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Abstract 

Pleistocene climatic oscillations have influenced biogeographical patterns of 

species worldwide, affecting their distributional ranges and shaping their genetic 

diversity. Desert environments have been mistakenly characterized as regions extremely 

poor in biodiversity and with low variability. However, the opposite has been proven, in 

major deserts such as the Sahara and Arabian deserts and its surrounding regions, 

which present several types of ecoregions. This great variety of ecoregions exist due to 

the wide range of climatic and topographical conditions that characterize North Africa 

and the Arabian Peninsula. These characteristics demonstrate the potential that these 

outstanding regions have for conducting scientific research. In addition, recent studies 

have shown the importance of the climate influence in the genetic structure and variability 

of species given their accentuated and dynamic climatic history, and diverse life history 

and habitat traits of taxa inhabiting such extreme regions. This study aims to address the 

role of Pleistocene climatic oscillations in the evolutionary history of the three Cerastes 

species (Viperinae), C. cerastes and C. vipera from the Sahara Desert, and C. gasperettii 

from the Arabian Peninsula deserts.  

Phylogenetic structure and variability were inferred using Bayesian inference 

over sequences (68 samples) for one mtDNA (COI) and three nuDNA (PRLR, NT3, VIM) 

gene markers. Paleoclimatic models combined 318 occurrences and five climatic 

variables in Maxent to infer climatic suitability for current and past (mid Holocene, Last 

Glacial Maximum and Last Inter Glacial) events, and stability over time. Paleoclimatic 

models were conduct in two different scales, the first carried for all three species at a 

10x10 kms scale, covering the total range of the genus, and the second at a 1x1kms 

scale conducted only in North West Africa. 

Mitochondrial inferences show C. cerastes and C. gasperettii as sister taxa, while 

C. vipera is identified as a phylogenetically more distant species, which is concordant 

with previously recent studies. The three nuDNA genes analysed in this study (PRLR, 

NT3 and VIM) well differentiated C. gasperettii from the other two taxa. However, PRLR 

and NT3 showed extensive haplotype sharing between C. cerastes and C. vipera. The 

different results obtained using mitochondrial and nuclear markers raise questions on 

the true phylogenetic relationships between Cerastes vipers. Further levels of mtDNA 

structure within the three species originated along the middle and late Pleistocene. A 

clear division between C. cerastes and C. vipera populations was found between eastern 

and western areas of North Africa. In the phylogenetic reconstruction was also possible 
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to observe structuration within each lineage of C. cerastes and C. vipera. Within the 

western group, two distinct population were recovered for C. cerastes (West-North and 

West-South) and for C. vipera (West-west and West-Central). C. gasperettii shown to be 

the species with the most recent divergence and for which two lineages (North and 

South) were recovered. 

Due to the vast intraspecific diversity found for C. cerastes in western North 

Africa, and since this region has been hypothesized to have acted as a refuge and 

corridor for several other species with different ecological requirements through time, 

further paleoclimatic modelling was conducted for Western populations of this species. 

Paleoclimatic models identified Inter Glacial events as major drivers of range 

reduction and isolation in the three species. Distinct areas of high climatic stability across 

the Sahara and Arabian deserts fit spatial patterns of genetic structure and likely acted 

as Pleistocene climatic refugia for species and lineages. Mito-nuclear discordances are 

discussed in the light of morphological and ecological traits of species. This 

multidisciplinary approach allows to propose biogeographic scenarios for the evolution 

of these desert-adapted species. 

 

Keywords: Biogeography, phylogeography, ecological niche-based models, 

Pleistocene, climatic stable areas, reptiles, multilocus phylogeny, integrative approach 
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Resumo 

Oscilações climáticas do Pleistoceno têm influenciado os padrões biogeográficos 

de espécies em todo o mundo, afetando a sua distribuição e moldando a sua diversidade 

genética. Os ambientes desérticos têm sido erradamente caracterizados como regiões 

extremamente pobres em biodiversidade e com baixa variabilidade. No entanto, o 

oposto tem sido comprovado em grandes desertos, tais como o deserto do Sahara r os 

desertos da Península Arábica e as suas regiões vizinhas, que apresentam vários tipos 

de ecorregiões. Esta grande variedade de ecorregiões existe devido à ampla gama de 

condições climáticas e topográficas que caracterizam o Norte de África e a Península 

Arábica. Estas características demonstram o potencial que estas regiões excecionais 

têm para realizar investigação científica. Além disso, estudos recentes têm mostrado a 

importância da influência climática na estrutura genética e na variabilidade das espécies, 

devido à sua história climática acentuada e dinâmica, e à história de vida diversificada 

e às características de habitat de taxa que habitam nestas regiões extremas. Este 

estudo tem como objetivo compreender o papel das oscilações climáticas do 

Pleistoceno na história evolutiva das três espécies de Cerastes (Viperinae), C. cerastes 

e C. vipera do deserto do Saara, e C. gasperettii dos desertos da Península Arábica. 

A estrutura e variabilidade filogenética foram inferidas através de inferência 

Bayesiana sobre sequências (68 amostras) para um marcador mitocondrial (COI) e três 

marcadores nucleares (PRLR, NT3, VIM). Modelos paleoclimáticos combinaram 318 

ocorrências e cinco variáveis climáticas no software Maxent para inferir a adequação 

climática durante os períodos presente e do passado (Holoceno Médio, Último Máximo 

Glaciar e Último InterGlaciar), assim como estabilidade ao longo do tempo. Modelos 

paleoclimáticos foram conduzidos em duas escalas diferentes, a primeira realizada para 

todas as três espécies numa escala 10x10 kms, cobrindo a área de distribuição total do 

género, e a segunda a uma escala 1x1kms conduzida apenas no Norte de África 

Ocidental. 

Inferências mitocondriais mostram C. cerastes e C. gasperettii como espécies 

irmãs, enquanto que C. vipera é identificada como uma espécie filogeneticamente mais 

distante, o que é concordante com estudos recentes. Os três genes nucleares 

analisados neste estudo (PRLR, NT3 e VIM) diferenciaram bastante a C. gasperettii dos 

outros dois taxa. No entanto, PRLR e NT3 mostraram uma partilha extensa de 

haplótipos entre C. cerasta e C. vipera. Os diferentes resultados obtidos utilizando 

marcadores mitocondriais e nucleares levantam questões sobre as verdadeiras relações 
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filogenéticas entre as víboras Cerastes. Outros níveis de estruturação mitocondrial 

dentro das três espécies foram originados ao longo do Pleistoceno Médio e Superior. A 

divisão clara entre as populações de C. cerastes e C. vipera foi encontrada entre as 

áreas oriental e ocidental do Norte de África. Na reconstrução filogenética foi também 

possível observar estruturação dentro de cada linhagem de C. cerastes e C. vipera. 

Dentro do grupo ocidental, duas populações distintas foram recuperadas para C. 

cerastes (West-North e West-South) e para C. vipera (West-West e West-Central). C. 

gasperettii mostrou ser a espécie que divergiu mais recentemente e para a qual duas 

linhagens (North e South) foram recuperadas. 

Devido à grande diversidade intraespecífica encontrada para C. cerastes no 

oeste do Norte da África, e uma vez que tem sido levantada a hipótese desta região ter 

agido como um refúgio e corredor para várias outras espécies com diferentes requisitos 

ecológicos ao longo do tempo, foram conduzidos mais estudos de modelação 

paleoclimáticos para as populações ocidentais desta espécie. 

Os modelos paleoclimáticos identificaram os eventos interglaciais como 

principais motores de redução da distribuição e isolamento nas três espécies. Áreas 

distintas de alta estabilidade climática ao longo dos desertos Sahara e Arábicos 

correspondem aos padrões espaciais de estrutura genética e provavelmente agiram 

como refúgio climáticos para espécies e linhagens. Durante o Pleistoceno. As 

discordâncias mito-nucleares são discutidas à luz de características morfológicas e 

ecológicas das espécies. Esta abordagem multidisciplinar permite propor cenários 

biogeográficos para a evolução destas espécies adaptadas ao deserto. 

 

Palavras chave: Biogeografia, filogeografia, modelos baseados em nichos ecológicos, 

Pleistoceno, áreas climaticamente estáveis, répteis, filogenia multilocus, abordagem 

integrativa 
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1. Introduction 

1.1 - Climatic variability  

 Climate is one of the strongest factors affecting species diversification and 

extinction processes (Peterson, 2009; Quante, 2010). Current species biogeographical 

patterns and genetic structure were largely shaped by climatic spatial variability, 

particularly during the Pleistocene, and landscape features acting as barriers to gene 

flow (Hewitt, 2000). 

In the Early Pleistocene, ca 2.6 Mya, the Arctic ice cap started to grow, marking 

the beginning of the strong climatic oscillations characterized by glacial-interglacial 

periods. During glacial periods, the increasing colder climate lead to the expansion of 

the existing ice caps, occupying most of the Northern hemisphere, compressing the 

tropical and temperate regions to the equator (Hewitt, 2000; 2004). During the inter-

glacial periods, the increasing of Earth’s temperature and consequently of the aridity 

produced the melting of the ice caps, restricting them to the northernmost areas of the 

globe, leading to the expansion of desert areas and reducing tropical forests (Hewitt 

2000; 2004). At the end of the last glacial period (Last Glacial Maximum, ca 21 Kya), ice 

sheets reached maximum extents, provoking the drop of sea levels and consequently 

droughts and desertification (Mithen et al., 2004). Around 12 Kya, ice caps started to 

melt rapidly, which led to an abrupt rise of the sea level, marking the transition between 

the ending of the Last Glacial Maximum and the beginning of the Holocene period (Clark 

et al., 2009; Walker et al., 2009). During this period, coastal lines areas decreased, and 

water subsequent from the melting ice caps filled lakes and created continental islands 

(Quante, 2010). Posteriorly, in the Middle Holocene, ca 6 Kya, the amount of solar 

radiation changed due to Earth’s orbital position, leading to warmer summers and colder 

winters in the Northern Hemisphere. This period was also marked by an increase in 

ocean evaporation and consequently higher continental precipitation (Quante, 2010).  

During these warming-cooling cycles, biodiversity was forced to retract or spread 

their distributional ranges, accordingly to their ecological requirements and life history-

traits, in order to survive (Hewitt, 2000). Overall, during favourable conditions, species 

expanded their distribution and thrived, with potential reconnections of the existent 

populations, while  during unfavourable conditions, species likely reduced distributional 

ranges and/or became extinct (e.g. Bannikova et al., 2010; Carranza et al., 2008; Dobigny 

et al., 2005; Velo-Antón et al., 2013, 2018; Martínez-Freiría et al., 2015, 2017; Gonçalves 
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et al., 2018a). However, some species were also able to adapt to the new climatic 

conditions.  

Although the effects of climatic oscillations on biodiversity patterns have been 

extensively studied in many regions of the world, specifically in Europe and North 

America (see Beddek et al., 2018; Habel et al., 2010; Hewitt, 2000, 2004; Husemann et 

al., 2014; Murphy and Weiss, 1992; Sommer and Zachos, 2009; Weiss and Ferrand, 

2007) further studies on less studied continents and remote regions are needed (Brito et 

al., 2014).  

 

1.2 -The deserts 

The scientific community has tried to define desert environments using factors 

such as climate (precipitation, evaporation and temperature) as well as geomorphic 

features, fauna and flora (Laity, 2008). Characterizing a desert by its high temperatures, 

lack of precipitation, low humidity or scarce presence of plant communities can be a 

definition that could fit some desert areas but could completely fail others. So, the most 

fitting definition is the one that characterizes deserts by their extreme arid conditions, 

which may vary in a large range of abiotic characteristics (Laity, 2008; Ward, 2016).  

Due to the general misconception that deserts are homogeneous environments, 

with little variability and due to the remoteness of some areas, few scientific research 

has been done in these areas. In addition, it is believed that these areas present scarce 

biodiversity due to its extreme environmental conditions, and so very little is known about 

the species biodiversity and history, as well as the role of climate and landscape on 

shaping species patterns of distribution and biogeography (Brito et al., 2014). However, 

deserts represent 18% of land (Trabucco and Zomer, 2009) and include 25% of 

terrestrial forms (Mace et al., 2005) which are highly adapted to the desert’s harsh 

climatic conditions, many of which being endemic to these regions (Brito et al., 2016). 

As other regions of the world, deserts also experienced climatic oscillations 

during the Pleistocene (Laity; 2008). The warm-cooling cycles that marked this period, 

characterized by humid or dry conditions, would cause the expansion and retraction of 

deserts. However, not all Earth’s deserts responded to these climatic changes in the 

same way. During the Last Glacial Maximum, when the highest rates of aridity were felt 

in Africa, Australia and Asia, deserts of these regions have undergone by a massive 

expansion, which made them reach a size of about 5 times higher than their current area 

(Sarnthein, 1978; Stokes et al., 1997). On the other hand, the presence of the Laurentide 
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Ice Sheet in North-America caused wetter and cooler conditions across the deserts south 

of this region. An increase in effective moisture was verified in the region due to the winds 

coming from the west and the jet stream, which propitiated the formation of lakes in 

southwestern desert regions and the expansion of woodlands (Benson et al., 1990; 

Benson et al., 1995; Orme, 2002). 

Scientific research is needed on deserts since they are known to be the most 

climate change impacted areas of the globe, therefore attention needs to be brought to 

these areas in order to apply effective conservation measures (Brito et al., 2014; Durant 

et al., 2012). 

 

1.2.1 - The Sahara and Arabian deserts 

The Sahara desert is the biggest and warmest desert on Earth, spreading 

throughout 11 countries and occupying the majority of North Africa’s area (Olson et al., 

2001; Harris 2003). The Sahara is one of the major ecoregions in Africa, marking the 

transition between the Palearctic and Afro-Tropical biogeographic realms (Olson et al., 

2001). This ecoregion is not topographically homogeneous, presenting a high variability 

of features such as mountains, oasis, seasonal rivers, rocky areas and sand dunes and 

also a very heterogenous climate, with high variability of temperature (9.4 to 30.8 ºC) 

and precipitation (up to 981 mm) (Anthelme et al., 2008; Dinerstein et al., 2017; Le 

Houérou, 1997; www.wordclim.org). 

The Sahara was not always a desert, its desertification process only begun 

around 7 million years ago (Schuster et al., 2006; Zhang et al., 2014). From the early 

Pliocene (5.3 Mya) to the late Pleistocene, the Sahara experienced strong climatic 

oscillations, characterized by multiple dry-wet cycles (Brito et al., 2014). As in the rest of 

the planet, these cycles were mostly related to the Earth’s orbital cycles (i.e. Milankovitch 

cycles), but also to the variability of the Western African monsoons and the vegetation 

feedbacks in regional climates (Armitage et al., 2015; Maley, 2010). During the wet 

periods, the arid areas shrink due to the expansion of the afro-tropical environments 

towards the north, giving place to more humid areas and refilling the hydrographic 

networks. During these phases, Sahara was characterized by steppe habitats, prevailing 

in the north by Mediterranean vegetation, some temperate vegetation and with Sahelian 

and Sudanian elements in the driest places. During the dry phases, climate was hotter 

and drier than the present time due to an increase in aridity, which led to the expansion 

of the Sahara region towards the south (Le Houérou, 1997). Since the last wet phase, 
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around 6 Kya, until today, the Sahara lost most of the vegetation communities and river 

networks due to the increment in aridity (Foley et al., 2003; Holmes, 2008). These 

climatic events likely affected the patterns of distribution of North African taxa, allowing 

species to retract or spread their ranges according to their ecological requirements (e.g. 

