter can know which address interval to monitor.

• Ram accesses counter

The RAM accesses counter is similar to the accesses counter used for the Instruction Mem-

ory, with the supplement of monitoring also the write actions performed to the data memory.

4.1 Hardware 57

(Since the Ram implemented in the Multicycle processor is larger than the sum of the mem-

ories used in both Unicycle and Pipelined processors, the associated ram accesses counter

allows up to eight different addresses to be monitored.)

• Register accesses counter

The Registers accesses counter sums the reads and writes performed to a set of sixteen

registers. The considered registers are included in the registers set used by the instructions.

Similarly to the previous counters, the register file enable and write signals, as well as, the

register address are evaluated by the access counter so the reads and writes can be properly

identified and counted. The mentioned registers set is {t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2,

s3, s4, s5, s6, s7}.

4.1.10 Performance evaluation

In order to register the performance of the three processors, a test program implementing the bub-

ble sort algorithm was executed. In listing 3.2, it can be seen the instructions resultant from the

algorithm compilation into the existent instruction set. The program used for execution was the

same for the three different processors, apart from a small difference in the Multicycle program.

Since the Multicycle processor has only a shared memory, it required a different address mem-

ory approach. The register t3, containing the memory address of the first item to be sorted, had

therefore different content. Instead of having the address 0416, the register t3 was set with the

address 5416. Since on the original program the temporary register (t2), containing the memory

address to be fetched, was incremented with the register t3, in the Multicycle program t2 had to

be incremented by using the register, t6. However, these modifications do not change the program

execution nor the number of instructions executed. Table 4.5 presents the adopted operation fre-

quencies for the processor versions.

Processor Operation frequency

Unicycle 10 MHz

Multicycle 25 MHz

Pipelined 12,5 MHz

Table 4.5: Processors frequency.

The processor performance values 1 are presented in table 4.6. For this instruction set, the

Unicycle proved to be faster than the Multicycle processor, since the instruction set includes only

simple instructions.

This result was expected, even though the Multicycle operation period is less than half of

the Unicycle operation period. Furthermore, the Unicycle processor is 1,37 times faster than the

1the Pipeline values refer to a test using hazard evading mechanisms

58 Implementation and Results

Processor
Number of

Clock period
Program Clocks per

clock cycles execution time instruction (CPI)

Unicycle 348 100ns 35ms 1,00

Multicycle 1182 40ns 48ms 3,40

Pipelined 452 80ns 36ms 1,30

Table 4.6: Processors performance case of study.

Multicycle. The clock period of the Pipelined version was severely affected by the high utilization

of the FPGA resources (97% of slices). As a result, the Pipelined version clock period is somewhat

higher than the Unicycle version clock period. However, if no resource utilization constraint was

applied to the Pipelined implementation (e.g. implementation in a Spartan3 XC3S400), even

though with some delays caused by hazard evading techniques, it would operate with a frequency

of 17,5 MHz 2 and would be 1,85 times faster than the Multicycle processor and also 1,35 times

faster than the Unicycle Processor. Accordingly to the Pipeline concept, the processor execution

efficiency is proportional to the increase of the number of instructions to execute.

4.1.11 Implementation with 32bit counters

Due to the need of more resources, this extra implementation was performed targeting the Spar-

tan3 XC3S400. The changes performed to the Processors design, which considered the upgrade

to 32 bit counters, resulted to additional modifications to the project. Since the serial port only

transmits a byte at a time, the module Serial Manager was changed in order to assure the sending

of the counters value, meaning that each counter requires three more transmission cycles. The

resources utilization by the referred implementation is presented in tables 4.7, 4.8, 4.9.

Used Available Utilization
Slices 3280 3584 91%

Slices flip flop 2660 7168 37%

Luts 3761 7168 52%

BRams 3 16 18%

DCM 2 4 50%

Max frequency 23 MHz

Master clock frequency 10 MHz

Aux clock frequency 20 MHz

Table 4.7: Unicycle processor used resources and maximum frequency with 32bit counters
(XC3S400).

2the maximum frequency is 37 MHz, therefore the auxiliary clock would be 35 MHz and the master clock 17,5 MHz

4.1 Hardware 59

Used Available Utilization
Slices 3554 3584 99%

Slices flip flop 2859 7168 39%

Luts 4429 7168 61%

BRams 16 16 100%

DCM 1 4 25%

Max frequency 50 MHz

Master clock frequency 25 MHz

Aux clock frequency 50 MHz

Table 4.8: Multicycle processor used resources and maximum frequency with 32bit counters
(XC3S400).

Used Available Utilization
Slices 3482 3584 97%

Slices flip flop 2984 7168 41%

Luts 4199 7168 58%

BRams 3 16 18%

DCM 2 4 25%

Max frequency 37 MHz

Master clock frequency 17,5 MHz

Aux clock frequency 35 MHz

Table 4.9: Pipeline processor used resources and maximum frequency with 32bit counters
(XC3S400).

60 Implementation and Results

As the previous tables present, the number of slice flip-flops and luts increased with the im-

plementation of the 32 bit event counters. The block ram utilization in the Multicycle version

totals 100% because some rom logic had to be mapped into block rams. This was performed

so this processor version could be implemented in the targeted FPGA. When comparing to the

other processors implementation, the Multicycle version represented a higher increase of the slice

flip-flops. This happens due to the fact that the Multicycle memory access counter comprehends

more registers than the sum of the counters responsible for monitoring the accesses to the two

memories present in both Unicycle and Pipelined versions. Specifically, the Multicycle memory

access counter comprehends 16 registers (one for the reads and another for the writes, both for

each of the 8 possible addresses), while each of the other two processors versions (Unicycle and

Pipelined) comprehends 12 registers, 4 registers related to the instruction memory counter and 8

registers related to the ram counter (one for the reads and another for the writes, per each register).

The use of two DCMs in the Unicycle and in the Pipelined version relate to the impossibility to

generate the two required clock frequencies in just one DCM.

4.2 Software

The developed software comprises two different programs. The most demanding in development

effort was a Java application whose function is to provide user access to the processors storage

elements, to the processor operation mode and to access the event counters. The Java program

was developed under a hierarchical structure which can be segmented in three different layers

according to its functional level. The second developed program was a dedicated assembler so the

instructions present in the selected ISA could be translated into the processors machine code. The

need to develop an assembler concerns the use of specific shift operations.

4.2.1 JAVA Graphic User Interface

The Java developed program includes several classes to support an intuitive graphic interface. All

the developed classes can be grouped in three different layers:

• User Interface — which is the highest layer in the Java hierarchy and concerns only the

visual classes, which are directly accessible to the user.

• Middle-level — the middle level layer comprising the functions needed to handle and ma-

nipulate data types. The data retrieved from the interface is available in string type requiring

dedicated treatment in order to be sent to the FPGA.

• Serial Port Drivers — the lowest layer comprises all the classes that directly interact with

the serial port created object. The serial port object requires setting operation parameters,

connection establishment and stream management. These classes were based in [35].

The major aim of using Java language concerned the intention of providing portability among

different operating systems. In order to provide such portability, the Java program holds a feature

4.2 Software 61

which supports the choice of three different operative systems (Linux, MacOS and Windows).

Figure 4.15: Setup Interface.

Figure 4.15 shows the setup window used to initiate the Processor insterface. The user, once in

program execution, needs to select the appropriated operative system, the respective serial port and

initiate the desired processor version interface. Only one processor version interface is allowed at

a time. However, to change among the existent interfaces, there is no need to restart the software

since it allows to choose the processor version in the setup window. The interface buttons operation

is very simple. Each time a button is pressed, a middle-level class is called to process the required

fields, collect the related data and send a command to the FPGA using low-level classes. If a

reply is solicited, the middle-level class initiates a thread addressing the text box to be updated.

This way the text box will be immediately updated after the reply data be available. Figure 4.16

exemplifies the Unicycle processor version.

Although they do not differ much from each other, three different interfaces were created. The

differences among the developed interfaces respect to the different processor versions, e.g. the

Unicycle and Pipeline interfaces have two memory fields (Instruction Memory and Data Memory)

whereas the Multicycle interface has only one memory field (Memory). The Pipeline interface

also includes a singular Special Mode field in which the hazard evading mechanisms can be acti-

vated. The visual interfaces can be seen in more detail in figures A.2(Unicycle), A.3(Multicycle)

and A.4 (Pipeline). The functional fields which allow the write and read of data into the storage

elements (memories and registers) are situated in the bottom part of the interface, under the pro-

cessor schematic. The counters access fields are located in the top of the interface in both corners.