Brito et al., 2011; Carranza et al., 2008; Douady et al., 2003; Tamar et al., 2016; 

Martínez-Freiría et al., 2017; Gonçalves et al., 2018 a,b; Velo-Antón et al., 2012; 2018). 

The Arabian Peninsula is the largest peninsula of the world, located eastwards to 

North-Africa and spreading throughout nine different countries (Antonsich, 2004). It is 

divided in two major geologic provinces, the Arabian Shield and the Arabian Shelf (Al-

Juaidi et al., 2003) and constituted mainly by desert and shrubland areas with only 

savannah and temperate grasslands in the north (Dinerstein et al., 2017). Overall this 

region is arid or extremely arid, with less than 100 mm of annual precipitation (Glennie, 

1998) and high temperatures that can reach 50°C. The Arabian desert covers almost the 

entirety of the Arabian Peninsula area (Harris, 2004). This high-pressure climate desert 

is considered an extension of the Sahara Desert thus presenting a very similar climate. 

However, few areas of the Arabian desert are considered hyper-arid, with less than 50 

mm of annual rainfall, in comparison to the large extent observed in Sahara (Edgell, 

2006; Harris, 2004). The An Nafud (or Great Nafud) and the Rub’ al-Khali (“Empty 

Quarter”) are the two major sand regions in the north and south areas respectively, that 

comprise around a third of the total Arabian desert region (Harris, 2004).  

As other areas of the globe, Arabian Peninsula climate and environment has been 

influenced by the climatic oscillations of the Quaternary period (Edgell, 1989; Glennie, 

1998; Al-Farraj and Harvey, 2004), marked by a change from temperate to arid 

conditions during the Pleistocene/Holocene boundary (Kotwicki and al Sulaimani, 2009). 

As described for the Sahara Desert, the Arabian Peninsula was subject to glacial and 

interglacial periods, characterized by dry and humid phases, respectively. During the 

Last Inter-glacial period (LIG) ca 130 Kya, due to the change on Earth’s rotational axis, 

North hemisphere annual temperature increased, and glaciers started to melt. This led 

to the rising of sea levels, which caused wetter conditions to be felt on the Arabian 

Peninsula, allowing the filling of lakes in the region. Posteriorly, during the Last Glacial 

Maximum (~21 Kya), extreme aridification hit the region, leading to an increase of arid 

zones, a decrease in the sea levels and the desiccation of water courses. The most 

recent humid period occurred around ~10 - 6 Kya, during the Holocene, when an extreme 

increase of precipitation was felt, especially in the northern areas (around 300% 

increment). In the last 6 Kya, Arabian Peninsula has been through an intense aridification 
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period. Although this pattern is very similar to the one verified in Sahara Desert, it is 

believed that the Arabian Peninsula had short dry and humid phases during the major 

wet and dry periods, however these phases are still not very well understood.  

Species inhabiting the Sahara and Arabian deserts can be broadly characterized 

by their ecological requirements in: i) xeric (i.e. adapted to arid conditions); ii) mesic (i.e. 

not fully adapted to arid conditions and dependent of moist habitats) and iii) humid (i.e. 

water dependent) species (Brito et al., 2014). Currently, xeric species have widespread 

distributions throughout the desert, while mesic and humid species are present in the 

peripheral parts or in mountain refuges throughout the desert (Brito et al., 2014). Due to 

their different affinities and ecological requirements, each species likely reacted 

differently to the Pleistocene climatic oscillations, adapting to extreme environmental 

conditions or shifting to more suitable areas (Brito et al., 2014). In general, the distribution 

of xeric species would have contracted during wet periods, leading to the isolation and 

diversification in more suitable areas. However, during the dry phases, since the climate 

was warmer, optimum conditions were reunited for the expansion of these species. 

Species with other requirements were likely affected in a different way. For instance, 

mesic species probably expanded their distributional ranges in humid periods, while 

contracted and suffered population isolation when warmer climate was present. Overall, 

the emergence of Sahara acted as a barrier to the dispersion of species not adapted to 

the arid conditions of the region, creating a latitudinal vicariance in a North-South axis, 

affecting the diversification processes of many species (Carranza et al., 2008). Recent 

phylogeographic studies revealed that diversification and speciation in some species are 

mostly related to Sahara’s spatial and temporal extension (e.g. Gonçalves et al., 2018a; 

Tamar et al., 2016). A similar process might be expected for the Arabian Peninsula, due 

to the formation of the Rub’ al Khali and Nefud deserts during the onset of arid conditions. 

The Arabian deserts extend across most of the territory, which have made it difficult for 

species to disperse and functioned as a driver of diversification or extinction of many 

species over time (e.g. Machado et al., 2019; Šmíd et al., 2013; Tamar et al., 2016). 

 

1.2.2 - Important geographic features across the Sahara and Arabian Peninsula 

 As previously mentioned, both Sahara and Arabian deserts are climatically and 

topographically heterogenous regions. Although large parts are constituted by extensive 

sand areas, important geographic features are present and comprise important 

biodiversity hotspots.  
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The Sahara and the Arabian deserts have different mountain complexes 

scattered along their ranges. On the African part, five mountain complexes can be found: 

the Aïr Massif (northern Niger), Hoggar Mountains (southern Algeria), Atlas Mountains 

(Morocco, Algeria and Tunisia), the Tibesti Mountains (north of Chad and to southern 

Libya) and the Adrar des Iforas massif (northeast Mali to Algeria). In the Arabian 

Peninsula can be found the Western Mountain Complex constituted by the Hijaz and Asir 

mountain ranges (along the Red Sea rift), the Hadramaut Mountains (Yemen), the Dhofar 

Mountains (southern Oman) and the Al Hajar Mountains (north-eastern Oman to eastern 

United Arab Emirates) (Fig. 1). Mountains have played an important role in the specie’s 

diversification processes by acting as refugia and biodiversity corridors through time 

(Brito et al., 2014). For instance, Gonçalves et al., 2018b found that central Saharan 

mountains could have acted as refugia for the mesic species Psammophis schokari 

during unfavourable periods. This species would have reached mountain areas due to 

the presence of Trans-Sahara corridors, which connected suitable areas for the species 

along the Sahara Desert (Gonçalves et al., 2018b). It is believed that in the past humid 

periods, mountains where surrounded by savanna-like habitats which made possible the 

connection between the different complexes. Today they harbour species with different 

ecological requirements (e.g. Mediterranean and Sahelian species) in arid regions where 

such species could not survive if they did not exist (Brito et al., 2014). 

 In addition to mountains, other biodiversity corridors might have persisted to the 

present. The Atlantic and Red Sea coastal areas although still hot and dry, have less 

harsh conditions comparatively to the surrounding regions since mists coming from the 

Fig. 1 - Location of mountain ranges in North Africa and Arabian Peninsula. A - Atlas Mountains, B- Adrar des Iforas massf , C- 
Hoggar Mountains, D- Aïr Massif , E- Tibesti Mountains, F- Western Mountain Complex, G- Hadramaut Mountains, H - Dhofar 
Mountains and I- Al Hajar Mountains. 
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Atlantic Ocean and the Red Sea bring humidity to the area (Olson et al., 2001). Not all 

biodiversity corridors that existed during favourable periods were maintained when less 

favourable conditions appeared. However, it is believed that both Western Sahara and 

Red Sea coastal areas and the Nile river prevailed during these periods, acting as 

climatic refugia (Brito et al., 2014). Accordingly, Velo-Antón et al., 2018 demonstrated, 

for the endemic spiny-footed lizards Acanthodactylus aureus, the importance of the 

Atlantic coastal area as a dispersal corridor for biodiversity through the Sahara Desert 

during climatic fluctuations, which also acted as a centre of lineage diversification. The 

Nile River and the Sahara dune massifs and empty quarters also acted as corridors that 

allowed the dispersion of species throughout the Sahara Desert to reach more suitable 

areas (Drake et al., 2011; Dumont, 1982). 

The role and influence of climatic oscillations and geographic features on 

species´ evolution and genetic structure have been studied across the globe. Several 

works suggest that mesic and humid species have dispersed through biodiversity 

corridors during wet periods in the past (e.g. Gonçalves et al., 2018b; Martínez-Freiría 

et al., 2017; Velo-Antón et al., 2018). Xeric species, although have been less studied 

(but see Tamar et al., 2016), are expected to have retracted their ranges during wet 

periods (Gonçalves et al., 2018a, Hoelzmann et al., 1998). Nevertheless, further studies 

are needed to assess species responses to climatic oscillations in the Sahara Desert 

and Arabian Peninsula. 

 

1.3 - The Species 

Reptiles are one of the most diversified groups of vertebrates in the Sahara and 

Arabian deserts, many of them presenting important adaptations to arid conditions (Brito 

et al., 2014, 2016; Carranza et al., 2018 or other works). Their ectothermic physiology 

and frequent low dispersal ability make them highly dependent to environmental factors 

and thus, an excellent model to analyse the link between climate and their current 

distributions (Kearney et al., 2009; Pough, 1980; Sinervo et al., 2010). Within this group, 

vipers (Serpentes, Viperidae) have particular life-history traits such as low growth rates 

and frequency of reproduction that likely accentuate responses to climatic oscillations 

(Martinez-Freiria et al., 2015, 2017; Santos et al., 2006).  

The genus Cerastes is composed by three venomous species of small-medium 

body size, which are adapted to arid environments, commonly known as Horned vipers 
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(Phelps, 2010). The Sahara Horned viper, Cerastes cerastes (Linnaeus, 1758) is a 

Saharan species, being found in North Africa (across the whole Sahara desert) and 

north-western (i.e. Sinai and the northern Negev deserts) and south-western Arabian 

Peninsula (i.e. Hadramaut Mountains in Yemen; Fig. 2), inhabiting sandy and rocky 

desert areas (Bons and Montori, 1996; Phelps, 2010; Werner et al., 1999). The Sahara 

Sand viper, Cerastes vipera (Linnaeus 1758) inhabits the arid regions of North Africa 

and NW Arabian Peninsula (i.e. Sinai Peninsula; Fig. 2), being found in sandy areas, 

such as wind-blown dunes (Bons and Montori, 1996; Le Berre, 1989; Phelps, 2010; 

Welch, 1982). The Arabian Horned viper, Cerastes gasperettii Leviton and Anderson, 

1967, is found throughout the Arabian Peninsula in sparsely vegetated wind-blown dunes 

and other sandy areas, being absent in the mountain regions (Egan, 2007; Phelps, 2010; 

Fig. 2).  

The three species are morphologically similar although exhibit some differences: 

C. cerastes and C. gasperettii are more similar to each other, both presenting large eyes 

and similar body sizes (avg. 60 cm, up to 85) (Phelps, 2010). Both species are 

constituted by individuals with and without horns, characteristic that varies regionally, 

and can be distinguished by the number of ventral scales (Sindaco et al., 2013). 

Contrarily, C. vipera is the smallest species of this genus (avg. 35 cm, up to 50), has 

small eyes upwards and lacks horns (Phelps, 2010).  

A fourth species, Cerastes boehmei, was described by Wagner and Wilms 2010 

using only morphological characteristics of one specimen. This specimen was found in 

Tunisia between Bani Kheddache and Ksar el Hallouf (Fig. 2), and differently to all three 

species described previously, has crown structures above the eyes formed by erected 

supraocular scales (Wagner and Wilms, 2010). This species was described as being 

more closely related to the North African hornless viper C. vipera than to C. cerastes, 

but due to the lack of information, doubts on the veracity of the existence of this species 

have arisen. 

Phylogenetic studies, including many other species of viper taxa, revealed that 

Cerastes is a sister taxon to the Echis genus, both included in the subfamily Viperinae 

(Pook et al., 2009; Alencar et al., 2016; Zheng and Wiens, 2016; Šmíd and Tolley, 2019). 

According to these works, which are based on mitochondrial DNA (mtDNA), Cerastes 

cerastes is phylogenetically closer to C. gasperettii than to C. vipera. Nevertheless, the 

evolutionary history of these species and the role of climatic oscillations as driver of their 

potential intraspecific diversification remains unknown.  



 
FCUP 

Reconstructing the evolutionary history of desert-adapted Cerastes vipers in North Africa and the 
Arabian Peninsula 

9 

 

 
 

 

Fig. 3 - Distribution of occurrences for the Cerastes genus according to Sindaco et. al, 2013 Representative photos of one specimen of 
each species are shown in the top left corner of each map. All currently recognized species are represented by white circles, and the 
only specimen of C. bohemei found is represented by a red arrow on the same map of C. vipera. 

Fig. 2 - Distribution of occurrences for the Cerastes genus according to Sindaco et. al, 2013. Representative photos of one specimen 
of each species are shown in the top left corner of each map. All currently recognized species are represented by white circles, and 
the only specimen of C. bohemei found is represented by a red arrow on the same map of C. vipera. 
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1.4 - Approaches 

Phylogeography is a multidisciplinary area that lays between phylogenetics and 

population genetics. It is used to understand the evolutionary history of species in a 

biogeographic context (Hickerson et al., 2010). In phylogeographic studies, 

mitochondrial markers are commonly used to infer intra-specific genetic structure. The 

choice of a mitochondrial marker facilitates PCR amplifications due to the existence of 

multiple molecules in each cell, contrarily to nuclear DNA. However, mtDNA only 

represents a fourth of the effective population size since it is only maternally inherited. 

By using only the matrilineal evolution history of a species we might fail to infer the true 

evolutionary history of species (Avise 2000, 2009; Ballard and Whitlock, 2004). Nuclear 

DNA (nuDNA) is inherited from both parental sides and they tend to show high 

conservative evolutionary rates (Wan et al., 2004).  

Ecological Niche based models (ENMs) use species presence and/or absence 

data to predict the ecological niche of a species using a set of environmental variables 

(Franklin and Miller, 2010). These methods allow to map the suitable areas where 

species are theoretically able to thrive, that is, the geographical areas environmentally 

similar to the ones that the species prefer, as well as to infer them in other time periods, 

assuming that the niche was the same over time (Maiorano et al., 2013; Nogués-Bravo, 

2009).  

Ecological models can be divided in two types of models: correlative and 

mechanistic (Peterson et al., 2011; Guisan et al., 2017). Correlative models relate the 

distribution of species with environmental variables, aiming to determine the ecological 

niche of a species. Mechanistic models combine species functional traits with 

environmental conditions in order to describe the processes that potentially constrained 

a species distribution and to map the different aspects of the fundamental ecological 

niche of a species (Alvarado-Serrano and Knowles, 2014; Wiens et al., 2009). Since it is 

necessary a vast knowledge on species physiological traits to perform mechanistic 

models and as most of the times this knowledge doesn’t exist, correlative models are the 

most used in studies(Alvarado-Serrano and Knowles, 2014; Elith et al., 2010). Also, the 

use of correlative models has the advantage that many presence and/or absence data 

are available. Presence data is usually more used than absence data because it is 

largely more available and because it is very difficult to make sure that a species is 

effectively absent at a certain location (e.g. it may be considered that a species is absent 
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in a certain region when in reality it has not been detected because it is rare in that region 

or present a low detectability rate). 