The top left corner counters require address specification so the counters can be set with the ad-

dress to be monitored. Each time an address is set, the correspondent counter is cleaned, so the

count can start from the zero value. In the bottom left corner of the interface, the user can set the

next program counter value and consult both next and current content of the program counter. The

number of clocks to run, as well as the processor reset can be set at the bottom right corner.

62 Implementation and Results

Figure 4.16: Unicycle interface.

4.2.2 MIPS Language Assembler

The implementation test and debug processes combined with the utility of a language assembler in

the didactic package led to the inclusion of a MIPS 32bit assembler. For this purpose it was used

the open source Configurable Assembler Program (CASPR) which was modified to suit the MIPS

Language specifications [36]. The original program source files were developed in C language

and were compiled under the cygwin environment. The executable file requires an input file with

the *.asm extension and provides a *.rom output file with the instructions translated to machine

binary code presented in hexadecimal codification. Some changes were introduced in the source

code, so the program would output 32 bit instruction words instead of the original 64 bit words.

The assembler also required changes in tiny1.cfg, which is the file containing the correspon-

dence between instructions and their opcodes. These changes were performed so the instructions

present in the input file *.asm could be interpreted.

4.3 Concluding Remarks

This chapter presented the implementation and results of all the implemented modules and the

developed software. The implemented hardware comprises the processor models and associated

blocks, as well as the event counters. The processors were implemented accordingly to the maxi-

mum frequency allowed by each processor design. Although the objective was to implement the

4.3 Concluding Remarks 63

processors in a XC3S200, an extra implementation with 32 bit width counters was performed tar-

geting the XC3S400 and the results were presented. The developed software includes the GUI to

support the interaction with the referred processors and an instruction set dedicated assembler.

64 Implementation and Results

Chapter 5

Conclusions and Future Work

5.1 Objectives Accomplishment

This work required an enlightening study of the MIPS 32bit computer architecture, in order to

proceed with a proper design implementation. The adopted text book for such exercise was the

"Computer Organization and Design - the hardware/software interface", of John Hennessy and

David Patterson, which is a work of reference in this field of study. The result of this study and

related projects is addressed in chapter 2.

The main objectives for this work have been accomplished. The three processor versions pro-

posed in section 1.2 were implemented to fit a low cost FPGA board. Some instructions present

in the MIPS architecture but not described in the text book were added to the instruction set. The

implementation carried out allows the user to understand how the operations are performed by

consulting the storage elements and the events counters. The hardware limitations related to the

clock frequency are present, providing to the user the contact with real hardware implementation.

A software interface was designed to be appealing to the user, providing full access and control of

the processor operation. The developed assembler simplifies the manual assembly language trans-

lation for simple programs, suitable for academic purposes. The support for the cache memory

was not accomplished due to the lack of time.

The major obstacles in the project development regard the memories implementation in block

rams, which concerning their synchronous operation mode, required a different approach from

the referenced in the text book that considers asynchronous memories. As expected, the project

bottleneck relates to the FPGA available resources, consequently affecting the working frequency

of the processors. All the design was performed at RTL level, optimized for the Spartan3 Starter

Kit board, which is a low cost development board commonly used in major universities. The Java

based interface provides portability among operative systems.

This work is expected to be an effective framework to learning computer architectures and a

low-cost educational tool concerning a world-leading architecture in embedded applications.

65

66 Conclusions and Future Work

5.2 Future Work

The implemented processors instruction set comprehends basic instructions present in the refer-

ence text book. The instruction set should be extended with more instructions (simple or even

complex), in order to provide more cases of study of operations execution.

The processors do not comply overflow exceptions neither interruption attendance. The over-

flow signalization is not critical but allows acknowledgment of unexpected data errors. The sup-

port for interrupt processing would be a considerable improvement towards the processor integra-

tion with peripherals.

In the specific case of the Pipelined processor implementation, the reason for the absence of a

more complex branch prediction mechanism concerns the lack of resources in the FPGA. It would

be interesting from the user point of view to understand such prediction operations, and therefore

the mechanism implementation is proposed as future work.

The GUI is quite appealing to use, yet, the addition of some features would represent less

setup work to the user. If the storage elements content could be consulted from a text file, the user

would have a global perception of the processor current state. The option to program the FPGA

from the GUI, even with the possibility of doing it by using bitstreams stored in the board flash

memory, should be considered. In the GUI, an easy to implement feature would be the option to

update, at once, all the text fields.