 ENMs also present some constrains and problems. To truly predict the ecological 

niche of a species it would be necessary that the total species distribution was assessed, 

which is most of the time difficult and/or impossible (e.g. Martínez-Freiría et al., 2016). 

Also, even if we have a lot of knowledge about the species we choose to study, it is very 

likely that we will not take into consideration all variables that influence its ecological 

niche or that these variables are not available to use (Wiens et al., 2009). Another 

problem is the assumption that the ecological niche of a species is an independent unit, 

not being affected by other biotic interactions (e.g. biological constrains of a species and 

interaction between different species) (Wiens et al., 2009). So, this gap of information 

affects the veracity of the model since without it, it will never be possible to predict the 

true ecological niche of a species.  

 The use of ENMs allow to respond to evaluate or develop phylogeographic 

hypothesis and this combined methodology (phylogeography + ENMs) allows a better 

understanding of species biogeographic and evolutionary histories, since they 

complement each other very well (Alvarado-Serrano and Knowles, 2014). For instance, 

this combined methodology was successfully used recently in different works on North 

African reptiles (e.g. Gonçalves et al., 2018a; Martínez-Freiría et al., 2017; Velo-Antón 

et al., 2018) to unveil species genetic struture and infer biogeographic scenarios for their 

evolution. Here, we apply this approach to infer the genetic structure and evolutionary 

scenarios for the Cerastes vipers in North Africa and Arabia.  
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1.5 - Aims 

Despite the available phylogenies including the genus Cerastes (Alencar et al., 

2016; Šmíd and Tolley, 2019; Zheng and Wiens, 2016), little is known regarding the 

phylogeographic patterns of variation and the intraspecific relationships within each 

species, as well as, how climate has influenced these patterns. Similarly, knowledge on 

biogeographic patterns and ecological requirements for these species is limited to the 

western populations of Saharan species (e.g. Brito et al., 2011). 

The aim of this study is to address the role of climatic oscillations in the 

evolutionary histories of the three Cerastes vipers (Cerastes cerastes, Cerastes vipera 

and Cerastes gasperettii) with special emphasis on the western Sahara region, as it 

includes the Atlantic Sahara region that likely promoted diversification in the first two 

species, and for which our sampling is particularly detailed. To do so, currently available 

georeferenced tissue samples for the three species will be analysed using an integrative 

approach combining phylogeographic analysis for both mitochondrial and nuclear DNA 

and ecological niche-based modelling for present and past times.  

Phylogeographic analysis are expected to answer the following questions:  

a) Are species genetically structured across the region?  

b) How are the different lineages geographically distributed? 

c) How old is the divergence of major lineages?  

Ecological Niche-based Models are expected to answer the questions:  

d) Which are the climatic requirements of each species? 

e) How suitable is the region for each species/clade over time?  

f) Do climatically stable areas match with suitably stable areas for species/clade? 
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2. Materials and Methods 

2.1 - Phylogenetic analyses 

2.1.1 - Sampling 

Samples from 77 specimens of the three species of Cerastes, i.e. C. cerastes (n = 

51), C. vipera (n = 19) and C. gasperettii (n = 7), were obtained for phylogenetic analyses 

(Appendix 3; Fig. 3). Samples consisted of tail-tips, bones and shredded skins, from 

alive, road-killed or ethanol stored specimens. These samples were collected across 

North Africa and the Arabian Peninsula by members of BIODESERTS research group 

and collaborators during field-work campaigns for more than a decade, and visits to three 

museum collections (CEFE-CNRS of Montpellier, France; Národní Muzeum of Prague, 

Czech Republic; Natural History Museum of Vienna, Austria; Appendix 3).  

 

 

Fig. 4 - Spatial distribution of samples considered in this study. The distributions of C. cerastes, C. gasperettii and C. 
vipera are represented with green dots, yellow squares and red triangles, respectively. 
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2.1.2 -DNA extraction 

Samples were cut in small pieces and placed in Phosphate buffered saline 

solution (PBS) over-night at room temperature to remove the ethanol solution and 

possible impurities present that could act as inhibitors. Posteriorly, total Genomic DNA 

was extracted using different protocols depending on the type and quality of the samples: 

QIAGEN’s EasySpin protocol for samples collected from alive and road-killed 

specimens, and QIAGEN ‘s QIAmp® DNA MicroKit for museum samples, bones, shed 

skins, and samples with limited amount of tissue. For the samples in which the QIAGEN‘s 

QIAmp® DNA MicroKit failed, a “Non-Invasive protocol” optimized for the manipulation 

of low-quality DNA was performed by a technician from CTM laboratory in isolated and 

sterile conditions (Appendix 1).  

The extraction success and DNA quantity and quality were then verified by 

electrophoresis on a 0.8% agarose gel died with GelRed™ (Biotium), once total Genomic 

DNA was extracted. Samples with high DNA quantity and/or degraded DNA where 

diluted accordingly with ultra-pure water to increase the success of amplification.  

 

2.1.3 - Amplification and sequencing 

 A fragment of one mitochondrial gene, Cytochrome C oxidase subunit I (hereafter 

COI), two nuclear coding gene fragments, 3’-Nucleotidase (NT3), Prolactin Receptor 

(PRLR), and one non-coding nuclear gene, Vimentin (VIM), were amplified by 

Polimerase Chain reaction (PCR) (Table 1).  

 

 

Table 1 - List of primers and respective sequences used to conduct the amplification. 

 

 

PCRs were performed in a total volume of 10µl, which contained 5 µL of QIAGEN 

PCR MasterMix (for COI and PRLP amplification) or MyTaq (MyTaqTM Mix, Bioline) (for 

Gene Primer Sequence Source 
 

COI 
Rep-COI-F 5’-TNTTMTCAACNAACCACAAAGA-3’ Nagy et al., 2012 

Rep-COI-R 5’-ACTTCTGGRTGKCCAAARAATCA-3’ Nagy et al., 2012 

 
 
 

NT3 

 
NT3-F3 

 
5’-ATATTTCTGGCTTTTCTCTGTGGC-3’ 

Noonan and Chippindale, 2006 

 
NT3-R4 

 
5’-GCGTTTCATAAAAATATTGTTTGACCGG-3’ 

Noonan and Chippindale, 2006 

 
PRLR 

PRLR_F1 5’-GACARYGARGACCAGCAACTRATGCC-3’ Towsend et al., 2008 

PRLR_R3 5’-GACYTTGTGRACTTCYACRTAATCCAT-3’ Towsend et al., 2008 

 
 

VIM 

VIM_Ex5_F2 5’-AACAATGATGCCCTGCGCCA-3’ Pyron and Burbrink, 2009 

VIM_Ex6_R2 5’-CAATATCAAGAGCCATCTTTACATT- 3’ Pyron and Burbrink, 2009 
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NT3 and VIM amplification), 3.2 μl of ultrapure water, 0.4 μl of both reverse and forward 

primers at a concentration of 10 μM, and 1-3 μl of DNA (approximately 50 ng/μl) 

depending on the DNA concentration in each sample. PCR conditions were optimized 

for each gene for the species under study (see PCR conditions on Appendix 2). In all 

PCRs a negative control was used, which included every reagent except the DNA, to 

assure possible contamination weren’t due to the reagents used. Quality and quantity of 

PCR products were checked by visual examination in electrophoresis on a 2% agarose 

gel died with GelRed™ (Biotium), and PCR products were properly diluted when high 

DNA concentration was observed. Purification and sequencing of PCR products were 

outsourced to GENEWIZ company (United Kingdom), using ExoSAP and Sanger 

methods, respectively. 

The obtained sequences (see Appendix 3) were manually inspected, edited and 

aligned using Geneious Pro v.4.8.5 (Biomatters Ltd.). When heterozygous sites were 

identified in the chromatograms, IUPAC nucleotide ambiguity codes were used. Finally, 

sequences were translated into amino acids and subjected to a search for STOP codons 

to ensure there were no pseudogenes. 

 

2.1.4 - Phylogenetic tree analysis 

Phylogenetic reconstruction was done primarily for the mtDNA dataset only, as 

the nuclear markers resulted largely uninformative at intra-specific level and some at 

inter-specific level (see results). COI most appropriate substitution model was 

determined in jModeltest (Posada, 2008) using the Bayesian Information Criterion (BIC). 

The best inferred model was HKI.  

The software Beast v1.10.0 (Drummond et al., 2012; Drummond and Rambaut, 

2007) was used to perform coalescent-based Bayesian phylogenetic inference on 

Cerastes sequences. Analyses were run using a lognormal relaxed clock, with a constant 

population size as the coalescent tree prior. Three independent runs were performed 

and combined with a total of 100 million generations with sampling trees and parameter 

estimates every 10,000 generations, 10% of the trees discarded as burn-in. The quality 

of the runs (i.e. parameter convergence) was evaluated by observation of the posterior 

trace plots and effective sample sizes of all parameters using Tracer v.1.7 (ESS>300). 

A maximum clade credibility summary tree with Bayesian posterior probabilities (BPP) 

for each node was obtained using TreeAnnotator v1.7.1 (available in the BEAST 

package). The resulting phylogenetic tree was visualized and edited with FigTree v1.4.3 
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(Rambaut, 2016). BEAST analyses were run in the Cipres Science Gateway (Miller et 

al., 2010). 

Time to most recent common ancestor (TMRCA) of main intra-specific lineages 

within each species were estimated in Beast. Two calibration points based on the split 

between C. vipera and C. cerastes / C. gasperettii and between the two later were 

applied (Zheng and Wiens, 2016). A prior distribution for each TMRCA following a 

lognormal distribution with a mean of 18.16 (SD= 0.001) and 2.94 (SD= 0.001) was used, 

respectively. Clock, tree models and running parameters were the same as above. 

 
2.1.5 - Haplotype network analysis 

Haplotype networks were constructed for each nuclear fragment. The haplotype 

phases of the nuclear fragments were determined using a coalescent-based Bayesian 

method using the PHASE algorithm (Stephens et al., 2001; 2005) implemented in DNAsp 

v. 5 (Librado and Rozas, 2009). The phases were estimated with 100 iterations, 1 as 

thinning interval and 100 burn-in iterations. This approach has been proved to have a 

good performance in haplotype reconstruction (Garrick et al., 2010). The phased 

datasets of each nuclear gene were used as input data in TCS v1.21 (Clement et al., 

2000) and the construction of the three haplotype networks was performed using 

statistical parsimony implemented in the software. Finally, TCSBU was used to visualize 

the haplotypes relationship among the three Cerastes species (Múrias Dos Santos et al., 

2015). 

Due to the incoherent results obtained with mitochondrial and nuclear markers, 

two additional phylogenetic trees where reconstructed using a concatenated nuclear 

dataset containing all three nuclear markers and another one using a concatenated 

dataset of both mitochondrial and nuclear markers combined. The same previously 

described methodology was used, and the most appropriate substitution model obtained 

was HKI for both phylogenetic reconstructions. 

 

2.2 - Paleoclimatic modelling 

In this study, we aimed to determine the stable and suitable climatic areas for 

each species and respective lineages through time, and thus, our modelling strategy was 

divided in two stages. The first stage consisted of modelling the paleoclimatic scenarios 

for the three species regarding the entire distribution of the genus in order to determine 

which climatic variables are relevant to the distribution of each species and which areas 
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likely allowed suitable climatic conditions in past and present scenarios. In the second 

stage, paleoclimatic modelling was conducted at a smaller scale taking into account only 

the West Sahara. This region is known as an important biodiversity corridor and is 

thought to have acted as a stable area (refugia) and has a promoter of diversification 

processes for several species in North Africa (Gonçalves et al., 2018a). Paleoclimatic 

modelling at the scale of the West Sahara was only performed for C. cerastes lineages 

as this species in the only one showing reasonable levels of structure in this region and 

also enough number of occurrences to be attributed to the different levels of intraspecific 

structure (see results). 

 

2.2.1 - Paleoclimatic modelling for the three Cerastes species  

 

Sampling 

A dataset with a total of 318 occurrences at 10 x 10 km (WGS 1984 datum) was 

built for the distributional range of C. cerastes (n = 180), C. vipera (n = 74) and C. 

gasperettii (n = 64), covering all North Africa and the Arabian Peninsula (Fig. 4). Records 

were collected from fieldwork expeditions conducted by BIODESERTS team members 

and collaborators, from the Global Biodiversity Information Facility (GBIF; 

https://www.gbif.org/), scientific articles and from seven museum collections (CEFE-

CNRS of Montpellier, France; Doñana Biological Station – CSIC, Seville, Spain; NM of 

Prague, Check Republic; NHM of Vienna, Austria; National Museum of Natural History, 

Paris, France; Natural History Museum of London, UK; ZMFK of Bonn, Germany). Some 

occurrences had the same geographical coordinates thus the “Remove duplicates” 

function in ArcGIS was used to eliminate duplicates.  
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Fig. 5 - Distribution of Cerastes genus occurrences used to build the ENMs. Occurrences are represented by green 
dots for C. cerastes, yellow squares for C. gasperettii and red triangles for C. vipera. 

 

 

Environmental factors 

19 bioclimatic, temperature and precipitation related variables for the current 

conditions were download from WorldClim version 1.4 (Hijmans et al., 2005) at ca. 10km2 

of resolution (5 minutes).  

Mean Temperature of Wettest Quarter (bio 8) and Mean Temperature of Driest 

Quarter (bio 9) were excluded due to the presence of spatial artefacts (e.g. Martínez-

Freiría et al., 2017). Precipitation of Driest Month and Precipitation Seasonality (bio 15) 

were also excluded due to the high levels of discrepancy between Global circulation 

models (GCMs) as presented in Varela et al., (2015). Afterwards, the correlation between 

variables was computed using the “Band collection statistics” tool, available on ArcGis 

v10.1 (ESRI, 2010). The final set included four low-correlated variables (R < 0.7), with 

potential biological meaning for the species’ biology (Table 2).  

Climatic variables available for past conditions were downloaded from WorldCim 

for three time periods: Last Interglacial (LIG ca ~120,000 – 140,000 years BP; Otto-



 
FCUP 

Reconstructing the evolutionary history of desert-adapted Cerastes vipers in North Africa and the 
Arabian Peninsula 

19 

 

 
 

Bliesner et al., 2006), Last Glacial Maximum (LGM; ~21,000 years BP, Paleoclimate 

Modelling Intercomparison Project Phase II) and Middle Holocene (MidHol; ~6,000 years 

BP, Coupled Model Intercomparison Project #5). Variables were at 30 arc minutes (~1x1 

km) for LIG and later upscaled at 5 arc minutes (~10x10 km). Variables were at 5 arc 

minutes (~10x10 km) for LGM and Mid-Hol. Distinct Global Circulation Models (GCMs) 

were used for the three time periods. For LIG the NCAR-CCSM (Community Climate 

System Model; Otto-Bliesner et al., 2006) was used. For LGM and Mid-Hol three different 

GCMs were available and used: CCSM4 (Community Climate System Model, ver. 4, 

Collins et al., 2006), MIROC-ESM (Model for Interdisciplinary Research on Climate, ver. 

3.2, Hasumi and Emori, 2004) and MPI-ESM-P (Max Planck Institute, Giorgetta et al., 

2013).  

All variables were clipped to the study area using the Raster Analysis tool in 

ArcGIS. Afterwards, the raster files were exported in ascii format using the “Raster to 

ascii” tool, to later use in MaxEnt for the construction of models.  

 

Table 2 - Climatic variables used for building ENMs of Cerastes, with respective range variation and units. 

EGVS Range (units) 

Temperature Seasonality (Bio4) 745 - 10202 (cv) 

Mean Temperature of Warmest Quarter (Bio10) 80 - 381 (10 x ⁰C) 

Precipitation of Wettest Quarter (Bio16) 0 - 2079(mm) 

Precipitation of Coldest Quarter (Bio19)  0 - 2077(mm) 

 

Study area and occurrence rarefication 

A study area consisting of 300 km buffer around a Minimum Convex Polygon 

(created with the “Minimum bounding geometry” function) including all occurrences was 

considered for developing species paleoclimatic models.  

Due to the use of different sources for the dataset construction, it was observed 

occurrence over-representation in the more accessible and surveyed areas of the study 

area. Sampling bias issues, could affect the quality and reliability of the models (Merow 

et al., 2013; Yackulic et al., 2013), and thus, species occurrences were subject to a 

process of spatial rarefication performed using the climatic heterogeneity of the study 

area as surrogate. The “Spatially Rarefy Occurrence Data for SDM” function from the 

SDMToolBox package (Brown et al., 2014) for ArcGis 10.1 was used for this purpose. 

First, a Principal Component Analyses of the 19 bioclimatic variables was derived and 

then, a climatic heterogeneity was created using the first three PCs of this PCA. For each 
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species, locations from 30 to 50 km of distance each to the other were removed 

according to climatic heterogeneity of the study area. The final dataset included 180 

records for C. cerastes, 74 for C. vipera and 64 for C. gasperettii. 

 

Species Modelling 

Paleoclimatic Models were developed using the Maximum Entropy approach in 

the MaxEnt ver. 3.4.1 software (Phillips et al., 2006). This method has a good 

performance comparatively to other methods (Elith et al., 2006), it allows the construction 

of models using only presence data and a low sample size (Elith et al., 2006; Hernandez 

et al., 2006; Wisz et al., 2008) and has been successfully used in the construction of 

models for many snake species, vipers included (Brito et al., 2011; Martínez-Freiría et 

al., 2015). 

In a first stage, model calibration was performed by conducting modelling essays 

with different values for the regularization parameter and using distinct feature 

combinations. Best performance options included regularization parameter = 0.5 and 

linear + quadratic + product + threshold + hinge features for the three species 

(Supplementary material). Once the options that demonstrated the best performance for 

our data were chosen, final models were built for the present for each species, with a 

total of 50 replicates and combining random seed, 80%/20% training/test partition and 

bootstrap replacement. Evaluation of individual model fit was assessed through the area-

under-the-curve (AUC) of the receiver-operating-characteristics (ROC) plot (Fielding and 

Bell, 1997). Posteriorly, individual replicates were projected to current and past 

conditions (Mid-Holocene, Last Glacial Maximum and Last Interglacial) using a larger 

area than was used for training models. Clamping masks and the “fade by clamping” 

option were used to reduce the probability of inflation of the predictable suitable areas 

that occur when past climatic conditions fall outside the physiological tolerance of a 

species. These allows that the values of the projected areas fall in the range of values of 

the study area (Alvarado-Serrano and Knowles, 2014; Elith et al., 2011). 

Average predictions were built for the three species for each scenario in the 

ArcGIS v. 10.1(Appendix 5, 6 and 7). Prediction uncertainty was assessed by using the 

Standard Deviation from model replicates for current and past projections (e.g. Brito et 

al., 2011; Martínez-Freiría et al., 2015). The importance of climatic variables to explain 

the distribution of each species was determined by the mean percentage contribution to 
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the models (e.g. Gonçalves et al., 2018a). Response curves of the most important 

variables for each species were graphically represented (Phillips et al., 2006). 

Potential areas that could act as refugia through time for each species were 

determined by calculating stable areas of climatic suitability (i.e. stable areas) for each 

species (Carnaval et al., 2009). These areas were obtained by merging the average 

projections for each scenario obtained with MaxEnt into a single projection, applying the 

“AND” overlay type in the “Fuzzy overlay” available in ArcGIS (e.g. Present + 

CCSM4(Mid-Hol) + CCSM4(LGM) + NCAR-CCSM(LIG)). This function allows to 

calculate the intersection between the model predictions, which represent the 

maintenance of favourable conditions for each species through time. Posteriorly stable 

areas for each climatic scenario for each species were displayed in ArcMap. 

 

2.2.2 - Paleoclimatic modelling of C. cerastes lineages 

To geographically delimit the range of each Cerastes cerastes haplogroup, a full 

genetical analysis of all the records would be needed, requiring tissue samples for all 

occurrences and financial resources. Since this approach is not realistic, the occurrences 

not represented in the genetic analysis were assigned to the mitochondrial haplogroups 

recovered in the spatial interpolation of mtDNA data (e.g. Martínez-Freiría et al., 2017). 

We used the phylin package in R package for this purpose (Tarroso et al., 2015). Firstly, 

we used the ape package in R to extract the branch where C. cerastes was located from 

the complete phylogenetic tree containing C. cerastes, C. vipera and C. gasperettii. 

Secondly, we used the phylin package to create a distance matrix between samples and 

correlate the geographic distance between points and the semi-variance of genetic 

distances (Tarroso et al., 2015). Using a modified method of kriging interpolation based 

in a spherical model, the distances between each sub-lineage (West-N, West-S, NW-SE 

and SW-NE) were interpolated against the other lineages and sub-lineages present in 

the study area (e.g. sub-lineage West-N against sub-lineages West-S + lineage East). 

Rasters depicting the probability of the occurrence of each genetic group (lineage or 

sublineage) were created. Posteriorly the results were imported to ArcGIS and the values 

of probability of sub-lineages occurrence were extracted for each occurrence using the 

“Extract multi-values to points” function. A minimum value of probability of occurrence 

(0.75) common to all sub-lineages was determined and used to attribute the occurrences 

to each sub-lineage. 
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Study area 

A study area consisting of 300 km buffer around a Minimum Convex Polygon 

(created with the “Minimum bounding geometry” function) including all occurrences of 

lineage West was created for developing species paleoclimatic models for NW 

haplogroups of C. cerastes.  

 

Environmental factors 

The four climatic variables for the present and for each past scenario, previously 

used on Paleoclimatic modelling of the Cerastes species distributions, were clipped to 

the study area using the “extract by mask” function in ArcGIS (ESRI, 2006). 

 

Species Modelling 

Paleoclimatic Models were developed with MaxEnt, for the whole distribution of 

lineage West and sub-lineages West-N and West-S. Models for the present were built 

using the same settings as in the previous models (see A. Paleoclimatic modelling of 

Cerastes spp distribution), and posteriorly projected to past conditions (Mid-Holocene, 

Last Glacial Maximum and Last Interglacial). Evaluation of individual model fit was 

assessed through the AUC metric from the ROC plots (Fielding and Bell, 1997).  

Average models/projections and standard deviation plots were built for lineage 

West and each sub-lineage (NW-N and NW-S) for each scenario in ArcGIS v. 10.1 

(ESRI, 2006) (Appendix 8,9 and 10). The importance of climatic variables in lineage and 

haplogroups distributions, response curves for the most important variables and stable 

climatic areas were determined using the same methods previously described.  
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3. Results 

3.1 - Genetic analyses 

3.1.1 - Laboratory overview 

Overall amplification was highly successful for the mitochondrial region (COI) and 

for two of the three nuclear fragments (NT3 and PRLP), with 82% of success for COI (64 

out of 78 samples), 96% for NT3 (24 out of 25 samples) and 100% for PRLR (25 out of 

25 samples). VIM nuclear fragment amplification was less successful, with only 68% of 

the initial samples amplified (17 out of 25 samples). The final sequence alignments had 

629 base pairs (bp) for COI, 480 bp for NT3, 523 bp for PRLR and 606 bp for VIM.  

 

3.1.2 - mtDNA phylogenetic reconstruction 

The Bayesian mtDNA phylogenetic tree revealed two well supported clades 

(Bayesian Posterior Probability, BPP > 0.98; Fig. 5): samples of C. vipera group in one 

lineage (in red), which is sister to a clade formed by the sister species C. cerastes (green) 

and C. gasperettii (yellow). TMRCA for C. vipera from C. cerastes and C. gasperettii set 

around 18 Mya, resulted in TMRCA for C. cerastes and C. gasperettii around 3 million 

years ago. 

Further intraspecific substructure is observed within each species. Cerates vipera 

is structured in two lineages (BPP > 0.98, Fig. 5): lineage CV-West (W) and lineage CV-

East (E), which diverged around 2 million years ago. Lineage East is only distributed in 

the half part of North Africa closest to the Arabian Peninsula, with specimens from Egypt 

and Israel, while lineage West occupies the half of North Africa closest to the Atlantic 

Ocean (Fig. 5). The West lineage is further subdivided in two sub-lineages: sub-lineage 

West-Central (W-C) constituted by specimens from South Algeria and Niger and sub-

lineage West-West (W-W) with specimens from Morocco, Western Sahara and 

Mauritania. The divergence of sub-lineages Central-West and West-West occurred 

within the last 1 million year (Fig. 5).  

Within C. cerastes, two well supported main lineages were found (BPP > 0.98; 

Fig. 5): lineage West (W), distributed in Morocco, Mauritania, Western Sahara, North 

Algeria, Tunisia and northwest Libya and lineage East (E), distributed in South Algeria 

(Hoggar Mountains), Niger, Chad, Egypt, and Central Sudan. The divergence of the 

West and East lineages in C. cerastes likely occurred around 2 million years ago. 
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Lineage West is subdivided in two well supported sub-lineages (Fig. 1): West-North (NW-

N), occurring across Morocco, North Algeria, Tunisia and northwest Libya, and West-

South (W-NW) distributed across Western Sahara and Mauritania. Lineage East is also 

subdivided in two sub-lineages: East-SouthEast (E-SE) which includes specimens from 

Niger, Chad and Egypt and East-Central (E-C) with specimens from South Algeria 

(Hoggar Mountains) and Central Sudan (Fig. 5). TMRCA between West and East 

sublineages is dated for less than 1.5 Mya. 

Cerastes gasperettii is also divided in two well supported lineages (BPP > 0.95; 

Fig. 1): lineage North (N) and lineage South (S). Specimens from lineage North are found 

in Israel, Kuwait and near Oman Gulf coastal area, while lineage South only occurs in 

the Oman Pacific Coastal area. C.gasperettii lineage diversification occurred around 0.5 

million years ago. 

 

Haplotype networks 

The obtained haplotype networks for the mitochondrial marker are in 

concordance with the phylogenetic results (Fig. 5). For C. vipera three haplogroups were 

found corresponding to the lineages recovered in the phylogenetic tree. The haplogroup 

corresponding to the West-West lineage consists of a main haplotype (N = 8), with 

individuals from Mauritania and Western Sahara, separated by one and four mutations 

from the other haplotypes. The haplotype, which only differs by one step, is constituted 

by a single individual from Morocco. The remaining haplotypes are composed by 

individuals located on the border between Morocco and Western Sahara, and the others 

branch out of the main haplotype and consist of one haplotype with three individuals of 

south Western Sahara and west and northwest Mauritania which diverges from the main 

haplotype by four mutations and another one with one individual of northwest Western 

Sahara, which diverges from the previous described haplotype by seven mutations. 

Another haplogroup represents the West-Central lineage and consists of two haplotypes 

(n = 1) that diverge between themselves in seven mutations and are from Algeria and 

Niger. Finally, the representative haplogroup of the East lineage, with only two 

haplotypes consisting of one individual from Egypt and the other by one from Israel, 

diverging only one mutation. 

For C. cerastes, there are four distinct haplogroups that are not connected to 

each other and correspond to the sub-lineages found in the West and East lineages in 

the phylogenetic tree (Fig. 5). The haplogroup corresponding to the West-North sub-
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lineage presents three branches each consisting of three different haplotypes. One of 

these branches constituted by individuals from Morocco, Algeria, Libya and Tunisia, 

differing from each other by only one mutation and differing from the remaining branches 

of haplotypes by four steps. The second branch consists of a main haplotype (n = 6) 

consisting of individuals from the eastern zone of Morocco, and from which branch out 

two haplotypes composed by individuals from Morocco. This second and third branches 

diverge among themselves by three mutations, the latter being constituted by one 

haplotype with individuals from Morocco, diverging by three other mutations from another 

haplotype with individuals from Morocco, from which branch out another haplotype with 

only one mutation of difference, from Tata, Morocco. The haplogroup representing the 

West-South lineage does not present any structuring, and the haplotypes contained in it 

are interconnected with each other. This haplogroup is composed by individuals from the 

Drâa river Valley (Morocco and Western Sahara) to the southwest of Mauritania. The 

haplogroup constituted by individuals of the East-Central lineage, has two different 

haplotypes composed by individuals from Sudan and Algeria, respectively. Contrary to 

what would be expected, the two individuals from Algeria find themselves in separate 

haplotypes. Finally, the haplogroup corresponding to the East-South East lineage 

consists of 4 different haplotypes, two of which are formed by individuals from Chad, 

Niger and Egypt differing 4 mutations from the remaining two haplotypes composed by 

individuals from Egypt (Sinai) and Israel. 

C. gasperettii presents two haplogroups, one representative of the North lineage, 

consisting of only one haplotype with individuals from Israel, Kuwait and Oman. The 

second haplogroup, representative of the South lineage, presents three different 

haplotypes, one haplotype with a single individual of Oman that differs from the second 

haplotype with individuals of Oman of which branch out a third haplotype with a single 

individual also of Oman. 
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Fig. 6- Time-calibrated Bayesian phylogenetic tree for the three species of Cerastes using one mitochondrial marker (COI). Nodes with Bayesian Posterior Probability (BPP) over 90% and 95% are 
represented with white and black dots respectively. Geographic distribution of the lineages recovered are represented for each species in the top right corner, along with TCS haplotype networks 
on the bottom right corner. 
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3.1.3 - nuDNA phylogenetic reconstruction 

Haplotype networks  

For the nuclear markers, a total of 19, 16 and 25 different haplotypes where found 

for NT3, PRLR and VIM, respectively (Fig. 6). In PRLR, 12 out of the 25 analysed 

samples corresponded to heterozygotic individuals, while all the samples were identified 

as heterozygous for NT3 and VIM. Cerastes gasperettii is well differentiated from C. 

vipera and C. cerastes in all the three nuclear markers, and it is also represented as an 

independent haplogroup in VIM. Extensive haplotype sharing is observed for PRLR and 

NT3 between C. vipera and C. cerastes, but not for VIM that differentiate all the species 

(Fig. 6). VIM haplotype network also recovered one intraspecific lineage for C. vipera, 

formed by one single sample from Israel, corresponding to the previously described 

lineage East found with COI. The remaining intraspecific diversity found with mtDNA was 

not recovered since different samples of different lineages obtained in the phylogenetic 

tree and haplotypic network for COI share the same haplotypes in VIM’s haplotype 

network. 