An additional development could be the implementation of the support module for the cache

memory. The cache memory is used in every MIPS CPUs in order to reduce the average time

to access memory and, therefore, would provide to the user the possibility to acknowledge the

process inherent to both instructions execution and data accesses at a higher cadence. However

this will only be important when using external memories with long access time.

Another interesting feature would be the software upgrade in order to support remote access

to the FPGA board. This way, the user could be in contact with a real implemented processor

without needing to be at the same place. As an example, the Java application could be upgraded

to be built-in a web page, and therefore, be accessed by a student from home.

Appendix A

Figures

67

68 Figures

Figure A.1: Serial Manager.

Figures 69

Figure A.2: Unicycle interface.

70 Figures

Figure A.3: Multicycle interface.

Figures 71

Figure A.4: Pipeline version interface.

72 Figures

References

[1] Dominic Sweetman. See MIPS Run. Morgan Kaufmann, 2007.

[2] John Hennessy and David Patterson. Computer Organization and Design - the hardware/-
software interface. Morgan Kaufmann, 2005.

[3] Spartan-3 FPGA Family: Complete Data Sheet, January 2005.

[4] Java jit compiler, May 2009. http://www.trl.ibm.com/projects/jit/index_e.
htm.

[5] Serbanescu Alexandru EIA Quinquis Andre, Cernaianu Leonardo. Didactic Software for
Signal and Image Processing. 2009.

[6] John P. Hayes. Computer Architecture and Organization. McGraw-Hill International Edi-
tions, 1998.

[7] Gerrit A. Blaauw and Jr Frederick P. Brooks. Computer Architecture - Concepts and Evolu-
tion. Addison-Wesley, 1997.

[8] José Monteiro Guilherme Arroz and Arlindo Oliveira. Arquitectura de Computadores: dos
Sistemas Digitais aos Microprocessadores. IST Press, 2007.

[9] José Delgado and Carlos Ribeiro. Arquitectura de Computadores. FCA - Editora de Infor-
mática, Lda, 2008.

[10] GCT Semiconductor Leverages MIPS Technologies’ Analog IP for Mobile WiMAX(TM),
2009. http://www.design-reuse.com/news/20310/afe-mobile-wimax.
html.

[11] Knowledgerush.com. MIPS Processor, 1999. http://knowledgerush.com/kr/
encyclopedia/MIPS_processor/.

[12] RISC Architecture, 2009. http://cse.stanford.edu/class/
sophomore-college/projects-00/risc/mips/index.html.

[13] Zé Paulo Leal. As optimizações com o pipelining, 2009. http://www.dcc.fc.up.
pt/~zp/aulas/9899/me/trabalhos/alunos/Processadores/pipelining/
main.htm.

[14] Sonza Reorda. The DLX Architecture, March 2003. Pdf.

[15] David R. Kaeli and Philip M. Sailer. The DLX Instruction Set Architecture Handbook. Mor-
gan Kaufmann, 1996.

73

http://www.trl.ibm.com/projects/jit/index_e.htm
http://www.trl.ibm.com/projects/jit/index_e.htm
http://www.design-reuse.com/news/20310/afe-mobile-wimax.html
http://www.design-reuse.com/news/20310/afe-mobile-wimax.html
http://knowledgerush.com/kr/encyclopedia/MIPS_processor/
http://knowledgerush.com/kr/encyclopedia/MIPS_processor/
http://cse.stanford.edu/class/sophomore-college/projects-00/risc/mips/index.html
http://cse.stanford.edu/class/sophomore-college/projects-00/risc/mips/index.html
http://www.dcc.fc.up.pt/~zp/aulas/9899/me/trabalhos/alunos/Processadores/pipelining/main.htm
http://www.dcc.fc.up.pt/~zp/aulas/9899/me/trabalhos/alunos/Processadores/pipelining/main.htm
http://www.dcc.fc.up.pt/~zp/aulas/9899/me/trabalhos/alunos/Processadores/pipelining/main.htm

74 REFERENCES

[16] The Spartan-3 Platform FPGA Family. The World´s Lowest-Cost FPGAs, 2004. Xilinx, Inc
Manual.

[17] João Fabio Pegorin Di Lello. Tópicos em Arquitetura e Hardware, March 2006.

[18] Carl Wilhelmsson. FPGAs - How does they work?, February 2009.

[19] Darren Zacher. Using the Resource Manager in Precision R© RTL Plus Synthesis. September
2007.

[20] Narinder Lall. FPGA Judgment Day: Rise of Second Generation Structured ASICs.

[21] John Withers. Devel Java Entertainment Applets. Wiley Computer Publishing, 1997.

[22] Michael Juntao Yuan. Enterprise J2ME - Developing Mobile Java Applications. Prentice
Hall, 2004.

[23] Chris Adamson. What is java, 2009. http://www.onjava.com/pub/a/onjava/
2006/03/08/what-is-java.html.

[24] 2009. Callisto Discovery Site. ftp://ftp.inescn.pt/pub/util/eclipse/
technology/phoenix/demos/install-ve/install-ve.html.

[25] James Harris Mark Holland and Scott Hauck. Harnessing FPGAs for Computer Architecture
Education. IEEE International Conference on Microelectronic Systems Education, 2003.

[26] Roberto Carli. Flexible mips soft processor architecture. Master’s thesis, Massachusetts
Institute of Technology, 2008.

[27] Arnaldo Silva Rodrigues de Oliveira. Especialização e Síntese de Processadores para Apli-
cação em Sistemas de Tempo-Real. PhD thesis, Universidade de Aveiro, 2007.

[28] S. Pizzutilo and F. Tangorra. Archo: A computer based learning system for teach-
ing computer architecture. 2003. http://www.actapress.com/PaperInfo.aspx?
PaperID=14891\&reason=500.

[29] Enrico Martinelli Irina Branovic, Roberto Giorgi. Webmips: A new web-based mips simu-
lation environment for computer architecture education. 2009.

[30] James Laurus. spim, a MIPS32 Simulator, 2009. http://pages.cs.wisc.edu/
~larus/spim.html.

[31] MARS - MIPS Assembler and Runtime Simulator, January 2009. http://courses.
missouristate.edu/KenVollmar/MARS/index.htm.

[32] John Benedict B. Villangca Anastacia P. Ballesil John Edrian H. Aguilar, Rosario M.Reas
and Joy Alinda P. Reyes. DLX Gold: Design and Implementation of a DLX Microprocessor
with Single Precision Floating Point Operations. 2007.

[33] R.Selvakumar Rajagopal and Muhammad Mun’im Ahmad Zabidi. FPGA Implementation of
DLX Microprocessor With WISHBONE SoC Bus. 2009. http://www.design-reuse.
com/articles/18600/dlx-microprocessor-wishbone-bus.html.

[34] Çetin Koca. MIPSIM - MIPS Assembly Language Simulator, February 2008. http://
www.mipsim.com/mipsim/.

http://www.onjava.com/pub/a/onjava/2006/03/08/what-is-java.html
http://www.onjava.com/pub/a/onjava/2006/03/08/what-is-java.html
ftp://ftp.inescn.pt/pub/util/eclipse/technology/phoenix/demos/install-ve/install-ve.html
ftp://ftp.inescn.pt/pub/util/eclipse/technology/phoenix/demos/install-ve/install-ve.html
http://www.actapress.com/PaperInfo.aspx?PaperID=14891\&reason=500
http://www.actapress.com/PaperInfo.aspx?PaperID=14891\&reason=500
http://pages.cs.wisc.edu/~larus/spim.html
http://pages.cs.wisc.edu/~larus/spim.html
http://courses.missouristate.edu/KenVollmar/MARS/index.htm
http://courses.missouristate.edu/KenVollmar/MARS/index.htm
http://www.design-reuse.com/articles/18600/dlx-microprocessor-wishbone-bus.html
http://www.design-reuse.com/articles/18600/dlx-microprocessor-wishbone-bus.html
http://www.mipsim.com/mipsim/
http://www.mipsim.com/mipsim/

REFERENCES 75

[35] Sebastian Kuligowski. RS232 in Java for Windows, 2008. http://www.kuligowski.
pl/java/rs232-in-java-for-windows,1.

[36] Tim Parys. Caspr - a configurable assembler program, July 2008. http://www.ele.uri.
edu/~tparys/caspr/.

http://www.kuligowski.pl/java/rs232-in-java-for-windows,1
http://www.kuligowski.pl/java/rs232-in-java-for-windows,1
http://www.ele.uri.edu/~tparys/caspr/
http://www.ele.uri.edu/~tparys/caspr/