 

Phylogenetic analyses 

The results obtained with the nuclear dataset, consisting of the combination of 

the NT3, PRLR and VIM markers, proved to be very different from the results obtained 

with the mitochondrial dataset, as was already expected since the nuclear haplotype 

networks did not resemble the mitochondrial haplotype network. Accordingly, the nuDNA 

phylogenetic tree showed that C. gasperettii was the first species of the Cerastes genus 

to diverge from the remaining species (Fig. 6). Afterwards, there is no divergence 

between C. cerastes and C. vipera, but rather the division of the individuals of both 

species into two groups without support (Fig. 6). Within the groups composed by C. 

cerastes and C. vipera individuals, in addition to the relationships not being supported, 

geographic structuring with some meaning was not found. 
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Fig. 7 - Bayesian phylogenetic tree for the three species of Cerastes using the combination of three nuclear markers 
(NT3, PRLR and VIM). Nodes with Bayesian Posterior Probability (BPP) over 90% and 95% are represented with white 
and black dots respectively. On the bottom, TCS haplotype networks are represented for each nuclear marker, colored 
according to the obtained groups with the mitochondrial marker. 
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3.1.4 - Phylogenetic reconstruction using both mitochondrial and nuclear markers 

Once the analysis with the different markers obtained incongruent results, a new 

analysis was done combining the previously used datasets. The phylogenetic 

reconstruction obtained with the concatenated mtDNA and nuDNA markers (COI + NT3 

+ PRLR + VIM) is in agreement with the results obtained with the mitochondrial marker 

COI. C. vipera is the first species to diverge and C. gasperettii and C. cerastes remain 

together until they diverge later (Fig. 6). However, the sister relationship between C. 

cerastes and C. gasperettii is not supported. As for the intraspecific diversity, the same 

lineages and sub-lineages that were obtained in the analysis with the mitochondrial 

dataset were recovered, all of which are well supported.  

 

 

 

Fig. 8 - Bayesian phylogenetic tree for the three species of Cerastes spp using the combination of both mitochondrial (COI) and 
nuclear markers (NT3, PRLR and VIM). Nodes with Bayesian Posterior Probability (BPP) over 90% and 95% are represented with 
white and black dots respectively. 
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3.2 - Modelling 

3.2.1 -. Paleoclimatic modelling of the three Cerastes species distributions 

Models evaluation  

Models were developed for the full extent of North Africa and Arabian Peninsula, 

covering the entire geographical distribution of Cerastes cerastes, C. vipera and C. 

gasperettii. All AUC values were high (> 0.75) and with low standard deviations in both 

training and test datasets. The lowest training AUC values were obtained for C. vipera 

(0.855 ±0.023) and the highest for C. gasperettii (0.929 ± 0.012), while the lowest test 

AUC values where obtained for C. cerastes (0.788 ± 0.036), verifying again the highest 

values for C. gasperettii (0.895 ± 0.038) (Table 3). 

 

Table 3 - Detailed information regarding the 50 model replicates developed for Cerastes spp., including the number 

of records to train and test the models, average (standard deviation) training and test AUC (area under ROC curve), 

Minimum training presence Logistic threshold (MTL thr) and Maximum training sensitivity plus specificity Logistic 

threshold (MTSPSLT). 

 

metrics C. cerastes C. vipera C. gasperettii 

N Training samples 144 60 52 

N Test samples 36 14 12 

Training AUC 0.877 (±0.013) 0.855 (±0.023) 0.929 (±0.012) 

Test AUC 0.788 (±0.036) 0.820 (±0.063) 0.895 (±0.038) 

MTL thr 0.060 (±0.026) 0.063 (±0.051) 0.073 (±0.039) 

MTSPSLT 0.419 (±0.039) 0.350 (±0.078) 0.300 (±0.077) 

 

Eco-geographical correlates 

 The most important variables related to the species distributions were: Mean 

Temperature of Warmest Quarter (bio 10) for C. cerastes, Precipitation of Wettest 

Quarter (bio 16) for C. vipera and Precipitation of Coldest Quarter (bio 19) for C. 

gasperettii. Temperature Seasonality (Bio 4) and Precipitation of Wettest Quarter also 

showed a high percentage contribution for the distribution of C. cerastes, while bio 19 

had the lowest percentage contribution. For C. vipera distribution, the remaining three 

variables (bio 4, bio 10 and bio 19) showed similar percentage contributions. Bio 4, bio 

10 and bio 16 clearly showed less percentage contribution for the total distribution of C. 

gasperettii comparatively to bio 19. 
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Table 4 - Average (standard deviation) percent contribution of each variable to the model replicates for each 

Cerastes specie. 

 

Variables C. cerastes C. vipera C. gasperettii 

Bio 4 28.7 (±5.83) 21.9(±6.40) 10.2(±3.90) 

Bio 10 32.6 (±5.53) 26.2 (±8.09) 16.2 (±3.45) 

Bio 16 27.4 (±5.46) 29.4 (±6.15) 11.2 (±6.83) 

Bio 19 11.3 (±4.94) 22.5 (±7.45) 62.3 (±4.92) 

 

The most important common EGVs were Mean Temperature of Warmest Quarter 

(bio10) and Precipitation of Wettest Quarter (bio16). For the first (Fig. 8), response 

curves revealed differences between all three species: C. vipera appears to be more 

frequently distributed in areas with temperatures between 20 - 25ºC, whereas C. 

gasperettii seems to prefer temperatures between 30 - 35ºC. Curiously, the results 

suggest that C. cerastes selects the same areas as C. vipera and C. gasperettii, with a 

decrease in its distribution at intermediate temperatures. As for Precipitation of Wettest 

Quarter (bio16), both C. cerastes and C. vipera are restricted to areas with less than 400 

mm of precipitation, being more frequently distributed in areas with less than 200 mm of 

precipitation. Regarding Precipitation of Coldest Quarter, C. gasperettii appears to be 

more frequently distributed in areas with 50 mm or 400 mm of precipitation.  
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 Fig. 9 - Response curves for the bioclimatic variables most related to the distribution of 
Cerastes species. 
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Predicted suitable areas 

 The models obtained for C. cerastes, C. vipera and C. gasperettii for the current 

conditions predicted potential areas of occurrence that overall fit the distribution of the 

occurrence dataset (Appendix 6, 7 and 8). For C. cerastes, the models identified areas 

with the highest climatic suitability along the Atlantic, Mediterranean, Red Sea, Yemen 

and Oman coasts. C. vipera has high probability of occurrence in the Western Sahara 

and northern areas of Mauritania, south of Morocco, in Libya and Egypt Mediterranean 

Coasts, as well as in the Yemen and Oman Pacific Coasts. The climatic suitability of C. 

gasperettii predicted by the model has its highest values in the United Arab Emirates, 

Saudi Arabian Persian Gulf Coast and Red Sea Coast, as well as some areas in the 

African continent such as the north Eritrea and northeast Sudan coastal areas and near 

Marrakech (Morocco), although this is an Arab species. All three models appear to have 

some areas in which the predicted climatic suitability is low even though occurrences are 

present, more specifically the southern part of North Africa for C. cerastes and C. vipera 

and in the northwest area of the Arabian Peninsula for C. gasperettii models. 

Concerning projections to the past conditions, all three species mostly showed 

an identical pattern of expansion/retraction of suitable areas over time (Appendix 5,6 and 

7). In the Last Interglacial, suitable areas for Cerastes cerastes and Cerastes vipera are 

restricted to the Mauritanian and Western Saharan coastal area, while for Cerastes 

gasperettii they are located in central Saudi Arabia. Subsequently, the suitable areas for 

C. cerastes and C. vipera increased greatly, being dispersed throughout North Africa, 

with the exception of the areas at the south of North Africa, and a large area constituted 

by todays north-eastern Mauritania, south-western Algeria and northern Mali, during the 

Last Glacial Maximum period. Expansion of suitable areas for C. gasperettii were 

restricted to the eastern areas of Saudi Arabia. During the Mid-Holocene period, the 

suitable areas for the three species were contracted, in a similar way to the species’ 

models for current conditions. 

 

Predicted stable areas  

The overlapping of models and projections with the fuzzy functions successfully 

identified stable areas for the three Cerastes species (Fig. 9). Regarding Cerastes 

cerastes, high probability of occurrence is seen along the Atlantic coast of North-Western 

Africa, in the Mediterranean Coast of Libya and Egypt and in the Arabian Coast of Yemen 
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and Oman. For Cerastes vipera stable areas are located along the Atlantic coast of 

North-Western Africa, not occurring in any other place where the species is currently 

distributed. Stable areas for Cerastes gasperettii occur only along the Red Sea coast of 

western Arabia between Mekka and Abha, Port Sudan to Eritrea border and between 

the border of Eritrea and Djibouti and also in north Oman, United Arab Emirates and 

Qatar. Stable areas for each climatic scenario (CCSM, MPI-ESM-P, MIROC) were very 

similar concerning each species.  
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Fig. 10 – Stable climatic regions for C. cerastes, C. vipera and C. gasperettii. 
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3.2.2 - Paleoclimatic modelling of C. Cerastes lineages 

Models evaluation  

Models were developed for the North-West African area concerning only C. 

cerastes lineages, since it was of our interest to understand the phylogeographic history 

of the lineage and sub lineages present in this area. Models presented high AUC values 

(>0.90) with low standard deviations in both training and test datasets. The lowest 

training AUC values were obtained for sub lineage West-N (0.953 ± 0.008) and the 

highest for sub lineage West-S (0.980 ± 0.003) while the lowest test AUC values where 

obtained for lineage West (0.925 ± 0.018) and the highest values for lineage West-N 

(0.970 ± 0.008) (Table 4). 

 

Table 5 - Detailed information regarding the 50 model replicates developed for C. cerastes western lineages, including 

the number of records to train and test the models, average (standard deviation) training and test AUC (area under 

ROC curve), Minimum training presence Logistic threshold (MTL thr) and Maximum training sensitivity plus specificity 

Logistic threshold (MTSPSLT). 

 

metrics West West-N West-S 

N Tr samples 80 44 32 

N Test samples 19 10 8 

Tr AUC 0.961 (±0.004) 0.953 (±0.008) 0.980 (±0.003) 

Test AUC 0.925 (±0.018) 0.939 (±0.018) 0.970 (±0.008) 

MTL thr 0.078 (±0.051) 0.092 (±0.056) 0.163 (±0.086) 

MTSPSLT 0.265 (±0.072) 0.218 (±0.065) 0.187 (±0.086) 

 

 

Eco-geographical correlates 

 

Concerning C. cerastes western North African lineages, three of the four 

variables showed high percentage of contribution in the different ENMs. Precipitation of 

Coldest Quarter (bio 19) presented the highest values of percentage of contribution for 

lineage West and sub lineage West-N, and second highest value for lineage West-S. 

Contrarily, Temperature Seasonality (bio 4) as the highest values of percentage 

contribution only for lineage West-S, having the lowest values for lineage West and 

West-N. Precipitation of Wettest Quarter (bio 16) also showed high percentage of 

contribution for the total distribution of lineage West. 

 

 



 
FCUP 

Reconstructing the evolutionary history of desert-adapted Cerastes vipers in North Africa and the 
Arabian Peninsula 

37 

 

 
 

Table 6 - Average (standard deviation) percent contribution of each variable to the model replicates of C. cerastes 

western lineages. 

 

Variables West West-N West-S 

Bio 4 13.4 (±3.42) 6.30 (±3.67) 43.2 (±3.03) 

Bio 10 11.4 (±5.36) 2.50 (±2.31) 2.56 (±2.01) 

Bio 16 30.4 (±3.84) 15.8 (±5.93) 20.8 (±2.65) 

Bio 19 44.8 (±4.83) 75.4 (±5.94) 33.4 (±3.56) 

 

 

For these models, Average profiles of response curves where created for 

Temperature Seasonality (bio 4), Precipitation of Wettest Quarter (bio 16) and 

Precipitation of Coldest Quarter (bio19). Response curve for bio 4 suggests that sub 

lineage West-N occurs in areas with moderate levels of temperature seasonality (3500 

cv.). Both lineage and sub lineages occur more frequently in areas with precipitation 

below 100 mm, observing that sub-lineage West-N occurs in the driest areas (20 mm).  
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Fig. 11 - Response curves for the bioclimatic variables most related to the distribution of C. cerastes 
Western lineages 
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Predicted suitable areas 

Overall, models for Cerastes cerastes western lineages predicted potential areas 

of occurrence that fit the distributional data (Appendix 8, 9,10). The predicted models for 

the past conditions for lineage West show that suitable areas were restricted to the north 

west coast of Mauritania and Western Sahara during the Last Interglacial period. During 

the Last Glacial Maximum suitable areas were located along the Mediterranean coast 

and posteriorly, during the Mid-Holocene period, they were contracted. A similar pattern 

can be found in the predicted models for the past conditions for sub-lineages West-N 

and West-S (Appendix. 9 and 10), where it should be noted that in the model of sub-

lineage NW-N it is possible to see that the same suitable area predicted for the Last 

Glacial Maximum period for lineage West and sub-lineage W-NW was also predicted for 

lineage NW-N, although none of the occurrences used to build these model where 

located in this area. 

 

Predicted stable areas 

Stable areas for lineage West occur approximately between Tan Tan (Morocco) 

and Saint Louis (Senegal), extending to the interior of Morocco, Western Sahara and 

Mauritania (Fig. 11). Also, some areas are spotted in the Mediterranean Coast of Tunisia 

and Libya.  

Overall, the models for sub-lineage West-N identified stable areas between 

Agadir and Ourzazate in Morocco, near Atar, Tergit and Aoujeft in Mauritania and in the 

Mediterranean Coast of Tunisia and Libya, but nearest the coast than the areas identified 

for lineage West (Fig. 11). Regarding sub-lineage West-S, stable areas are mostly 

located in south Morocco, Western Sahara and Mauritania, being found in the same 

regions as the ones found for lineage West, with the exception for the ones in Tunisia 

and Libya (Fig. 11). 
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Fig. 12 - Stable climatic regions for C. cerastes Western lineages 
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4. Discussion 

This study integrates genetic and ecological analyses to reconstruct the 

biogeographical history of the species composing the Cerastes genus, unveiling both 

inter- and intraspecific genetic relationships and variability, and signalling areas likely 

acting as climatic refugia during Pleistocene climatic oscillations. This is the first 

phylogeographic study in which mitochondrial and nuclear markers for the entire genus 

are combined, providing insights into the evolutionary history of this group of desert 

vipers. Furthermore, it is also the first study using ecological models to identify the 

climatic correlates for the whole distributional ranges of these species (but see Brito et 

al., 2011) in North Africa and in the Arabian Peninsula.  

 

4.1 - Phylogenetic inferences 

4.1.1 Interspecific relationships and mito-nuclear discordances 

 Similarly to previous studies (e.g. Alencar et al., 2016; Šmíd and Tolley, 2019; 

Zheng and Wiens, 2016), our mtDNA inferences recovered two main monophyletic 

clades within the genus, one represented by C. vipera and another constituted by two 

sister taxa, C. cerastes and C. gasperettii (Fig. 5). In contrast, the results obtained from 

nuDNA were not concordant to those obtained with mtDNA (Fig. 6): C. vipera and C. 

cerastes are included in the same clade, while C. gasperettii is in another, being this 

species the first to diverge. Extensive haplotype sharing was verified for two of the three 

nuclear markers (NT3, PRLR; Fig. 6), while C. cerastes and C. vipera are separated but 

interconnected in the same network obtained with VIM (Fig. 6). Accordingly, the 

combination of both mitochondrial and nuclear genes (Fig. 7) was concordant with the 

interspecific diversity found with the mitochondrial marker, however, the relation between 

C. gasperettii and C. cerastes no longer is supported. This pattern was never recovered 

in any previous phylogenetic study on Cerastes (Pook et al., 2009)(e.g. Alencar et al., 

2016; Šmíd and Tolley, 2019; Wüster et al., 2008; Zheng and Wiens, 2016) and raises 

doubt about the true phylogenetic relationships and evolutionary history of the genus. 

 Mitochondrial discordances were also found in other taxa with Afro-Arabian 

distributions (e.g. African wolves, Koepfli et al., 2015; North-African foxes, Leite et al., 

2015). Two possible hypothesis might explain the relation between C. cerastes and C. 

vipera. The first scenario is the possible introgression of the nuclear genome of C. 

cerastes in C. vipera, due to a past contact between species. Introgression occurs when 
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a portion of a gene of one entity (species) is incorporated in the gene pool of another 

entity (divergent species). This process usually happens by hybridization and posterior 

backcrossing (between the hybrid and one of the parent populations). For introgression 

to occur it is necessary the existence of gene flow through successive contacts between 

both populations/species, which are possible due to the existence of contact zones, 

where species can overlap and exchange gene flow (Harrison and Larson, 2014). 

Cerastes cerastes and C. vipera are co-distributed across North-Africa (Phelps, 2010) 

and although they differ in morphology and ecological requirements, sympatric areas 

where species can meet and hybridize have been recently identified (e.g. del Marmol et 

al., 2019; Brito et al., 2011; García-Cardenete et al., 2017). A case of nuclear 

introgression with absence of mitochondrial introgression has already been described in 

Graptemys turtles (Graptemys pseudogeographica into G. geographica). Although this 

study demonstrated that it is possible for introgression to occur only at a nuclear level in 

reptiles (Mitchell et al., 2016), the introgression between C. cerastes and C. vipera 

seems unlikely due to the morphological and ecophysiological differences mentioned 

previously. 

We also consider the hypothesis that the nuclear data used in this study does not 

have enough power or resolution to delimit taxa due to ancestral polymorphism 

(occurrence of genetic variation prior to the speciation process). Lack of power and/or 

resolution in nuclear data it is not unusual in vipers since it has already been documented 

by several authors in different species of vipers (e.g. Vipera latastei/monticola (Freitas 

et al., 2018; Velo-Antón et al., 2012), Daboia (Martínez-Freiría et al., 2017), Montivipera 

(Stümpel et al., 2016)). For this reason, further works should increase nuDNA inferences 

with more markers (e.g. SNPs, (e.g. SNPs, Schield et al., 2017).  

 

 

4.1.2 Intraspecific diversity 

 In this study, the phylogenetic analysis obtained with mtDNA demonstrated a 

complex intraspecific structure relatively to C. vipera and C. cerastes, with deep lineages 

and high levels of genetic structure (FIG 5). C. gasperettii presented a relatively 

simplified intraspecific structure compared to C. vipera and C. cerastes with the 

remaining species. Only few specimens of C. gasperettii were available to conduct this 

study, with large sampling gaps, and thus, intraspecific structure within this species must 

be further studied. All previous studies (e.g. Alencar et al., 2016; Zheng et al., 2016) only 
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determined the interspecific structure of the genus, never unveiling the intraspecific 

diversity within each species, making this work the first assessment of the intraspecific 

diversity for the Cerastes genus. 

 The genetic diversity of the genus regarding North Africa is divided into two 

distinct regions, the West, ranging from the Atlantic coast to the Hoggar mountains, and 

the East, ranging from the Hoggar Mountains to the coast of the Red Sea and the Sinai 

Peninsula. However, populations of C. vipera from the Hoggar Mountains belong to the 

western clade while the populations of C. cerastes are genetically closer to eastern 

populations. The existence of different spatial patterns of genetic structure within these 

species could indicate that different events may be responsible for their current genetic 

diversity. However, both divergence events took place during the early Pleistocene about 

2-1.7 Mya, pointing to the Pleistocene climatic oscillations as the main driver of this 

separation between eastern and western populations in both species. Other studies 

concerning different species inhabiting North Africa present similar genetic patterns and 

diversification processes occurring in the Pleistocene (e.g. Agama lizards, Gonçalves et 

al., 2018a). 

 Further lineage diversification occurred during the mid-Pleistocene, starting 

first for eastern and western lineages of C. cerastes (ca. 1.25 Mya), and later in C. vipera 

western lineage (ca. 1 Mya). Similarly to past intraspecific diversification events, 

allopatric diversification induced by the climatic oscillations during dry-wet periods of the 

Pleistocene are likely the responsible of such diversification. This patter was already 

reported for other species inhabiting this region such as Ptyodactylus geckos (Metallinou 

et al., 2015), Agama (Gonçalves et al., 2012) and Uromastyx (Tamar et al., 2018) lizards 

or Echis vipers (Pook et al., 2009; Robinson et al., 2009). 

 Given the results obtained in the mtDNA phylogenetic analysis and haplotype 

networks for C. cerastes, further levels of structure appear to exist in central Saharan 

mountains.  The presence of one specimen of C. cerastes in Sudan belonging to the 

same lineage as the specimens of the Hoggar mountains suggest that populations from 

these two regions were likely connected in the past. 

 The genetic diversity of the genus in North Africa is mostly concentrated along 

the western Atlantic coast, where two and three sub-lineages of C. vipera and C. 

cerastes were found, respectively. In this region suitable climatic conditions persisted 

through time, acting not only as a refuge for species during unfavorable periods but also 

as a biodiversity corridor which will have allowed the connection between the regions at 

north and south of the Sahara Desert (Gonçalves et al., 2018a; Velo-Antón et al., 2018). 
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However, during the mid-Pleistocene ca. 1.25 Mya, a geographical or climatic barrier 

may have existed, preventing the contact between the populations that exist in the north 

and south of this region since it wasn’t found shared haplotypes between these 

populations. The most likely geographical barrier in this region is the Drâa valley, which 

during wet and dry periods will have had its river filled or formed a sand body 

respectively. Since C. cerastes is a xeric species that does not inhabit extensive sandy 

soils, the Drâa valley probably has prevented the passage of populations in both periods, 

forming a barrier to species dispersal. However, more genetic information is needed in 

order to determine if gene flow between the northern and southern populations does not 

occur.  

 In this study, eastern North African populations were not well represented. 

Even so, high genetic diversity was found for C. vipera and C. cerastes, recovering two 

different populations for the latter: one found only in the Sinai Peninsula and the other 

one across Egypt, Chad and Niger. It is difficult to identify the possible cause for the 

diversification of these populations based on these results, although the existence of the 

Nile river seems to be the only geographical barrier that may have led to this separation. 

Moreover, the small number of samples for this region may not be representative of the 

true genetic diversity of the region and therefore future studies should be done for this 

region with a larger sample size, not only for C. cerastes but also for C. vipera. 

 Genetic diversity across the Arabian Peninsula is divided in northern and 

southern groups, being the Hajar mountains in northeast Oman the only area where both 

groups are present. The estimated divergence time for these two groups was about 0.5 

Mya, during the late Pleistocene. The Hajar mountains could have acted has a stable 

climatic area for both groups during unfavorable periods, from which they could later 

have expanded their range and diverged. Another possible scenario is the use of both 

Dhofar and Hajar mountain ranges as a refuge by the North and South lineages, 

respectively, thus giving the allopatric isolation of both populations, which may later have 

expanded their range to the north and west, respectively. As was also previously mention 

for the eastern region of North Africa, further sample size is needed for C. gasperettii in 

order to understand the intraspecific diversity and evolutionary history of this species. 

 

 

4.2 – Ecological modelling inferences 

4.2.1 - Climatic correlates of species distributions 
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Despite the widespread distribution of the species that conform this genus, 

studies addressing environmental correlates related to their distribution are limited to the 

western region and were developed at regional scale (e.g. Brito et al., 2011; Sow et al., 

2014). These studies have shown that the distributional ranges of both C. cerastes and 

C. vipera are slightly related to climatic variables, while strongly influenced by habitat 

variables such as distance to rocky and bare areas or croplands (Brito et al., 2011). Also, 

it was verified that C. cerastes probability of occurrence decreased in regions very close 

to sandy areas, preferring more distant areas (Sow et al., 2014). In contrast, C. vipera 

presented a high probability of occurrence close to sandy areas, being more frequently 

found in south plains and sebkhas (smooth flat plains formed by the desiccation of saline 

or salt lakes) (Sow et al., 2014). Our models, although only considered climatic variables 

since other types of variables were not available for the entire range for the past, reflected 

the xeric requirements of these species (see Brito et al., 2014), while showed similarities 

and particularities in the climatic correlates for the three species.   

The distribution of C. cerastes was mostly affected by the Mean temperature of 

the warmest quarter, with the species occurring at the higher ranges (FIG 8). 

Precipitation also play an important role in the distribution of this species, particularly for 

the lineages and sub-lineages that are located in West Africa (Fig. 8 and 10), limiting 

species occurrence to the driest areas (Fig. 4). Although C. vipera also selects dry 

environments, it is mainly distributed in regions with lower temperatures than C. cerastes. 

Even though both species are sympatric across North Africa, distinct climatic, and habitat 

correlates (Brito et al., 2011), thus suggest that they must segregate across their ranges. 

The distribution of C. gasperettii, for which no information on climatic correlates was 

available before this work, is strongly affected by Precipitation of Coldest Quarter, 

preferring sites with approx. 100 mm (Fig. 8). In relation to temperature (i.e. Mean 

Temperature of Warmest Quarter), the species preferentially occur in areas with high 

temperature (Fig. 8). Therefore, C. gasperettii seems to replicate the pattern of C. 

cerastes, suggesting that the geographical divergence between these two species was 

led in absence of niche divergence (Peterson et al., 1999 (Peterson et al., 1999; Wiens 

et al., 2009; Wiens and Graham, 2005). 

 

4.2.2 - Responses to climatic oscillations 

 Pleistocene cycles had different effects on the distribution and genetic structure 

of species with different ecological requirements, and in recent years these effects have 
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been studied for species that inhabit North Africa. According to Brito et al., 2014, during 

wet periods, xeric species inhabiting this region will have experienced diversification 

processes due to the decrease of hyper-arid zones (Sahara), which led to population 

contraction, inciting the divergence of lineages due to allopatric or vicariant events. On 

the contrary, during the dry periods, the expansion of arid zones would have led to the 

expansion of the range of these species, allowing the contact between individuals of 

different populations (Brito et al., 2014). Overall, the results of our models agree with this 

pattern, which was already expected since the species under study are xeric, and 

resemble studies done for species with the same ecological requirements in the area. 

 Our results show that C. cerastes and C. vipera responded similarly to the 

different climatic scenarios tested in this study (LIG, LGM, mid-Holocene and present) 

(Appendix 5 and 6). During the last interglacial period, the reduction of desert like areas 

in North Africa, caused by an increase in humidity, created the decrease of suitable 

climatic regions for both species. This loss in xeric environments likely drove to the 

diminishment of specie’s range, which consequently made species seek refuge in more 

suitable climatic regions (Fig. 9). However, due to the ecological requirements of C. 

cerastes and C. vipera, the onset of milder climates, especially in coastal areas, would 

not have led these xeric species to take refuge in these areas, as it was recovered by 

our models. Recent paleoclimatic studies conducted for other species in North Africa 

(e.g. Psammophis, Gonçalves et al., 2018b; Daboia, Martínez-Freiría et al., 2017; 

Agama, Gonçalves et al., 2018a and Acanthodactylus, Velo-Antón et al., 2018) and 

Iberian Peninsula (e.g. Vipera seoanei, Martínez-Freiría et al., 2015) have shown that 

the Last Interglacial period would have been a very warm period rather than humid as 

previously though. Considering this new scenario, the coastal regions recovered as 

suitable climatic areas for both species would thus have gathered the favourable 

conditions for the specie’s existence when no favourable conditions existed in other 

regions. The reduction in species range and the consequent isolation in more suitable 

areas will have enhanced allopatric diversification events, that possibly led to the 

separation of the main lineages. 

During glacial periods (LGM), due to the vast increase in warmer and drier 

conditions, and therefore in xeric environments, a major expansion of species ranges 

occurred. This range was possibly larger than the one found today, making this period 

the most favourable for North African Cerastes of all the analysed climatic scenarios in 

this study (Appendix 5 and 6). The climatic conditions that characterized this period will 

have allowed the contact between previously isolated populations, possibly leading to 



 
FCUP 

Reconstructing the evolutionary history of desert-adapted Cerastes vipers in North Africa and the 
Arabian Peninsula 

47 

 

 
 

interbreeding and genetic admixture. From the mid-Holocene forward, due to the cooling 

of the temperature and the increase in humidity, similar events as those described for 

the LIG happened, although more mildly. During this period, it is identified a contraction 

in specie’s ranges due to the loss of suitable climatic areas, inducing population isolation 

and further genetic structuration.  

Although similar climatic events were registered in the Arabian Peninsula, climatic 

suitability for C. gasperettii did not follow the same pattern found for C. cerastes and C. 

vipera during the past periods analysed (Appendix 7). During LIG and LGM suitable 

climatic regions were reduced to small portions of the Arabian Peninsula coast, 

especially near the mountain regions of Dhofar and Hajar and in the Yemen Highlands. 

Specie’s range expansion only seems to have occurred during the mid-Holocene and 

the present, due to the increase of suitable climatic areas in central regions that seem to 

connect the previous suitable climatic areas described for the LIG and LGM periods. This 

pattern could be explained by the increment of arid conditions during the mid-Holocene 

period, which led to the dry out of the river network in the southern areas of the Nefud 

desert. Consequently, the lack of a major water body in the region would have led to the 

decline and/or disappearance of vegetation and water-dependent and mesic species. 

The possible disappearance of this river network would not only have led to the 

installation of more arid conditions in the region, but also would have left the riverbed 

sediments uncovered, allowing species to move along it, thus enabling the expansion of 

the C. gasperettii range along the interior of the Peninsula (Stimpson et al., 2016). 

Interestingly no suitable climatic areas were found for C. gasperettii in the regions where 

populations of C. cerastes exist in western Yemen. 

 

4.2.3 - Stability in North Africa and Arabian Peninsula 

 In this study we identified several stable climatic areas for each species using the 

combination of the climatic scenarios for each Pleistocene period (LIG, LGM, mid-

Holocene and present; Fig. 9). Due to the climatic oscillations of the Pleistocene, 

characterized by dry-wet cycles, these regions were crucial for the persistence of the 

species through time, since they always sustained suitable climatic conditions, thus 

acting as refugia when less favourable conditions where present in other regions (Waltari 

et al., 2007). Overall the identified areas correspond to the suitable climatic regions found 

in the models for the LIG period (Fig. 9, Appendix 5,6 and 7). This result was already 

expected as it was during this period that was observed the largest reduction in suitable 
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climatic areas of all analysed periods. Thus, stable climatic areas were overall found 

near coastal or mountainous regions in North Africa and in the Arabian Peninsula. During 

unfavourable periods, mountain areas, characterized by various types of habitat due to 

their altitude ranges, provide climatic oasis for xeric and mesic species through time.  

 For both C. cerastes and C. vipera, similar stable climatic areas were found in the 

West. These areas are located along the Atlantic coast of Mauritania and Western 

Sahara, being similar to the current distribution of the West-South and West-West sub-

lineages of C. cerastes and C. vipera respectively (Fig. 9). The sharing of the same 

stable climate zone may have allowed genetic introgression between these two species 

and may explain the haplotype sharing found in nuDNA haplotype networks (Fig. 6). 

However, as it was previously mentioned, the difference in morphology and ecological 

requirements make this hypothesis quite unlikely The suitable areas found in our models 

for the LIG and mid-Holocene periods suggest that this area functioned as a refugia 

during these unfavourable periods, not only for both Cerastes species but also for several 

other taxa (e.g. Daboia mauritanica, Martínez-Freiría et al., 2017; Mauremys leprosa, 

Verissimo et al., 2016). In recent studies, Velo-Antón et al., 2018 and Gonçalves et al., 

2018a demonstrated that this region is very important for species as it functions as a 

biogeographic corridor that interconnects the regions above and below the Sahara, as 

well as a promotor and center of lineage diversification.  

 Three different stable climatic regions were also found for both C. cerastes 

western lineages, West-North and West-South (Fig. 11). For the West-South sub-

lineage, only one area seems to have had favourable conditions for the persistence of 

the species through time, corresponding mostly to the stable area previously described 

for C. cerastes and C. vipera in the West. In contrast to these results, two climatically 

stable areas were found for the West-North sub-lineage, one located above the West-

South sub-lineage stable area and another along the Mediterranean coast of Tunisia and 

Libya (Fig.10). These regions could have acted has refugia during unfavourable 

conditions, promoting allopatric differentiation, possibly explaining the separation 

between the West-North 1 and West-North2+3 populations. Also, the presence of two 

distinct climatic stable areas for the West-North and West-South lineage between 

Morocco, Western Sahara and Mauritania support the role of the Drâa valley as a 

geographical barrier for species divergence, being the most likely responsible for the 

separation of both lineages.  
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 Two other stable climatic regions were found for C. cerastes along the eastern 

Mediterranean coast of North Africa and southern areas of the Arabian Peninsula. Only 

a small fraction of the area of the first region, located between Libya and the Sinai 

Peninsula, corresponds to the Eastern lineage distribution area (Fig. 8). The remaining 

areas seem to have only been suitable for C. cerastes during the LGM and mid-

Holocene, with a continuous decrease in suitability through time (Appendix 5). It is also 

relevant to pinpoint that despite this reduction in specie's suitable climatic areas, 

individuals were found distributed in the southernmost regions of North Africa for which 

no suitable areas were found at present time. A possible explanation for this could be 

the lack of use of other types of variables, such as habitat or soil type, other than climatic, 

in the construction of the models. These variables most likely play an important role in 

species distribution, given that, for example, this species does not occur in sand dune 

environments unlike C. vipera. These results indicate this stable climatic area served as 

a refugia for eastern populations, contributing to lineage diversification within the 

species.  

Finally, the presence of a stable climatic region in southern regions of the Arabian 

Peninsula, especially near the mountain areas of south-west Yemen, are consistent with 

the presence of populations of C. cerastes in the Arabian Peninsula (Fig. 9) There is still 

a great lack of information about the lineages of this species in this region since in this 

study it was not possible to determine their phylogeographic patterns because we had 

no access to samples and no other studies were available. We can only hypothesize that 

these populations were confined to this region during the LIG, losing contact with the 

populations of the Sinai Peninsula (Fig. 9). Posteriorly, this populations might have 

expanded their range along the coast of Saudi Arabia and Yemen as these zones appear 

to have favourable conditions for the species to exist. 

Stable climatic regions for C. gasperettii appear mostly near the mountain 

complexes of Dhofar and Hajjar mountains and in a small portion of the Yemen 

Highlands. The stable climatic area in the Hajjar mountain coincides with most of the 

current distribution of the species lineages. This region may have acted as a speciation 

center for C. gasperettii as both lineages are present in this region, and their current 

distribution may have resulted of expansion events in more recent periods from this 

region to the central regions of the Peninsula. The mountainous areas of the Arabian 

Peninsula are characterized by a diversity of habitats sustained by the milder conditions 

present in these areas, due to the proximity of the seacoast and by the different altitude 
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of its cliffs. These areas contrast with the flat inland areas constituted mostly by large 

sand masses and sustain biodiversity and high levels of endemicity.  

 

4.3 – Biogeographical history of Cerastes spp during the Pleistocene 

Pleistocene cycles have been responsible for multiple events of species 

expansion and contraction, leading to population separation due to persistence and 

isolation in climatic areas and later expansion to suitable climatic areas, promoting the 

diversification and formation of the current existing lineages.  

Cerastes and C. vipera began to diversify around 2-1.7 Mya and thus, 

diversification of both species was likely under the influence of the same events. The 

Quaternary period is responsible for the intra-specific diversification of both C. cerastes 

and C. vipera and was characterized by multiple dry-wet cycles, which had led to multiple 

range expansions and contractions of both species. Since the Cerastes genus is only 

constituted by xeric species, unlike Mediterranean and Sahelian species inhabiting North 

Africa, warm and dry periods likely favoured the expansion of their range, while cold and 

humid periods lead to the contraction of the species in climatic refugia. Major radiation 

processes in North Africa during this period are already described in other species of 

reptiles, caused by the wet-dry cycles that characterized the Pleistocene. As previously 

described, these cycles were responsible for the expansion and contraction of the arid 

areas of the region, causing the fragmentation, expansion and contraction of populations 

over time. 

Since our results do not allow us to determine the origin of the Cerastes spp. 

ancestor, two possible scenarios may be hypothesized for the evolutionary history of C. 

vipera. The first scenario considers a possible expansion of the species from East to the 

West along North Africa. Contrary, a second scenario would involve the expansion from 

the West to the East. The combination of our genetic and ecological results point to the 

first scenario as the most likely hypothesis, with the expansion beginning from the Sinai 

Peninsula or surrounding eastern areas, heading west through the Mediterranean coast 

until reaching the Atlantic coast, the only apparent climatic refuge during unfavourable 

periods throughout the Pleistocene. Although the scenarios tested here occurred 

posteriorly to the separation of the main lineages (C. cerastes and C. vipera West and 

East lineages), similar wet-dry events will have occurred during the last 5 Mya (Trauth et 

al., 2009). This scenario is also supported by other studies, such as Gonçalves et al., 
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2018b, in which similar suitable climatic areas along the entire Mediterranean and 

Atlantic coast of North Africa were recovered for Psammophis schokari group. As in this 

study, climate seems to play an important role in the diversification of both species, which 

was expected given specie’s xeric requirements. 

The Atlas Mountains situated along Morocco and Tunisia appear to be a major 

barrier for the dispersion of C. vipera, as they mark the limit between Mediterranean and 

desert ecoregions. As described previously, in this region were found two different sub-

lineages located in Mauritania, Western Sahara and south of Morocco (West-West 1 and 

West-West 2). The presence of rivers in the area during wet periods may have functioned 

as a geographical barrier to species dispersal, promoting the diversification of the West-

West sub-lineages.  

The current distribution and diversity of C. cerastes was likely a result of an 

evolutionary history similar to C. vipera, as both have a very similar geographic 

distribution (North Africa) combined with similar divergence times and a division in East-

West lineages. The origin of this species most likely occurred in the east of North Africa 

or in the Arabian Peninsula, since the sister taxa C. gasperettii only occurs in the Arabian 

Peninsula. Subsequently during warm periods, the specie’s range will have expanded 

allowing it to reach the western coast of North Africa. Posteriorly, due to the onset of 

unfavourable conditions, western and eastern populations split, taking refuge on the west 

Atlantic coast and along the Mediterranean coast between Libya and Egypt, respectively. 

These two areas presented favourable conditions for the persistence of the species 

throughout the different Pleistocene periods and would have functioned as refugia for 

the species. 

Further genetic diversification will have resulted from successive climatic 

fluctuations along the Pleistocene. Regarding the Eastern lineages, the possible isolation 

of individuals in the Hoggar Mountains of Algeria and others in the eastern stable climatic 

areas will have led to the separation of the East-Central and East-Southeast sub-

lineages. Subsequently, the East-Southeast lineage will have expanded its range 

southwest from Egypt to Chad where further diversification events will have taken place. 

The range and diversity of the East-Southeast lineage is in agreement with the results 

obtained in the study by Gonçalves et al., 2018b, which points to the possibility of a 

corridor during warm conditions such as the ones found during LGM period, which 

allowed the connection between the eastern stable climatic area and all areas between 

this and the mountainous areas of Chad. 
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As for the East-Central sub-lineage, the presence of one individual from Sudan 

genetically similar to one individual in southwest Hoggar mountains suggests a possible 

route between both regions through the corridor or via a southern route to reach their 

current location. In previous studies, it was found that a greater number of species 

colonized these mountains through the north (e.g. Psammophis schokari (Gonçalves et 

al., 2018b), Pelophylax saharicus (Nicolas et al., 2015), Bufotes boulengeri (Nicolas et 

al., 2018). However, Gonçalves et al., 2018a determined that Agama lizards possibly 

colonized the mountains through the south.  

At the same time, similar climatic events will have occurred in western North 

Africa, separating the West-North and West-South sub-lineages. Our models suggest 

that in the past both lineages shared the same area during the Last Interglacial and Last 

Glacial Maximum, so posterior contact between both lineages could have happened. 

Pleistocene climatic oscillations also played a strong role in the process of lineage 

diversification in western North Africa, however a geographical barrier, the Drâa valley 

seems to have functioned as a major geographic barrier for the contact between both 

sub-lineages. A more recent diversification of the West-North sub-lineage took place, 

originating three different populations located along Atlas Mountains. This geographic 

feature seems to have acted as a topographical barrier to the dispersion of individuals 

between populations. 

 Cerastes gasperettii had a later diversification compared to the North African 

Cerastes sister species. Our results suggest that this species only begun to diversify at 

around 0.5 Mya, resulting on the separation of two lineages (North and South). Due to 

the lack of sedimentary deposits, little is known about the geological and climatic history 

of the Arabian Peninsula and for this reason very few assumptions can be drawn on the 

evolution of C. gasperettii (Pook et al., 2008). Similarly to North Africa, the Arabian 

Peninsula suffered from severe aridification 2 Mya, leading to the formation of the Rub 

Al-Khali desert. During the Quaternary, this area was characterized by periods of 

humidity and rainfall and dry and arid periods (Kotwicki and al Sulaimani, 2009). During 

humid periods, the more favourable conditions in the area made possible the migration 

between northern and southern areas throw the central regions (Presseur, 2009). 

However, although similar climatic events to the ones registered for North Africa took 

place in the Arabian Peninsula, C. gasperettii seems to have behaved differently through 

the same periods.  
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4.4 – Unresolved biogeographic questions 

The combination of the genetic analysis and ecological niche-based models for 

the different Pleistocene periods has brought insight into the evolutionary history of the 

Cerastes genus. However, several biogeographical questions still remain that could not 

be answered based on our results. 

(1) Where did the Cerastes genus originated?  

The Viperinae subfamily, to which the Cerastes genus belongs likely originated 

in Africa, as suggested by Wuster et al., 2008. Even though a general lack of knowledge 

exists about the history of the genus, the ancestors of the genus diversified during the 

mid-Miocene, around 18 Mya. However, it is unknown in which part of the African 

continent the ancestor of the Cerastes genus emerged, but, the occurrence of the 3 

species in the Sinai Peninsula pinpoint to an important role of this region in the 

diversification of the genus.  

 

2) What is the relationship among the three species and when did Cerastes vipera 

diverged from the remaining Cerastes?  

During the late Oligocene and Miocene periods, North of Africa and the Arabian 

Peninsula underwent through several geological events that turned this area very 

unstable. This period was characterized by the opening of the Red Sea, the formation of 

the Gulf of Aden and the African Rift System causing the separation of the Arabian 

Peninsula from the African Continent (Hughes et al., 1991; Chorowicz, 2005). Although 

being separated, it is believed that a passage connecting Africa to Eurasia existed 

approximately around 18 Mya., the Gomphotherium landbridge (Rogl et al., 1998, 1999; 

Chorowicz, 2005). It is hypothesized that this land bridge allowed the passage and 

exchange of species between Africa, Arabia and Eurasia, therefore promoting the range 

expansion of several taxa. Based on our mtDNA phylogenetic results, these geological 

events could have been responsible for the separation of Cerastes species: C. vipera 

would have remained in Africa and C. cerastes and C. gasperettii would have colonized 

the Arabian Peninsula. Alternatively, C. vipera alone could have diverged in Africa, 

leaving the remaining species in the Arabian Peninsula. Similar diversification events 

have been suggested for other genus with Afro-Arabian ranges (e.g. Naja, (Pook et al., 

2009; Wüster et al., 2008); Echis, (Pook et al., 2009); Mesalina, (Kapli et al., 2015). 

However, based only on nuDNA phylogenetic tree and the geologic changes observed 
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in this area, it may have occurred first the separation of C. gasperettii from the remaining 

Cerastes, following the separation of the African continent and Arabian Peninsula, with 

posterior colonization’s and contact zones along the Sinai Peninsula.  

Posteriorly, both the African continent and the Arabian Peninsula went through 

aggravated desertification/aridification processes, which led to the formation of the 

Sahara and Arabian deserts around 7 Mya. In addition to the formation of deserts, due 

to the orogenic processes resulting from the collision between the tectonic plates, large 

mountain ranges were formed such as the Atlas in Morocco, the Zagros in Iran and the 

mountain ranges in Yemen (Bohannon et al., 1989; Rogl et al., 1999, Popov et al., 2004; 

Bosworth et al., 2005; Edgell, 2006; Jolivet et al., 2006; Mouthereau, 2011). The 

increasing formation of arid habitats in the African continent would have led the ancestral 

of C. vipera to adapt and develop the present characteristics that make it morphologically 

very different from the other species of the Cerastes genus.  

The onset of arid conditions combined with the inconsistent results obtained in 

the mtDNA and nuDNA may raise another hypothesis for the possible events that led to 

the origin of C. vipera as an ecotype of C. cerastes, having diverged in ecological niche, 

adapting to sandy environments. An ecotype is a distinct form within a species that is 

genetically different due to an adaptation to a specific environment (Begon et al., 2016). 

The increase of arid conditions during the Miocene in North Africa and Arabia would have 

triggered this process and has also been associated with other splits between closely 

related species, as for example Stenodactylus and Stenodactylus mauritanicus 

(Metallinou et al., 2012) and North-African V. vulpes and V. ruepellii (Leite et al., 2015). 

However, due to the results obtained in the mtDNA phylogenetic tree, C. vipera and C. 

cerastes were recovered as sister taxa, pinpointing to a past divergence. 

 

(3) What are the most likely dispersal/colonization routes for Cerastes? 

The increase in arid conditions around 3 Mya likely lead to the divergence of the 

species currently recognized as C. cerastes and C. gasperettii. We hypothesize that C. 

cerastes could have colonized Africa through dispersion westwards, while C. gasperettii 

remained in the Arabian Peninsula. As already described for other Afro-Arabian species 

(e.g. Naja haje, Wüster et al., 2008), C. cerastes may have reached Africa by dispersion 

along the Red Sea coast from the Arabian Peninsula, reaching Sinai and through there 

colonizing Egypt. Another possible scenario is that C. cerastes may have crossed the 

Red Sea southwards, through the strait of Bab-el-Mandeb. During glacial periods, a land 
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bridge between Yemen and Ethiopia would have existed and connected the Arabian 

Peninsula and Africa. This land bridge would have allowed the migration of several 

species between these areas (e.g. Bitis arietans, Barlow et al., 2019), being present for 

the last time in the Pliocene around 3.6-2.6 Mya (Haq et al., 1987). Similar hypothesis of 

dispersion were suggested in other reptile species such as Mesalina guttulata (Kapli et 

al., 2015) and Uromastyx ocellata(Tamar et al., 2018), since these species occur in both 

sides of the Red Sea as C. cerastes. 

With all the possible hypothesis previously mentioned and being unable to 

understand which of these hypothesis seems more likely to explain the evolutionary 

history of the Cerastes genus, we reinforce the need for a more complete phylogenetic 

analysis to fill the gaps that currently exist in areas for which samples were not available, 

combined with further ecological models including more variables other than climatic. 
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5. Conclusion 

 This study, using the combination of ecological and genetic approaches, brought 

some insights on the evolutionary history of the desert species Cerastes genus, as well 

as, on the diversification processes and the impact of past climatic events on the 

distribution and diversity patterns of the species. However unexpected results were also 

obtained, which made it very complex to understand the biogeographic history of the 

Cerastes genus. Overall, climatic scenarios determined by the ecological models were 

concordant with the mtDNA phylogenetic results. However, the incongruences between 

mitochondrial and nuclear phylogenetic reconstructions raises doubts about the true 

relationship between the species and the biogeographic history of the group. In order to 

unveil a more convincing biogeographical history of the group, a more complete 

phylogenetic analysis should be done, covering the current sampling gaps and with a 

larger number of nuclear markers or using microsatelites. A more complete analysis with 

a greater number of samples from unsampled regions in Africa such as Algeria, Libya, 

Niger, Sudan and Chad for C. cerastes and C. vipera, as well as the majority of C. 

gasperettii distribution and of the Arabian populations of C. cerastes would also benefit 

the understanding of the evolutionary history of the genus. Further phylogenetic 

assessments should include the existing samples characterized as C. bohemei to 

determine if these specimens really constitute a different species and determine its 

phylogenetic relationship in the genus or whether these individuals only represent 

specimens of C. cerastes or C. vipera with supraorbital malformations. 

Due to the life history constrains of vipers, such as ectothermic physiology and 

low dispersal rates, and because deserts environments are expected to be the highly 

affected by climate change, Cerastes species are expected to be very vulnerable to 

range contractions in future times (Alencar et al., 2018). For this reason, it is necessary 

to unveil the biogeographic patterns of the species and to predict the impact that future 

climatic conditions will have on these desert vipers. On this note, the findings of this work 

combined with other studies of other species in North Africa and in the Arabian Peninsula 

can be used as a starting point to design conservation units based on evolutionary 

realms that should be considered for protection and future management. 
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Appendix 

Appendix 1 Ancient DNA extraction protocol 

Ancient DNA extraction protocol for tissue samples (modified from Rohland and 
Hofreiter, 2007 protocol created for extraction of ancient DNA from bone samples) 
 
Laboratory conditions necessary:  
 
- The extraction procedure must be conducted in a room specified only for non-invasive 
or historical DNA extractions and equipped with UV lights. 
- Before starting the extraction procedure, UV lights should be turned on for at least 15 
minutes to eliminate all DNA present and to sterilize the room. Posteriorly, all surfaces 
must be cleaned with bleach and ethanol. 
- All buffers and materials necessary in this procedure must be prepared, washed and 
treated with UV lights at least 15 minutes to eliminate any contaminants. 
 
1. Pipet PBS solution into each tube containing the tissue samples and incubate at room 
temperature overnight 
2. Discard PBS solution and cut the tissue sample in small pieces 
3. Place 50 to 150 mg of sample into 2.0mL Safelock Eppendorf tube containing the 
extraction buffer (Composition:  ultrapure water, 0.5M EDTA, Tween 20 and Proteinase 
k (New England Biolabs)) 
3. Seal the tubes with parafilm and digest overnight at 37ºC  
4. Prepare one 50mL falcon tube for each sample containing a mixture of binding buffer 
(Composition: ultrapure water, isopropanol, tween 20 and guanidine hydrochloride) and 
sodium acetate. An extra tube should be prepared for the negative control 
5. Perform centrifugation of samples and transfer supernatant to the 50 mL falcon 
prepared previously 
6. Assemble Zymo extension reservoirs to the minElute spin column from Quiagen and 
add the assemblage to a 50mL falcon tube without the collection tube 
7. Transfer the mixture (step 5) to the assembly and centrifugate. Repeat centrifugation 
process with the assembly inverted. If needed, perform centrifugation for a few more 
minutes or increase the number of rotations per minute to ensure that all the liquid flows 
through the column. 
8. Disassemble the column and attach it to the collection tube. Discard the remaining 
materials and the flow-through. 
9. Dry spin the columns, add PE buffer (Quiagen), centrifugate and discard the flow-
through. Repeat this step one more time 
10. Perform first and second DNA elutions to a 1.5 mL Eppendorf Low retention tube 
with 25uL TET buffer per elution. If the concentration of the samples is low (<100 ng), 
perform another elution containing 50uL TET buffer to a different 1.5 mL Eppendorf Low 
retention tube or perform a second extraction  
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Appendix 2: PCR conditions for the sequenced genes of mtDNA and nuDNA 

COI 

MasterMix – 5 uL 

Rep-COI-F – 0.4 uL 

Rep – COI-R- 0.4 uL 

H20 – 3.2 uL 

DNA – 1 uL 

 

Amplification step Temperature (⁰C) Duration Number of cycles 

Initial denaturation 95 10 min 1 

Denaturation 95 40 sec  
9 Annealing 50 45 sec 

Extension 72 45 sec 

Denaturation 95 40 sec  
31 Annealing 48 45 sec 

Extension 72 45 sec 

Final extension 72 10 min 1 

 

NT3 

MyTaq– 5 uL 

NT3-F1 – 0.4 uL 

NT3-R4 - 0.4 uL 

H20 – 3.2 uL 

DNA – 1 uL 

 

Amplification step Temperature (⁰C) Duration Number of cycles 

Initial denaturation 95 10 min 1 

Denaturation 95 40 sec  
40 Annealing 57 30 sec 

Extension 72 45 sec 

Final extension 72 7 min 1 

 

PRLR 

MasterMix– 5 uL 

PRLR-F1 – 0.4 uL 

PRLR-R3- 0.4 uL 

H20 – 3.2 uL 

DNA – 1 uL 
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Amplification step Temperature (⁰C) Duration Number of cycles 

Initial denaturation 95 15 min 1 

Denaturation 95 30 sec  
40 Annealing 56 30 sec 

Extension 72 45 sec 

Final extension 60 10 min 1 

 

VIM 

MyTaq– 5 uL 

VIM_Ex5_F2– 0.4 uL 

VIM_Ex6_R2- 0.4 uL 

H20 – 3.2 uL 

DNA – 1 uL 

 

Amplification step Temperature (⁰C) Duration Number of cycles 

Initial denaturation 95 10 min 1 

Denaturation 95 40 sec  
11 Annealing 60 (Touchdown:0.5) 45 sec 

Extension 72 45 sec 

Denaturation 95 40 sec   
29 Annealing 55 30 sec 

Extension 72 45 sec 

Final extension 72 7 min 1 
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CODE_coll Code Species Latitude Longitude COI NT3 PRLR VIM 

9166 14CC001 Cerastes cerastes  22.62 -14.60 1 - - - 

5136 5136 Cerastes cerastes  20.15 -16.14 2 - - - 

13693 17CC005 Cerastes cerastes 25.10 -11.52 3 - - - 

6270 11CC022 Cerastes cerastes  18.48 -16.02 3 - - - 

2898 09CC003 Cerastes cerastes  21.49 -11.33 4 - - - 

3232 09CC010 Cerastes cerastes  17.38 -11.82 5 - - - 

11984 11984 Cerastes cerastes 20.25 -13.09 6 - - - 

3045 09CC005 Cerastes cerastes  18.08 -11.87 7 - - - 

2908 09CC006 Cerastes cerastes  21.06 -11.42 7 8,14 1,11 8,9 

5852 11CC016 Cerastes cerastes  21.78 -12.88 8 - - - 

5920 11CC018 Cerastes cerastes  20.79 -12.20 8 - - - 

ABR17 - FER2 17CC028 Cerastes cerastes 27.10 -11.06 8 - - - 

9076 9076 Cerastes cerastes  26.51 -11.99 8 8,16 1,15 - 

 17CC002 Cerastes cerastes 27.80 -11.09 9 6,15 1,1 19,20 

1621 08CC001 Cerastes cerastes  21.19 -13.58 10 - - - 

5205 10CC004 Cerastes cerastes  20.28 -15.08 10 - - - 

5220 10CC005 Cerastes cerastes  20.41 -14.96 10 - - - 

5251 10CC007 Cerastes cerastes  21.06 -14.37 10 - - - 

6427 11CC023 Cerastes cerastes  20.74 -16.42 10 - - - 

SPM002639 SPM002639 Cerastes cerastes 30.00 12.00 11 7,16 1,16 - 

SPM002345 SPM002345 Cerastes cerastes 35.22 2.32 12 - - - 

9089 9089 Cerastes cerastes  32.48 -1.60 13 - - - 

8288 8288 Cerastes cerastes  32.36 -2.85 13 - - - 

9059 9059 Cerastes cerastes  32.28 -3.32 13 6,14 1 - 

BEV.8502 BEV.8502 Cerastes cerastes  32.15 -1.26 13 - - - 

325 325 Cerastes cerastes  31.30 10.62 14 - - - 

Appendix 3 - List of sequenced samples used in this study and respective haplotype number from Fig. 5 and Fig. 6 
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T31-37 
Ceracera1 

T31-37 Ceracera1 Cerastes cerastes 34.15 8.29 
14 8,16 14 - 

10405 10405 Cerastes cerastes 31.53 -4.18 15 - - - 

set/16 17CC015 Cerastes cerastes 29.11 -8.66 15 - - - 

6602 6602 Cerastes cerastes  31.24 -4.57 15 - - - 

9061 9061 Cerastes cerastes  30.80 -6.75 15 - - - 

S1339 S1339 Cerastes cerastes 31.20 -4.92 15 13,14 1,6 - 

SPM002638 SPM002638 Cerastes cerastes 30.94 -7.21 15 - - - 

BEV.10313 BEV.10313 Cerastes cerastes  30.75 -6.09 16 8,16 1 19,20 

 15CC067 Cerastes cerastes 30.55 -7.15 17 - - - 

 16CC008 Cerastes cerastes 28.56 -9.80 18 8,16 8,9 1,2 

17CC040 17CC040 Cerastes cerastes 28.98 -9.85 18 - - - 

11504 11504 Cerastes cerastes 28.84 -10.31 19 - - - 

 15CC001 Cerastes cerastes 30.09 -6.88 19 - - - 

8370 8370 Cerastes cerastes  29.76 -7.74 19 - - - 

9065 9065 Cerastes cerastes  29.76 -8.52 19 - - - 

BEV.8704 BEV.8704 Cerastes cerastes  29.84 -7.21 19 7,14 1,14 18,20 

TAU.R16430 TAU.R16430 Cerastes cerastes 30.93 34.41 21 12,17 7 3,6 

SPM002585 SPM002585 Cerastes cerastes 29.08 34.23 22 - - - 

12953 12953 Cerastes cerastes 18.92 20.91 23 - - - 

12959 12959 Cerastes cerastes 18.92 20.91 23 11,16 7 4,5 

6734 6734 Cerastes cerastes  15.86 11.45 23 8,16 7 4,6 

92 92 Cerastes cerastes 25.29 32.55 24 10,16 7 4,7 

25132/2 25132/2 Cerastes cerastes 13.66 30.02 25 - - - 

SPM000783 SPM000783 Cerastes cerastes 36.91 7.76 25 8,16 1,12 - 

38248 ZFMK38248 Cerastes cerastes 24.37 9.53 26 6,14 1 - 

AO141 AO141 Cerastes gasperettii 17.96 53.75 27 - - - 

CN2672 CN2672 Cerastes gasperettii 20.78 58.31 28 - - - 

CN3768 CN3768 Cerastes gasperettii 21.76 59.49 28 - - - 
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CN7622 CN7622 Cerastes gasperettii 18.44 55.27 29 1,2 2,4 21,25 

 BEV.10077 Cerastes gasperettii 29.39 47.07 30 2,3 2,3 22,25 

S7071 S7071 Cerastes gasperettii 22.45 58.68 30 - 2 23,24 

TAU.R17182 TAU.R17182 Cerastes gasperettii 32.07 34.79 30 - - - 

553 553 Cerastes vipera 25.76 -14.60 31 8,16 1,5 10,11 

2888 09CV002 Cerastes vipera 21.50 -11.62 32 - - - 

503 503 Cerastes vipera 18.98 -16.21 32 - - - 

7312 12CV031 Cerastes vipera 23.58 -15.23 32 - - - 

5284 10CV009 Cerastes vipera 20.47 -15.61 33 - - - 

11616 11616 Cerastes vipera 24.78 -14.85 33 - - - 

11964 11964 Cerastes vipera 19.11 -14.94 33 - - - 

5763 11CV011 Cerastes vipera 21.20 -14.22 33 - - - 

5784 11CV014 Cerastes vipera 21.52 -12.85 33 9,15 1 - 

13775 13775 Cerastes vipera 23.20 -11.95 33 - - - 

ABR17 - FER4 17CV030 Cerastes vipera 26.87 -11.75 33 - - - 

BEV.10867 BEV.10867 Cerastes vipera 22.74 -14.55 33 - - - 

15CV165 15CV165 Cerastes vipera 27.74 -11.46 34 - - - 

OCT16 - 4 17CV017 Cerastes vipera 28.30 -9.34 35 8,15 1 14,15 

83340 ZFMK83340 Cerastes vipera 27.10 -13.39 36 - - - 

BEV.10185 BEV.10185 Cerastes vipera 24.56 10.89 38 8,16 1,13 16,17 

6658 6658 Cerastes vipera 14.68 13.14 39 8,16 1 10,11 

NMPR72142/6 NMPR72142/6 Cerastes vipera 27.58 29.86 39 - - - 

TAU.R17180 TAU.R17180 Cerastes vipera 30.93 34.42 40 18,19 1 12,13 
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Appendix 4 - Delimitation of Cerastes cerastes lineages 
and sub-lineages (West-North and West-South) 
occurrences using spatial interpolations of mtDNA 
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Appendix 5 - Probabilistic models of Cerastes cerastes for the present and the past climatic periods with 
standard deviation 
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Appendix 6 - Probabilistic models of Cerastes vipera for the present and the past climatic periods with 
standard deviation 
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Appendix 7 - Probabilistic models of Cerastes gasperettii for the present and the past climatic periods 
with standard deviation  
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Appendix 8 - Probabilistic models of Cerastes cerastes West lineage for the present and the past climatic 
periods with standard deviation 
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Appendix 9 - Probabilistic models of Cerastes cerastes West-North sub-lineage for the present and the 
past climatic periods with standard deviation 
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Appendix 10 - Probabilistic models of Cerastes cerastes West-South sub-lineage for the present and the 
past climatic periods with standard deviation  

 


